

High Mass SM Higgs Searches at the Tevatron

Michael Kirby

Northwestern University Higgs Hunting Workshop

Outline

- SM Higgs constraints
- Tevatron and luminosity
- high mass Higgs strategy
 - search channels
 - backgrounds
 - cross checks
 - systematic uncertainties
- CDF and D0 results
- combined Tevatron results
- sensitivity projections

Where should we be looking?

Precision EWK measurements at LEP, SLD, and Tevatron suggest the preferred SM region is accessible by the Tevatron

Where should we be looking?

Precision EWK measurements at LEP, SLD, and Tevatron suggest the preferred SM region is accessible by the Tevatron

Tevatron at Fermilab

 Tevatron proton-antiproton collider at Fermilab

 $\sqrt{s} = 1.96 TeV$

- EWK scale processes probe different PDF from LHC
- typical average initial:
 >300 x 10³⁰ cm⁻² s⁻¹
- record:404 x 10³⁰ cm⁻² s⁻¹
- ~ 50 pb⁻¹ per week
- long term goal is 10+ fb⁻¹
- optimistically planning for operation in 2012

Tevatron at Fermilab

Immense thanks to the Fermilab Accelerator Division for all the collisions

Detector Operations groups for high efficiency

Computing Division for processing data

integrated luminosity

Run II Integrated Luminosity

19 April 2002 - 18 July 2010

July 29, 2010

Michael Kirby - Higgs Hunting Workshop

Higgs production at the Tevatron

Higgs final state signatures

- $H \rightarrow WW \rightarrow l\nu l\nu \ (l=e,\mu)$ BR $(l\nu l\nu) \sim 6\%$
 - easy to trigger
 - well modeled bkg
 - τ →(e,μ) contributes
- H \rightarrow WW \rightarrow lvjj (l=e, μ) BR(W \rightarrow hadrons) ~30%
 - large QCD backgrounds
 - new D0 result
- $H \rightarrow WW \rightarrow \tau \nu \mu \nu$
 - hadronic τ decay
 - new CDF measurement

W decay

Michael Kirby - Higgs Hunting Workshop

Higgs final state signatures

- $VH \rightarrow VWW \rightarrow l^{\pm}\nu l^{\pm}\nu + X$ ($l=e,\mu$)
 - same charge dileptons
 - change in backgrounds

W decay

W decay

high mass Higgs strategy

- leptonic W decays
 - provides efficient trigger
 - multijet bkg rejection
- missing transverse energy
- x-check bkg modeling
- improved signal modeling
- maximally separate signal from background
- minimize impact of systematic uncertainties

lepton identification

- large transverse momentum (p_T>15 GeV)
- isolated from other calorimeter or track activity
- electron
 - EM Cal cluster
 - matched track
- muon
 - muon chamber hits
 - matched track or MIP signal
- CDF also considers trackbased electrons and muons

missing transverse energy

- neutrinos not reconstructed in detector
- need to reject mismeasurement
 - jet energy fluctuations
 - tracking resolution for high p_T muons
 - underlying event
- suppress large Drell-Yan background

H→WW Backgrounds

- •WW/WZ
- •W+Jets/y
- •Drell-Yan
- •tt, single top
- •Multijet with jet faking lepton

All backgrounds have been measured

H→WW background measurements

- Using same analysis frameworks, measure dominant backgrounds
- Provides

 confirmation of both
 sensitivity and MC
 modeling

H→WW background

measurements

- Using same analysis frameworks, measure dominant backgrounds
- Provides

 confirmation of both sensitivity and MC modeling

Michael Kirby - Higgs Hunting Workshop

$H \rightarrow WW \rightarrow l^+ \nu l^- \nu$ Signature

leptonic W decays
opposite charge
large missing transverse energy

•	Kinematic Discriminants	
	– <i>ll</i> opening angle	
	$\stackrel{W^+}{\longleftrightarrow} \stackrel{W^+}{\Longrightarrow} \stackrel{e^+}{\Longrightarrow}$	
	$\longleftrightarrow - \Leftrightarrow - \Leftrightarrow \rightarrow$	
	v W e	
	 kinematics input MVA 	

$H \rightarrow WW \rightarrow l^+ \nu l^- \nu$ Signature

July 29, 2010

Michael Kirby - Higgs Hunting Workshop

CDF Analysis Strategy

Michael Kirby - Higgs Hunting Workshop

0 Jet Analysis Strategy

0 Je	t Events	
$\frac{\text{CDF Run II Prelimi}}{M_{} - 1}$	$\frac{1}{165} \frac{\int \mathcal{L}}{CeV/c^2} = \frac{1}{2}$	$5.9 \; {\rm fb}^{-1}$
4 <u>4</u>	$\frac{100 \text{ GeV}/C}{2.02 \text{ I}}$	0.66
\mathcal{U}	$2.23 \pm 227 \pm 227$	0.00
WW	$563 \pm$	56
WZ	$255 \pm$	3.8
ZZ	$\frac{29.9}{38.3} \pm$	5.0 5.4
W+iets	$215 \pm$	51
$W\gamma$	$155 \pm$	22
Total Background	$1226 \pm$	120
$gg \rightarrow H$	$16.9 \pm$	3.0
WH	0.410 \pm	0.070
ZH	0.416 \pm	0.059
VBF	0.140 \pm	0.028
Total Signal	17.8 ±	3.1
Data	123	0

July 29, 2010

Michael Kirby - Higgs Hunting Workshop

0 Jet Analysis NN Output

Michael Kirby - Higgs Hunting Workshop

1 Jet Analysis Strategy

$\begin{array}{c} 1 \text{ Jet E} \\ \hline \\ \text{CDF Run II Preliminary} \\ \hline \\ M_{H} = 165 \text{ G} \end{array}$	vents $\int \mathcal{L}$ eV/c^2	= 5.	$.9 { m fb}^{-1}$	g QQ q QQ q	q q H	
$\overline{t\overline{t}}$	56	±	11		کسیبد	
DY	218	\pm	49	1	(W ~	
WW	151	\pm	18	q'	w w	
WZ	25.4	\pm	3.5	\bar{q}	Н	
ZZ	10.3	\pm	1.5	\sim	کے	
$W+ ext{jets}$	77	\pm	20	*	· ·····	
$W\gamma$	25.1	\pm	4.3	1	z^{2}	
Total Background	563	\pm	69		٢	
gg ightarrow H	8.0	\pm	2.4	y ,	Z	
WH	1.13	\pm	0.18	q'	q'	
ZH	0.439	\pm	0.066		$-\frac{1}{5Wz}$	
VBF	0.74	\pm	0.13		<u>з</u> т	
Total Signal	10.3	\pm	2.5		<u> </u>	
Data		533		q		
			0511+			

OS 1 Jet

Michael Kirby - Higgs Hunting Workshop

1 Jet Analysis NN Output

CDF Run II Prelimi	harv [[= 5	9 fb ^{-1}	$\int L = 5$.9 fb ⁻¹
$\frac{0.001}{M_{\rm H}} = 1$	$\frac{101}{65 \text{ GeV}/c^2}$			S 1 Jet, High S/B	
$\overline{t\bar{t}}$	56	+	11	$\mathbf{M}_{H} = 165 \text{ GeV/c}^{2}$	
DY	218	+	49		W×10 ⊾
WW	151	+	18		
WZ	25.4	\pm	3.5		
ZZ	10.3	\pm	1.5		
W+jets	77	\pm	20	20 Signal	
$W\gamma$	25.1	\pm	4.3		
Total Background	563	\pm	69		
gg ightarrow H	8.0	\pm	2.4		
WH	1.13	\pm	0.18	5 <mark>╴╴╴╴╴╴╴╴╴╴╴╴╴</mark>	Ł L
ZH	0.439	\pm	0.066		1
VBF	0.74	\pm	0.13	-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 NN Out	tout
Total Signal	10.3	\pm	2.5		.put
Data		533		CDF Run II Preliminary	.9 fb ⁻¹
			OS 1 Jet	S I Jet, Low S/B	
				$\frac{Q}{10^2} \frac{10^2}{M_{\rm H}} = 165 {\rm GeV/c^2}$	
					W×10
	4				
Neural Net Ir	iputs				
	•				-
		• •			
$\mid \Delta \mathbf{K}(l,l), \mathbf{M}_{\mathrm{T}}(l)$	$l, \not\!$	M	11, E /s		
	/ 1//		<i>ii / </i> (
$[E(l_1), P_{T}(l_1)]$	$P_{T}(l_{2})$	H	T		
	- 1(02),		1		
				-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8	
					put

Michael Kirby - Higgs Hunting Workshop

1

2 Jet Analysis Strategy

2+ Jet E CDF Run II Preliminary $M_H = 165$ G	vents $\int \mathcal{L} = \frac{1}{eV/c^2}$	= 5.9) fb 1	g 000 q 000	H H
$\overline{t\bar{t}}$	169		24	\rightarrow	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
DY	80	\pm	31	1	w Z
WW	33.6	\pm	6.1	q	w w
WZ	6.8	\pm	1.3	\bar{q}	Н
ZZ	3.10	\pm	0.57		کم
W+jets	26.7	\pm	7.5	\sim	$\sim \sim $
$W\gamma$	4.4	\pm	1.2		Ζζ
Total Background	324	\pm	50	q /	$rac{1}{2}$
$gg \to H$	2.6	\pm	1.8	a'	a'
WH	2.50	\pm	0.35	· · · · ·	Jug I
ZH	1.28	\pm	0.17		
VBF	1.37	±	0.23		Jwz
Total Signal	7.8	\pm	2.0		
Data		307			DE de retire en t
		Alls	SB-2JOS	VH and V	BF dominant

July 29, 2010

Michael Kirby - Higgs Hunting Workshop

2 Jet Analysis NN Output

- updated to largest dataset in a Higgs search $- \int L = 6.7 \text{ fb}^{-1}$
- incorporate jet selection
- train Decision Tree for each jet sample
 - 15+ input variables based on event kinematics and topology

$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Data	Signal	Total Background	$Z \to ee$	$Z \rightarrow \mu \mu$	$Z \to \tau \tau$	$t\bar{t}$	W + jets	WW	WZ	ZZ	Multi-jet
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0 jets	2662	13.2	2838 ± 224	8.9	172.2	1318	10.8	684.2	447.0	16.5	2.2	177.8
> 2 jets 636 4.8 594+58 2.3 14.4 162.8 300.6 38.1 21.9 2.7 1.4 49.2	1 jet	1164	7.9	1132 ± 91	4.8	40.6	585.5	107.6	147.6	99.0	6.5	1.6	138.4
	$\geq 2~{\rm jets}$	636	4.8	594 ± 58	2.3	14.4	162.8	300.6	38.1	21.9	2.7	1.4	49.2

- train Decision Tree for each jet sample
- important background for each discriminant changes

Diboson, W+jets, top

0.86 0.88 0.9 0.92 0.94 0.96 0.98 BDT Outpu

BDT Output

ທ10²

10⁻¹

DØ Preliminary

eµ + MET, 1 jet

 $L = 5.6 \text{ fb}^{-1}$

Entries

 10^4

10³

10²

10

10

0.1

Michael Kirby - Higgs Hunting Workshop

 $H \rightarrow WW \rightarrow l^+ \nu l^- \nu$

- published 5.4 fb⁻¹ dielectron and dimuon analysis combined with updated eµ
- artificial Neural Network final discriminant

Object Variables	Event Var	Topo Var
$\mathbf{P}_{\mathrm{T}}^{ll} \& \mathbf{P}_{\mathrm{T}}^{l2}$	$M_{inv}(l,l)$	N Jets
Σ lepton P _T	$M_t^{\min}(l, E_T)$	$\Delta \phi(l,l)$
Σ jet $P_T (H_T)$	E _T	$\Delta \phi(E_{\mathrm{T}}, l_{1})$
Lepton Quality	E_{t}^{scalar}	$\Delta \phi(E_T, l_2)$

Michael Kirby - Higgs Hunting Workshop

$H \rightarrow WW \rightarrow l\nu l\nu Systematics$

Shape systematics - modify the output of discriminant

Flat systematics - efficiencies, normalizations, etc

Syst(%)	Signal	∑Bkg
JES	1.0	4.0
Jet ID	1.6	4.9
PV Rew	0.9	0.6
V-p _T Rew	7.0	1.0
WW NLO	0.4	1.1
σ	22	6-10
Multijet	0	2
PDF	4	4
Lepton ID	2.5	2.5

July 29, 2010

$H \rightarrow WW \rightarrow l\nu l\nu Systematics$

Shape systematics - modify the output of discriminant

Flat systematics - efficiencies, normalizations, etc

Syst(%)	Signal	∑Bkg	
JES	1.0	4.0	
Jet ID	1.6	4.9	$\begin{array}{ccc} & & & D \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$
PV Rew	0.9	0.6	± 40 ± 1 s.d. on Backg.
V-p _T Rew	7.0	1.0	
WW NLO	0.4	1.1	
σ	10	6-10	
Multijet	0	2	-60 = 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
PDF	4	4	NN Output
Lepton ID	2.5	2.5	

CDF H \rightarrow WW Low M(*ll*)

- extend the opposite sign analysis
- M(ll) < 15 GeV

CDF Run II Preliminary	$\int \mathcal{L}$	=5	$.9 { m fb}^{-1}$				
$M_H = 165 \text{ GeV}/c^2$							
$\overline{t\overline{t}}$	0.55	\pm	0.10				
DY	4.35	\pm	0.78				
WW	13.8	\pm	1.3				
WZ	0.371	\pm	0.052				
ZZ	0.139	\pm	0.019				
$W+ ext{jets}$	16.2	\pm	3.0				
$W\gamma$	76.8	\pm	7.7				
Total Background	112.2	\pm	8.6				
$gg \to H$	1.00	\pm	0.20				
Total Signal	1.00	\pm	0.20				
Data		112					
		A11	SB-lowMll				

CDF H \rightarrow WW Low M(*ll*)

- extend the opposite sign analysis
- M(ll) < 15 GeV

CDF Run II Preliminary	$\int \mathcal{L}$	=5	$.9 \text{ fb}^{-1}$					
$M_H = 165 \text{ GeV}/c^2$								
tt	0.55	\pm	0.10					
DY	4.35	\pm	0.78					
WW	13.8	\pm	1.3					
WZ	0.371	\pm	0.052					
ZZ	0.139	\pm	0.019					
W+jets	16.2	\pm	3.0					
$W\gamma$	76.8	\pm	7.7					
Total Background	112.2	\pm	8.6					
$gg \to H$	1.00	\pm	0.20					
Total Signal	1.00	\pm	0.20					
Data		112						

AllSB-lowMll

$VH \rightarrow V(WW^*) \rightarrow l^{\pm}l^{\pm} + X$

- leptonic decay of the vector boson
- one of Higgs Ws decay hadronically
- utilize same lepton selection from opposite charge analysis
- require two same charge leptons

 $VH \rightarrow V(WW^*) \rightarrow l^{\pm}l^{\pm} + X$

M(Lep1,Lep2)[GeV]

 $VH \rightarrow l^{\pm}l^{\pm} + X$ Analysis

- Boosted Decision Tree Discriminants
 - instrumental background
 - physics background rejection final discriminant

Michael Kirby - Higgs Hunting Workshop

$VH \rightarrow V(WW^*) \rightarrow l^{\pm}l^{\pm} + X$

- Opposite chage dilepton
- >=1 jet ($P_T > 15 \text{ GeV}$)
- W+jet dominant bkg
- Neural Network final discriminant

- Trilepton search
- Separate by presence of Z candidate and jet multiplicity
- Neural Network final discriminant

Total

ZZ Zgamma

Wj WZ WH×10

<mark>—</mark> ZH × 10 ● Data

new search channels

- $H \rightarrow WW^* \rightarrow l\nu jj D0$
- $H \rightarrow WW^* \rightarrow \mu \nu \tau \nu$ CDF

W decay

new search channels

new search channels

 $H \rightarrow WW \rightarrow l\nu jj$

- Event selection
 - high- p_T lepton > 15 GeV
 - large missing $E_T > 15 \text{ GeV}$
 - -2 high- p_T jets

background composition

-W+2 jets
-top production
-Diboson - WW, WZ, ZZ
-QCD multijet events

•utilize techniques from low mass analyses

 $H \rightarrow WW \rightarrow l\nu jj$

• Very large W+jets background after selection

 $- S/\sqrt{B} = 0.22 (m_{\rm H} = 165 \text{ GeV})$

Channel	$H \to WW$	V+jets	Multijet	top	VV	data
electron	45.2	52156	11453	2433	1585	67627
muon	32.2	47201	2409	1598	1225	52433

- Use W-Mass to constraint neutrino P_Z
- Combine kinematics into a Random Forest Decision Tree

Michael Kirby - Higgs Hunting Workshop

$H \rightarrow WW \rightarrow l \nu \tau \nu$

- backgrounds very different for τ samples
- Multijet and $Z \rightarrow \tau \tau$ dominate
- Control samples allow for cross checks of τ kinematic and ID variables
 - W+jets ($e\tau \& \mu \tau$)
 - Mulijet ($e\tau$)
 - $Z \rightarrow \tau \tau (\mu \tau)$

Michael Kirby - Higgs Hunting Workshop

 $H \rightarrow WW \rightarrow \mu \nu \tau \nu$

- Boosted Decision Tree discriminant
- W+jets modeled with ALPGEN
 - dominant background
- Expect 1.5 evts Higgs signal, ~700 background

July 29, 2010

Michael Kirby - Higgs Hunting Workshop

High Mass Higgs limits both CDF and D0 see good agreement in all channels -- now combine!

DØ SM Higgs combination

•combine all 10 high mass channels

•modified frequentist approach with log likelihood ratio test statistic

•weighted by sensitivity, average integrated luminosity

•6.10 fb⁻¹ @ 165 GeV

D0 SM Higgs limit @165 GeV

$$\sigma/\sigma_{SM}$$
 (obs) = 1.03
 σ/σ_{SM} (exp) = 1.14

CDF SM Higgs combination

- •combine all 18 high mass channels
- •use bayesian approach
- •weighted by sensitivity, average integrated luminosity
 - •5.90 fb⁻¹ @ 165 GeV

CDF SM Higgs limit @165 GeV $\sigma/\sigma_{\rm SM}$ (obs) = 1.13 $\sigma/\sigma_{\rm SM}$ (exp) = 1.00

Tevatron SM Higgs combination

- Obs exclusion $M_H = [158-175]$ GeV
- Exp exclusion $M_H = [156-175]$ GeV

Michael Kirby - Higgs Hunting Workshop

Tevatron Projections

Tevatron SM Higgs Summary

- SM Higgs searches are rapidly improving
- Inclusion of new channels and theory predictions is extending sensitivity
- Common tools and coherent treatment of systematics across numerous channels
- Validation of analytic tools with measurement of WW/WZ production in lvlv,lvjj signature
- Integrated luminosity increasing better than expected

- Tevatron will continue to expand the SM Higgs mass sensitivity regions
- extremely exciting time at the Tevatron

Backup

CDFII & DØ Detectors

Tevatron Projection

Michael Kirby - Higgs Hunting Workshop

LLR

 At each mass point, calculate observed LLR, generate pseudo-experiments to calculate expected LLR.

combined CDF & D0 for $m_{\rm H} = 165 \text{ GeV}$

Michael Kirby - Higgs Hunting Workshop

Gluon Fusion Production

- Use cross section calculations of de Florian and Grazzini (arXiv:0901.2427v2) to normalize MC
 - Soft-gluon resummation to NNLL
 - Proper treatment of b-quarks to NLO
 - Inclusion of two-loop electroweak effects
 - MSTW2008 Parton Density Functions
 - $\mu_F = \mu_R = m_H$
- In good agreement with calculations of Anastasiou, Boughezal, and Petriello (arXiv:0811.3458v2)
 - $\mu_F = \mu_R = m_H/2$

Cross Section Uncertainties

- Higher-order QCD radiative corrections
 - Independently vary μ_F and μ_R between $0.5m_H$ and $2.0m_H$, within the constraint $0.5 < \mu_F/\mu_R < 2.0$
- PDF model
 - Use 40 alternative grids associated with MSTW2008 NNLO PDF to evaluate
- An additional complication at CDF is that cross section uncertainties coming from scale changes are topology dependent (e.g. dependent on number of jets criteria used to define channels) Anastasiou et al., arXiv:0905.3529v2