La Physique du Quark Top dans les 1^{ères} Données du LHC

Séminaire LAL – 05.02.09

Julien Donini, LPSC Grenoble

(Re)démarrage du LHC

1^{ères} collisions en 2009 Nov/dec: 900 GeV et 2.36 TeV, L~10²⁶ cm⁻²s⁻¹

Le LHC en 2010/11: montée en puissance progressive

- redémarrage mi-Février, long run de physique
- collisions 7 TeV, 2010 ~ 0.2 fb⁻¹ \rightarrow ~1 fb⁻¹ fin 2011
- compréhension détecteurs, physique Modèle Standard (redécouverte quark top), quelques surprises (SUSY, physique exotique) ?

« The future of the LHC, still uncertain is » - Master Yoda

Vue d'ensemble

1) La nouvelle physique et le quark top

- La physique du quark top
- Lien avec la nouvelle physique

2) Mise en évidence du top dans ATLAS

- Objectifs et outils
- Stratégie et méthodes
- Perspectives pour les premières données (à h^{te} énergie)

Le quark top

Masse très élevée ~ 173 GeV: 40 fois la masse du quark b !

- pourquoi cette hiérarchie ?
- quel rôle joue le quark top dans mécanisme de Higgs ?
- quels liens avec la physique au-delà du Modèle Standard ?

Le quark top

Le seul quark qui se désintègre avant hadronisation

• un moyen unique de sonder la physique électrofaible !

L'étude des propriétés du quark top permet de tester le Modèle Standard et de rechercher des signatures de nouvelle physique

Production du quark top au LHC

 σ_{tt} = 400 pb @ 10 TeV \sqrt{s}

• Production électrofaible du top

Une brève histoire du top

• Une longue quête

- Du quark b au top
 - découverte quark b en 1977 à FNAL \rightarrow recherche de son partenaire
 - Masse attendue M_t~20 GeV !
- Recherches directes et indirectes

Une brève histoire du top

• Une longue quête

- Découverte (ttbar) au Tevatron: 1995 !
 - Le top est beaucoup plus lourd que prévu !
- Run II: mesures de précision, découverte du single top (2009)

Une brève histoire du top

• Le quark top au LHC

- Produit en abbondance
 - qque 100aines pb⁻¹ stat>Tevatron
 - 2011: ~100k paires ttbar
 - Bruit de fond relativement faible

LHC: début d'une nouvelle ère dans la physique du top

- axe de recherche majeur, dès les premières collisions à h^{te} énergie
- → Utilisation quark top comme outil de calibration
- ➔ test du MS et recherche de nouvelle physique

1) La nouvelle physique et le quark top

- La physique du quark top
- Lien avec la nouvelle physique
- 2) Mise en évidence du top dans ATLAS
 - Objectifs et outils
 - Stratégie et méthodes
 - Perspectives pour les premières données (à h^{te} énergie)

Physique du Top

Recherche d'une Nouvelle Physique

- Etude du Quark Top
 - Production et désintégration, polarisation, couplages, charge ...
 - Déviation par rapport aux prédictions du MS ? apparition de phénomènes nouveaux ?

Single Top et Nouvelle Physique

• Fenêtre vers la nouvelle physique

- Production par interaction faible
- \rightarrow Section efficace directement proportionnelle à $|v_{tb}|^2$
- → Sensible à toute nouvelle particule pouvant modifier le couplage faible du top

Single Top et Nouvelle Physique

Différent processus

- Mesure des sections efficaces de chaque mode
- contraintes sur le modèle standard
- tests de théories BSM
- Au LHC un processus supplémentaire est accessible (voie Wt)

Exemple: 4^{ème} Génération

• Extension du Modèle standard

- N générations n'est pas fixé dans le MS (<9 limite QCD)
- Hypothèse 4^{ème} famille de quarks et de leptons
- Extension 4x4 → matrice quarks CKM (PMNS pour les leptons)
- Regain d'intérêt récent
 - Limites V_{tb} Tevatron
 - Perspectives LHC

➔ Workshop on Beyond 3 Generation Standard Model http://indico.cern.ch/conferenceOtherViews.py?view=standard&confld=68036

→ Four statements about 4th generation: http://arxiv.org/abs/0904.4698v1

Pourquoi une 4^{ème} Génération ?

SM4 pas (encore) exclu !

 Fit des données électrofaibles et mesure des paramètres CKM laissent encore de la place pour une 4^{ème} génération

Directly measured matrix elements including W-decays:

		0.97418	0.2253	0.0043	< 0.046	
	$ V^{4 \times 4} -$	0.224	0.973	0.041	< 0.20	Limits
· ·	$ V CKM ^{-}$	< 0.045	< 0.125	> 0.78	< 0.63	@ ~2σ
3.		< 0.075	< 0.21	< 0.63	> 0.78	

- Eléments de réponses à des questions ouvertes
 - Asymétrie matière-antimatière univers (violation CP)
 - modèle alternatif brisure symétrie EW
 - Candidats matière noire (neutrinos stériles, hadrons stable t', mu')
- Le LHC est en mesure de trancher la question
 - Potentiel de découverte ou d'exclusion

Recherche d'une 4^{ème} Génération

1) La nouvelle physique et le quark top

- La physique du quark top
- Lien avec la nouvelle physique

2) Mise en évidence du top dans ATLAS

- Objectifs et outils
- Stratégie et méthodes
- Perspectives pour les premières données (à h^{te} énergie)

Le Détecteur ATLAS au LHC

Les Sous-détecteurs d'ATLAS

ting	$\sigma_{p_T}/p_T = 0.05\% \ p_T \oplus 1\%$	± 2.5	
alorimetry	$\sigma_E/E = 10\%/\sqrt{E} \oplus 0.7\%$	± 3.2	± 2.5
onic calorimetry (jets)			
rel and end-cap	$\sigma_E/E = 50\%/\sqrt{E} \oplus 3\%$	± 3.2	± 3.2
ward	$\sigma_E/E = 100\%/\sqrt{E} \oplus 10\%$	$3.1 < \eta < 4.9$	$3.1 < \eta < 4.9$
n spectrometer	σ_{p_T}/p_T =10% at p_T = 1 TeV	± 2.7	± 2.4

 η coverage

Measurement

Trigger

Signatures t-tbar recherchée

- "all jets" (46%): important bruit de fond, signature difficile
- dilepton (9%): signal clair, limité par la statistique
- lepton+jets (45%): compromis statistique/visibilité
- → L'ensemble des sous-détecteurs d'ATLAS est utilisé

- au moins 4 jets centraux
- identification de 0-2 b-jets
- 1 lepton (electron/muon) isolé
- énergie transverse manquante

• En pratique un peu plus complexe ...

Priorité premières données: compréhension du détecteur, reconstruction et identification des objets physiques, reconstruction processus MS ...

Candidat di-muon (ECM=900 GeV)

Julien Donini

Trigger et Lepton ID

- Déclenchement: 1 électron ou muon (isolé) de 10-20 GeV selon la luminosité initiale
- Identification: lepton reconstruit
 Pt>20 GeV (plateau efficacité trigger)

Efficacité d'identification

- à partir de données $Z^0 \rightarrow I^+I^-$
- précision ~1% @ 100 pb⁻¹

Lepton 'tag': sélectionné avec des critères d'identification serrés

Lepton 'test': calcul d'efficacité de selection

Résolution énergie manquante

dépend du fonctionnement et de la compréhension du calorimètre
premières données à 900 GeV/2.36 TeV semblent prometteuses

Energie transverse manquante

- mesurée dans le calorimètre
- top: typiquement $\not \! E_t > 20 \text{ GeV}$
- Variable cruciale physique top
 - reconstruction masse top, W leptonique
 - rejet bruit de fond QCD, Z+jets

<text>

Identification des b-jets
 → paramètre d'impact, vertex secondaire, lepton-non isolé

Bruit de fonds

• Processus principaux

- W+jets [~ 40×σ_{tt}]
 - Lepton isolé, énergie manquante
 - Présence de b-jets
- QCD-multijet [>>1000×σ_{tt}]
 - Jets reconstruits comme des leptons
 - Présence de b-jets, leptons non isolés
 - Taux de mauvaise id. faible mais section efficace élevée
- Z+jets, dibosons …
- (single)top

Modélisation des fonds avec les données

- incertitudes sur section efficaces: normalisation in-situ
- validation Monte Carlo: gerbe partonique, événements sous-jacent, distributions cinématiques ...

Coupures séquentielles

- Coupures sur des variables (+ou-) discriminantes
- Estimation fond: MC, échantillons de contrôle
- Minimisation de fonction de vraisemblance

$$L(\sigma) = \prod_{\text{channeli}}^{N} \frac{e^{-(B_i + \alpha_i L_i \sigma)} \cdot (B_i + \alpha_i L_i \sigma)^{D_i}}{D_i!}$$

- α_i : acceptance signal
- L : luminosité integrée D_i : données = B_i+ α_i L σ_{th}
- $-\sigma$: section efficace

- Coupures séquentielles
- Méthode des 'templates'
 - Reconstruction de variables discriminantes
 - Ajustement des données avec des modèles de signal et de fond

- Coupures séquentielles
- Méthode des templates
- Méthode multivariables
 - Combinaison de plusieurs variables discriminantes
 - Nombreuses méthodes: réseaux de neurones, éléments de matrice, arbres de décision boostés …
 - Méthodes complexes mais amélioration sensible du rapport S/B

1) La nouvelle physique et le quark top

- La physique du quark top
- Lien avec la nouvelle physique

2) Mise en évidence du top dans ATLAS

- Objectifs et outils
- Stratégie et méthodes
- Perspectives pour les premières données (à h^{te} énergie)

Perspectives à 10/7 TeV

- Analyses à 10 TeV et 200 pb⁻¹
 - Précision atteignable sur les mesures de section efficace ?
 - Mise en place de méthodes et stratégies pour les 1^{ères} données
 - Erreurs systématiques les plus réalistes possible
 - Fond principaux mesurés à partir des données
 - Résultats publics: mise en évidence production ttbar, recherche single top (en cours d'approbation)
- Quelles perspectives à 7 TeV ?

Canal di-lepton

- 10 TeV, 200 pb⁻¹, sélections simples et robustes, pas de b-tagging
- ATL-PHYS-PUB-2009-086

Canal di-lepton

- 10 TeV, 200 pb⁻¹, sélections simples et robustes, pas de b-tagging
- ATL-PHYS-PUB-2009-086

Canal di-lepton

- 10 TeV, 200 pb⁻¹, sélections simples et robustes, pas de b-tagging
- ATL-PHYS-PUB-2009-086

• 2 leptons (+/-), ≥2 jets, MET, veto fenêtre masse Z			eto
$N(200 \text{ pb}^{-1})$	00		A 11

ee	μμ	eµ
210	330	680
55	80	120
3.9	4.1	5.6
	ee 210 55 3.9	eeμμ21033055803.94.1

Mesure section efficace

Coupures séquentielles simples **Précision ~ 10% (err. lum. exclue)** $3.1(\text{stat})^{+9.6}_{-8.7}(\text{syst})^{+26.2}_{-17.4}(\text{lumi})\%$

Canal lepton+jets

- 10 TeV, 200 pb⁻¹, sélections simples et robustes, pas de b-tagging
- ATL-PHYS-PUB-2009-087
- ATLAS Preliminary (b) Simulation • 1 lepton, \geq 4 jets, MET, coupure M_W Tttbar other • fond: combinatoire, W+jets, single single t W+jets 100Ē top, QCD-multijet 80 données: estimation taux W+jets 60 40 20F Rapport W \rightarrow Iv+jets sur Z \rightarrow II+jets 450 500 100 150 200 250 300 350 50 400 Alpgen, Electron channel M_{iii} [GeV] Ratio of jet multiplicity Alpgen, Muon channel Pythia, Electron channel 1.3 Pythia, Muon channel • extrapolation région de contrôle (CR) avec 1.2 $0/1 \text{ jet} \rightarrow \text{region de signal (SR) avec } 4^+ \text{ jets}$ 1.1E estimation taux événement W+jets 1E . $(W^{\rm SR}/W^{\rm CR})_{\rm data} = (Z^{\rm SR}/Z^{\rm CR})_{\rm data} \cdot C_{\rm MC}, \qquad C_{\rm MC} = \frac{(W^{\rm SR}/W^{\rm CR})_{\rm MC}}{(Z^{\rm SR}/Z^{\rm CR})_{\rm MC}}$ **1** 0.9 þ ATLAS Preliminary 0.8 Simulation Incertitude: ~20% 0.7 З 5 Number of jets

Canal lepton+jets

- 10 TeV, 200 pb⁻¹, sélections simples et robustes, pas de b-tagging
- ATL-PHYS-PUB-2009-087
- 1 lepton, \geq 4 jets, MET, coupure M_W • fond: combinatoire, W+jets, single top, QCD-multijet données: estimation taux W+jets Mesure section efficace coupures séquentielles Events fit masse hadronique top analyse sans coupures MET Précision < 20% (err. lum. exclue) $3\%_{(stat)} + <15\%_{(syst)} + 22\%_{(lumi)}$ $\Delta\sigma/\sigma$ (cut) = $\Delta\sigma/\sigma$ (fit) = 15%_(stat)+ <15%_(syst)+ 20%_(lumi)

JES. ISR/FSR

• Recherche single top dans la voie t

- Mode de production du single top dominant [125 pb@10 TeV ~ $1/3\sigma_{tt}$]
- Mise en évidence plus délicate
 - Bruit de fond W+jets et ttbar important
 - Identification des b-jets nécessaire
- Stratégie analyse complexe (mais excitante !)
- Résultats préliminaires (note publique en cours d'approbation)

2 approches

	Coupures	Likelihood
Sélections	P _T (b-jet)>50 GeV η(light-jet)> 2.5	Likelihood >0.9
Signal	118	112
Fond	185	127
S/B	0.64	0.89

Sensibilité de la mesure (200 pb⁻¹, 10 TeV)

Précision mesure section efficace

Source of	$\Delta \sigma / \sigma ($	%)
uncertainty	Sequential cuts	Likelihood
Data statistics	15%	14%
MC statistics	6%	6%
JES	8%	3%
b-tagging	26%	22%
Background normalization	12%	10%
ISR/FSR	10%	10%
PDF	7%	6%
Generator	11%	16%
Lep. ID, trigger	4%	3%
Luminosity	11%	11%
Total	45%	40%
		$\overline{\mathbf{v}}$

b ⁻¹ , 10 TeV) <i>Drélin:</i>				
Error	Variation 2			
JES	±5% on jet energy			
b-tagging	±6% b-tag eff. (absolute), ±10% mistag (relative)			
BG error	Data-driven (W+jets, ttbar) and theory			
ISR/FSR	specific t-ch and ttbar MC samples with low/high ISR/FSR			
PDF	t-ch samples with different CTEQ and MRST PDF sets			
Lep. ID, trigger	±1% error on S and B rates			
Lum.	±10% integrated luminosity			

Significance: 2.7 σ

Perspectives à 7 TeV

Collisions à 7 TeV

- Scénario moins favorable
- Réduction section efficaces
 - facteurs 1.5-2.5
 - Incertitude fond plus problématiques même pour les mesures ttbar

Red	léco	uve	rte d	u top
-----	-------------	-----	-------	-------

- Faisable pour ~ 100 pb⁻¹
- Identification quarks b est un atout
 - → S/B multiplié par 5 après b-tagging
 - Mais mise en œuvre délicate
- Observation mi/fin 2010

Processus	Facteur	
Top-antitop	2.5	
Single top	2.0	
W+jets	1.5-1.7	
QCD	1.5	

0

Perspectives single top

- Travail préparatoire important: mise en place identification des b, mesure des fonds principaux
- Excès à 3σ avec ~500 pb-1
- Observation avec 1 fb⁻¹ possible

Avec 1fb⁻¹ (fin 2011?): signal ttbar bien établi, observation single top (voie t)

Conclusion et perspectives

Perspectives 2010/2011

- Redécouverte du quark top !
- Paver la voie aux mesures de précision
 - Observation single top dans la voie t, découverte single top voie Wt
 - Mesure polarisation W, recherche de résonnances top-antitop, recherche Higgs chargé ...

• Le quark top: fenêtre vers la nouvelle physique

- Physique du top riche et excitante
- Le LHC permettra d'explorer la physique du top
- ... et éventuellement de découvrir des phénomènes nouveaux !

BACKUP SLIDES

Production de Paire de Quark Top

- Section efficace de production: approche théorique
 - Théorème de factorisation

Production de Paire de Quark Top

• Section efficace de production: approche théorique

Théorème de factorisation

$$\sigma(\hat{s}, m_i^2) = \sum_{i,j} \int dx_i dx_j f_i(x_i, \mu_f^2) f_j(x_j, \mu_f^2) \cdot \sigma_{ij}(ij \rightarrow t\bar{t}; \hat{s}, \mu_R^2, \mu_f^2)$$
Production au seuil $x_i \approx 2m_t/\sqrt{s}$
• LHC : $\sqrt{s} = 14 \text{ TeV} \rightarrow x_i \approx 0.025$
 $\rightarrow qq (10\%) \text{ et gg (90\%)}$
• TeVatron : $\sqrt{s} = 1.96 \text{ TeV} \rightarrow x_i \approx 0.175$
 $\rightarrow qq (85\%) \text{ et gg (15\%)}$

$$\int dx_i dx_j f_i(x_i, \mu_f^2) f_j(x_j, \mu_f^2) \cdot \sigma_{ij}(ij \rightarrow t\bar{t}; \hat{s}, \mu_R^2, \mu_f^2)$$

Désintégration du Quark Top

Modes de désintégration

- Durée de vie très courte
 - $\tau_{top} \sim 4 \times 10^{-25} \text{ s} < \tau_{had} \sim 28 \times 10^{-25} \text{ s}$
 - Le top se désintègre avant hadronisation
- BR(t→Wb) ~ 100% dans le modèle standard

Modes de désintégration des paires ttbar

En fonction de la désintégration du W

00000

Top Pair Branching Fractions

Canal dilepton: 9%

antiprotor

proton

- Canal lepton+jets: 45%
- Canal hadronique: 46%

Étiquetage des b dans ATLAS

• Algorithmes basés sur le paramètre d'impact

- $d_0 \rightarrow$ likelihood (b vs uds) pour chaque trace
 - poids total pour chaque jet
 - Algorithmes 2D et 3D
- Jet probability

Étiquetage des b dans ATLAS

- Algorithmes basés sur le paramètre d'impact
- Vertex secondaire
 - Fit VS à partir des traces à gd d₀
 - likelihood à partir des variables du VS
 - Masse vertex, fraction d'énergie, N_{2-traces} vertex
 - Meilleur résultats si combiné avec alg. IP

Étiquetage des b dans ATLAS

- Algorithmes basés sur le paramètre d'impact
- Vertex secondaire
- Soft lepton
 - Désintégration semi-leptonique (éléctrons, muons)
 - Méthode limitée par rapport de branchement

Arbres de Décision 'boostés'

Coupures itératives pour classifier les événements

Boosting: moyenne plusieurs arbres, dilue la nature discrète de l'arbre, améliore le pouvoir séparateur. Arbre de décision: à chaque
 nœud → variable et coupure qui
 sépare les événements
 Entrainement: maximiser le
 pouvoir séparateur

Single Top Triggers

• Trigger turn-on curves

Figure 6: Turn-on curves are shown for the mu20i (a) and the e25i (b) trigger. In both plots, the circles represent Wt-channel single-top, the squares represent s-channel single-top, and the triangles represent t-channel single-top events.