

CMS

W and Z boson measurements at LHC: On the road to the Higgs...

Christophe Ochando – L.L.R/Ecole Polytechnique on behalf of the ATLAS & CMS Collaborations

July 29-31, 2010; Orsay-France

Discussions on Tevatron and First LHC results

Motivations

- > Above 135 GeV, the Higgs boson is searched for at LHC in:
 - $H \rightarrow WW^*(\rightarrow 2\ell 2\nu, \ell = \text{electron or muon}),$
 - $H \rightarrow ZZ^* (\rightarrow 4\ell)$.

➢ Moreover:

- W→ℓv and Z→ ℓℓ are benchmark processes to assess performances of detectors and develop reconstruction/identification algorithms,
- Di-bosons (WW, ZZ, WZ) and jet associated productions (W/Z+jets) are important backgrounds for Higgs searches. Crucial to have single boson under control:
 - ex: in H→ZZ*, at the time of discovery, won't have enough ZZ* background events in sidebands.
 => ZZ* yields will be predicted from single Z.

Understanding of W&Z production at LHC therefore of primary importance for Higgs Searches !

OutLine

- ATLAS & CMS Performances
 - Triggers
 - Leptons & MET
- ➤ W →ℓν measurements
- \blacktriangleright Z $\rightarrow \mathscr{U}$ measurements
- Conclusion

ATLAS&CMS PERFORMANCES

Triggering on Leptons

➤ Events are filtered online in 2 (CMS) or 3 (ATLAS) steps.

> Level 1 Electron Trigger efficiency:

- Threshold at 5 GeV,
- Eff w.r.t ET of the ECAL super-cluster of the electron candidate
- Measured on Minimum bias events with electrons from conversions.
- Turnon gets sharper with isolated electrons from W&Z.

> Level 1 Muon Trigger efficiency:

- Threshold at 6 GeV,
- Eff. w.r.t "Stand Alone" offline Muon (reconstructed only with the Spectrometer)

Electrons & Muons (1)

Electrons & Muons (2)

Electrons & Muons (3)

> Very high lepton reconstruction efficiency mandatory for Higgs searches (e.g., $H \rightarrow ZZ^* \rightarrow 4I => \epsilon^4 !$)

> Electron reconstruction efficiency ratio $\epsilon_{RECO}(DATA)/\epsilon_{RECO}(MC)$:

- E_T>20 GeV, |η|<2.5
- Measured with Z tag & probe and W fit methods^(*).
- Barrel: ε_{RECO} ~99%, Endcap: ε_{RECO} ~96%,

(*) The W fit method measures the efficiency with a 1D unbinned maximum likelihood simultaneous fit to the transverse mass distribution

Global Muon (muon chamber+tracker) reconstruction Efficiency

- Measured in J/ψ events with tag&probe method.
- >99% reached for pT > 6 GeV...
- ... in good agreement with MC.

Missing \mathbf{E}_{T}

- > Key variable for the W $\rightarrow \ell v$ analysis. (MET from escaping neutrinos).
- Very sensitive to noise, pile-up, beam-halo background.
 - => Need dedicated cleaning.

> Commissioned using Minimum Bias, Dijet (and $W \rightarrow \ell v$) events.

Overview on W/Z at LHC

> W/Z Inclusive cross-section is known up to ~4% (dominated by PDF uncertainties):

$$\sigma_{W \to \ell \nu}^{NNLO} = 10.46 \text{ nb} \qquad \sigma_{Z/\gamma^* \to \ell \ell}^{NNLO} = 0.99 \text{ nb}$$

Computed with FEWZ and MSTW2008.

> Produce more W+ than W- (prevalence of u quarks over d quarks).

 $\sigma^{NNLO}_{W^+ \to \ell^+ \nu} = 6.16 \text{ nb} \quad \sigma^{NNLO}_{W^- \to \ell^- \bar{\nu}} = 4.30 \text{ nb}$

• Charge asymmetry measurement very important (see later).

> ATLAS & CMS used different methods to extract cross-sections:

- Cut & count [ATLAS for W&Z, CMS for Z].
- Extraction of yields trough a binned Likelihood fit to a discriminating variable (simultaneously for Signal + QCD & EWK backgrounds) [CMS for W].
- Acceptance are computed with MC [both], efficiencies from data [CMS] or mostly from MC [ATLAS].

Inclusive W boson measurements: Muon Channel

- Muon Trigger (pT>9 GeV)
- Muon pT>20 GeV, |η|<2.1</p>
- Combined Isolation (tracker, ECAL, HCAL)
- Drell-Yan veto
- (no MET or M_T cut)

- Muon Trigger (pT>15 GeV)
 Muon pT>20 GeV, |η|<2.4
- Track-Isolation
- (+MET>25 GeV +M_T > 40 GeV)

Transverse Mass: $M_T = \sqrt{2p_T(\mu) \not\!\!\!E_T * (1 - \cos(\Delta \phi_{\mu, \not\!\!\!E_T}))}$

- W and EWK background estimated from MC (POWHEG, Pythia, MC@NLO).
- QCD shape estimated from data

Inclusive W boson measurements: Muon channel (2)

Inclusive W boson measurements: Electron Channel (1)

- Photon trigger (E_T>15 GeV),
- Electron E_T> 20 GeV,
- |η|<2.5 (excluding Barrel-Endcap transition),
- Combined Isolation,
- Drell Yan rejection.
- (no MET or M_T cut)

∧ə9 400

number of events / 5 00 00 00 00

0

■ L1 Calo Trigger (E_T>5 GeV),

- Electron pT>20 GeV,
- (+MET>25 GeV +M_T > 40 GeV)

Inclusive W boson measurements: Electron Channel (2)

W Charge Asymmetry

W charge asymmetry as a function of lepton pseudo-rapidity will improve our knowledge of Parton Density Functions (PDFs)

➢ <u>Remarks:</u>

- Ratio (W⁺+n jets)/(W⁻+n jets) theoretically very stable w.r.t EWK parameter values and higher-order corrections (QCD&EWK)
- Any deviation from SM expectations could sign the presence of charge-symmetric New Physics...
 - Note that ttbar→WbWb and H→WW* also produce W^{+/-} in equal quantities...
 - => Use charge asymmetry as a new tool for searches ?

Inclusive W boson measurements: Summary

 $W \rightarrow \ell v$ cross section

C.Ochando - Higgs Hunting 2010 17

Inclusive Z boson measurements: Muon Channel

Inclusive Z boson measurements: Electron channel

W&Z measurements summary (1)

W&Z measurements summary (2)

More measurements to come !

With increasing luminosity to come, many more measurements will be performed:

- differential distributions,
- forward/backward asymmetry in Z, etc …

Towards the Higgs...

First look at W+jets

➤ W+jets important background to Higgs Searches (e.g. H→WW*).

- > Follow selection of inclusive cross section measurements... ... but add a focus on jets: Anti-kT, D=0.5, $|\eta|$ <2.5, E_T>15 and 30 GeV.
- > Comparison to Madgraph & Pythia (with various tunes)

Conclusion/Prospects

- > After a few months of data taking, ATLAS & CMS started to rediscover the Standard Model:
 - First measurements of W&Z cross section at √s=7 TeV with up to 230 nb⁻¹ of data, already performed (in the muon & electron channels).
 - All the results are agreement with theory expectations (within the current uncertainties).
 - Ready for tau channels ! (Need (O)10 pb⁻¹ for $Z \rightarrow \tau \tau$ observation)
 - W&Z (as well as J/ψ) are used to validate ingredients and strategies for the upcoming Higgs searches.

BACK UP SLIDES

Références

CMS PAS EWK-10-002: "Measurements of Inclusive W and Z Cross Sections in pp Collisions at $\sqrt{s} = 7$ TeV".

CMS PAS JME-10-004: "Missing Transverse Energy Performance in Minimum-Bias and Jet Events from pp Collisions at $\sqrt{s=7}$ TeV".

CMS PAS MUO-10-002: "Performance of muon identification in pp collisions at \sqrt{s} =7 TeV". **CMS DPS DP-2010-032**: "Electron Reconstruction and Identification at \sqrt{s} = 7TeV".

ATLAS-CONF-2010-051: "Measurement of the W -> Inu production cross-section and observation of Z -> II production in proton-proton collisions at sqrt(s) = 7 TeV with the ATLAS detector ".

ATLAS-CONF-2010-076: "Measurement of the Z -> II production cross section in proton-proton collisions at sqrt(s) = 7 TeV with the ATLAS detector".

ATLAS-CONF-2010-073: "Observation of inclusive electrons in the ATLAS experiment at \$\sqrt{s}\$ =7 TeV"

ATLAS-CONF-2010-064: «Muon Reconstruction Performance »

ATLAS-CONF-2010-057: "Performance of the Missing Transverse Energy Reconstruction and Calibration in Proton-Proton Collisions at a Center-of-Mass Energy of \$\sqrt{s}=7\$ TeV with the ATLAS Detector"

arXiv:1004.3404v2[hep-ph]: "Charge asymmetry in W + jets production at the LHC", C. H. Kom, W. J. Stirling

W&Z systematic uncertainties: Muon Channel (CMS)

- Reconstruction and Lepton ID from data-driven studies
- Momentum Scale and Resolution from J/Psis, cosmic studies, Z Mass spectrum
- ET scale/resolution from W recoil studies
- QCD Background uncertainty from the difference between isolated MC distribution and non-isolated data template
- PDF uncertainties evaluated via CTEQ66, MSTW08NLO, NNPDF2.0 sets

Source	W channel (%)	Z channel (%)
Muon reconstruction/identification	3.0	2.5
Trigger efficiency	3.2	0.7
Isolation efficiency	0.5	1.0
Muon momentum scale/resolution	1.0	0,5
$ \mathbb{Z}_{\mathrm{T}} $ scale/resolution	1.0	-\
Background subtraction	3.5	
PDF uncertainty in acceptance	2.0	2.0
Other theoretical uncertainties	1.4	1.6
TOTAL (without luminosity uncertainty)	6.3	3.8
Luminosity	11.0	11.0

W&Z systematic uncertainties: Electron Channel (CMS)

Source	W channel (%)	Z channel (%)
Electron reconstruction/identification	6.1	7.2
Trigger efficiency	0.6	<u></u>
Isolation efficiency	1.1	1.2
Electron momentum scale/resolution	2.7	77.63
$\not\!$	1.4	<u></u>
Background subtraction	2.2	
PDF uncertainty in acceptance	2.0	2.0
Other theoretical uncertainties	1.3	1.3
TOTAL (without luminosity uncertainty)	7.7	7.7
Luminosity	11.0	11.0

Electron Reconstruction Efficiency (ϵ_{RECO} **)**

Z Tag & Probe	Measured efficiency	Error (stat. + syst)	MC efficiency
Reco Eff Barrel	99.3%	1.4%	98.5%
Reco Eff Endcap	96.8%	3.4%	96.1%

The W fit method measures the efficiency with a 1D unbinned maximum likelihood simultaneous fit to the transverse mass distribution obtained from requiring an isolated and identified ECAL SuperCluster E_{T} > 20 GeV and a transverse missing energy in the event such that MET/ E_{τ} >0.3. Signal from W signal and background from QCD components and their electron reconstruction efficiencies are obtained from the fit. The reconstruction efficiency is defined as reconstructed electrons per reconstructed ECAL superclusters.

Y(1s, 2s and 3s)→ μ + μ ⁻

The Y family is there and with enough statistics we will be able to resolve well the Y2s from the Y3s (we have measured 67MeV resolution for |y| < 0.7). Meanwhile we have measured the Y(1s) cross sectionxBR in dimuons and the corresponding differential cross section. $\sigma(pp \rightarrow Y(1S)X) \cdot B(Y(1S) \rightarrow \mu + \mu -) = (8.3 \pm 0.5 \pm 0.9 \pm 1.0) \text{nb}$

(Assuming no polarization and integrated over |y| <2.0)

Di-muon resonances

Full data sample

ZZ extrapolation from data

Typical procedure consists of choosing a **control region** outside the signal phase space and then verifying that the events rate changes according to the expectations from MC:

Normalization to the $Z \rightarrow II$ data: N_{ZZ}/N_Z : $R = (\sigma_{ZZ \rightarrow 4e} * \epsilon_{4e} * \int Ldt)$ $(\sigma_{Z \rightarrow 2e} * \epsilon_{2e} * \int Ldt)$

- Luminosity and (partially) reconstruction uncertainty cancellations
- 0.1 million Z→ee events at 200 pb⁻¹
- total uncertainty \approx 0.3 %

Normalization to the sidebands:

 Luminosity and (totally) reconstruction uncertainty cancellations

- 4 ZZ→4l events at 200 pb⁻¹
- total uncertainty \approx 58 %

02/04/10

12

L1 EG intrinsic efficiency

- from Clémentine Broutin
- Sample of ECAL Activity HLT triggers (seeded by L1 ZeroBias)
 - Anomalous ECAL signals removed using standard cuts
- Intrinsic efficiency for finding a L1 candidate, given an ECAL supercluster compatible with L1 EG algorithm
 - Supercluster reconstructed time within trigger window
 - Masked trigger towers/regions excluded
 - Cover 1 or 2 trigger towers only
 - L1 threshold of 5 GeV (top), 8 GeV (bottom)
- Three η ranges shown
 - Barrel
 - Endcaps $|\eta| < 2.23$
 - Endcaps $|\eta| > 2.23$

L1 EG Algorithm Geometry

- From Clémentine Broutin
- Calorimeter geometry
- 1 tower = 5x5 crystals
- -1 region = 4x4 towers
- L1 EG algorithm uses 2 tower sum
 E_T(L1) = E_T(Hit tower) + E_T(Max adjacent tower)

0.0175 η Sliding window centered on all ECAL/HCAL trigger tower pairs Candidate Energy: Max E_t of 4 Neighbors Hit + Max E_t > Threshold 0.087 η

- Supercluster offline algorithm will in general spread over many more towers
- But isolated electron/photon candidates will have narrower/smaller superclusters

QCD Background Modeling

> QCD (in Electron channel):

QCD shape is checked in a QCD-enriched sample selected by inverting cut on isolation & track-cluster matching.

Multi-jets background estimation from DATA with the ABCD method.

- MET vs Track Isolation plan.
- Validated in $W \rightarrow \mu \nu$ cross-section analysis.