

Extracting Higgs boson couplings using a jet veto

Andy Pilkington – IPPP Durham and Manchester Presented at Higgs Hunting workshop, LAL-Orsay, Paris, 30th July 2010.

Overview

- 1) Introduction/reminder standard VBF analyses
- 2) Using a jet veto as a tool to probe the Higgs + 2 jet.
- 3) Simultaneous extraction of gluon and W couplings using a jet veto

VBF analyses at the LHC

- Many decay channels studied in literature, here focus on 120GeV Higgs decaying to taus.
- After main analysis cuts on tag-jets (widely separated, large invariant mass), the analyses typically veto on third jet activity in the central region between the tag jets.
- This veto is set very low, not only to reduce backgrounds, but to suppress Higgs production from gluon-gluon fusion (GF).

Signal is extracted from the $m_{\tau\tau}$ distribution.

The shape of the background is dominated by instrumental effects and can be determined from in-situ methods.

Long term goal: Extract cross-section x branching ratio. Assume that VBF dominates over GF. Feed result into global fits to extract Higgs couplings.

- Crucial component is the veto on additional jets above Q₀ in the central region between the two tag jets.
- The excess of events in the di-tau invariant mass spectrum contains contributions from both GF and VBF:

$$\sigma(Q_0) = \Lambda_{\rm g} \sigma_{\rm g}^{\rm SM}(Q_0) + \Lambda_{\rm V} \sigma_{\rm V}^{\rm SM}(Q_0)$$

here, Λ_i is the ratio of the actual Higgs coupling to 'i' to the SM value, i.e. $\Lambda_g = \Lambda_V = 1$ in the SM.

- Instead of cutting at low veto-scales, to suppress GF contribution, can in principle measure the size of the Higgs cross-section as a function of Q₀ and extract contributions for GF and VBF separately.
 - Advantage that it does not assume a SM-like coupling to vector bosons, applicable to BSM Higgs
 - Can we do this in practice, given the likely event rate at LHC and the theory/ experimental uncertainties?

MC samples

SHERPA 1.2 used with CTEQ6L PDFs to generate samples of GF and VBF events at vs=14TeV. Specifically generate H+nj, with n=2,3.

K-factors invoked to account for missing virtual corrections by normalizing dedicated samples to the NLO calculation of Campbell, Ellis & Zanderighi (2006). This is needed to get the ratio of GF and VBF events correct.

VBF analysis cuts

Jets found using Anti- k_{T} algorithm with R=0.4.

Then, follow explicitly the ATLAS standard VBF analysis:

- 1) Tag jets: $E_{T,1} > 40 \text{GeV}$ and $E_{T,2} > 20 \text{GeV}$
- 2) Tag jets: $M_{jj} > 700 \text{GeV}$, $\Delta \eta_{jj} > 4.4$ and $\eta_1 \cdot \eta_2 < 0$
- 3) Tau candidates: $cos(\Delta \phi) > -0.9$
- 4) Missing $E_T > 30 GeV$

After these kinematic cuts, we have a reasonable jet/Higgs topology

- Left plot shows the size of the VBF and GF cross-section as a function of Q₀ after the kinematic cuts (still missing experimental efficiencies for taus, such as trigger, reconstruction...)
- Right plot highlights the different Q₀ dependence of VBF and GF events.
 - CKKW matching scale in SHERPA is important in GF shape in a way this reflects the large theory uncertainty in the prediction, will return to this later.
 - Underlying event also cause a shape uncertainty between $Q_0=20$ and $Q_0=50$ for GF and VBF

- Need to account for ATLAS experimental efficiency, ε, for tau-tau measurements (trigger, reconstruction, id.....)
 - Efficiency will be similar for GF and VBF events because we have already cut on the topology of the H+2j system. Take ε=0.036 (corresponds to all decay channels).
- Using SHERPA cross-sections and experimental efficiency, predict number of Higgs events for 60fb⁻¹ of data. Find N_{GF}=25 and N_{VBF}=90 for Q₀=50.
- Perform 1000 pseudo-experiments for each value of Λ_g and Λ_V .
 - (Poisson distributed) GF and VBF events chosen at random from reduced MC samples (i.e. samples after kinematic cuts),
 - Smear/shift Q₀ distribution by systematic uncertainties
 - Perform fits in each experiment to extract Λ_g and Λ_V
 - Take uncertainty in method to be the RMS of fit values.

- Colours represent the fractional uncertainty in the fit, across BSM parameter space.
 - Yellow, orange, red mean a very large final uncertainty on Λ
 - Dark blue represents a very well measured uncertainty.

Impact of systematic uncertainties

What we are trying to measure:

re:
$$\sigma(Q_0) = \sigma_{\rm jj}(1 - P_{\rm veto}(Q_0))$$

H+2j cross-section (after cuts on tag jets) i.e. A normalization uncertainty

Probability of additional jet above Q₀ i.e. a shape dependence

Take all theory/experimental uncertainties from vast literature:

- 1) VBF: Normalization of H+2j is known to about $\pm 4\%$ and $(1-P_{veto})$ is known to $\pm 1\%$ at all Q₀.
- 2) GF: Normalization of H+2j is known to about $\pm 20\%$. Additional uncertainty from (1-P_{veto}) is not well known. Assign additional, uncorrelated, uncertainty of $\pm 20\%$ at Q₀=20 and 50 GeV.
- 3) Add in UE uncertainty in $(1-P_{veto})$, found from SHERPA after turning UE on/off.
- 4) VBF systematic (20%) on acceptance/normalization is mainly from JES. We find that corresponding systematic for GF is larger (~30%), due to steeper tag-jet distributions.
- 5) Find mild effect of JES on $(1-P_{veto}) 0\%$ for VBF and (max) ±3% for GF.
- 6) Background fluctuations affecting signal extraction is taken into account across Q₀ distribution by adding/removing events based on poisson fluctuation of background.

Results with systematics

 Λ_q uncertainty

 $\Lambda_{\rm V}$ uncertainty

Breakdown of systematic effects

	$\rm SM~(\Lambda_{g,V}=1)$		BSM $(\Lambda_{\rm g} = 4, \Lambda_{\rm V} = 1/4)$	
Error	$\sigma_{\Lambda_{ m g}}/\Lambda_{ m g}$	$\sigma_{\Lambda_{ m V}}/\Lambda_{ m V}$	$\sigma_{\Lambda_{ m g}}/\Lambda_{ m g}$	$\sigma_{\Lambda_{ m V}}/\Lambda_{ m V}$
Stat. only	$0.51 \ [0.23]$	0.16 [0.07]	0.19 [0.08]	$0.72\ [0.33]$
Backgd.	$0.56 \ [0.25]$	0.18 [0.08]	0.20 [0.09]	0.79 [0.35]
VBF	$0.52 \ [0.25]$	$0.17 \ [0.08]$	0.19 [0.08]	0.75 [0.33]
GF	$0.65 \ [0.45]$	0.19 [0.11]	$0.43 \ [0.40]$	$1.56\ [1.40]$
Expt.	$0.62 \ [0.39]$	$0.26 \ [0.21]$	$0.35 \ [0.31]$	0.89[0.52]
All	$0.77 \ [0.57]$	$0.28 \ [0.23]$	$0.53 \ [0.50]$	1.66 [1.49]

Middle columns show effect of statistical uncertainty + specific systematic i.e. statistical uncertainty in fitting procedure is always present. Numbers in square brackets correspond to 300fb⁻¹

The University of Manchester

Summary and outlook

- Jet veto dependence of the signal excess can be used to extract the different mechanisms of Higgs production:
 - Simultaneous extraction of effective coupling of Higgs to gluons and vector bosons should be possible.
 - More information in arXiv:1006:0986
- At the moment large theoretical uncertainty in both the normalization and shape of the GF cross-section, which will impact on the standard VBF approach as well.
- The JES uncertainty dominates the measurement from experimental perspective understanding JES in the presence of pile-up will be crucial in H+2j analyses.
- Can study jet veto dependence in early LHC data, i.e. jet-gap-jet topology, W/Z + nj production use to feed back into theory calculations

MANCHESTER