Prospects for H→ γγ analysis at ATLAS

Li Yuan (LPNHE, Paris & IHEP, Beijing) On behalf of the ATLAS collaboration July 30th, 2010

Introduction

Signal: Higgs decays to two photons through top/W loop. Branching ratio for Higgs at 120GeV/c² is 2.2×10^{-3} , $\sigma_{H \to \gamma\gamma} \approx 30 \, fb$ at $\sqrt{s} = 7 \, TeV$

Background: invariant mass range [100, 150] GeV + kinematic cuts

(2) reducible: one or more jets misidentified as photons.

$$\gamma - jet(s) \ (\sigma \approx 10^3 \cdot \sigma_{\gamma\gamma(+jets)})$$
$$jet(s) - jet(s) \ (\sigma \approx 3 \times 10^6 \cdot \sigma_{\gamma\gamma(+jets)})$$

(3) Drell-Yan process: electrons misidentified as photons.

Need good photon reconstruction/identification. Need good energy/direction measurement, since Higgs in this mass region is a narrow resonance.

Photon identification / isolation

3

Photon identification / isolation

Photon identification: use shower shape variables

Invariant mass reconstruction

Photon energy reconstruction:

 $E = a + b \cdot E_{PS} + c \cdot E_{PS}^2 + d \cdot (\sum_{i} E_i)$

 \diamond Taking into account of the corrections on: Energy loss in front of the calorimeter Longitudinal leakage

Energy loss outside the cluster. \diamond Different weights for unconverted and converted photon.

Invariant mass fit:

Describe the core

and the left tail

Photon direction reconstruction, using:

- \diamond Multi-layer structure of EM calorimeter.
- \diamond Conversion vertex when possible.

 \diamond Reconstructed primary vertex position.

Inclusive analysis

Trigger selection: two photons $E_T > 20$ GeV.

At least two reconstructed photons:

- 1. $|\eta| < 2.37$ and exclude the transition region between barrel and endcap ($1.37 < |\eta| < 1.52$)
- 2. Pass photon selection on shower shape
- 3. Pass track isolation

Kinematic cut: $p_T^{\gamma 1} > 40 \ GeV, \ p_T^{\gamma 2} > 25 \ GeV$

Two photon invariant mass range: [100, 150] GeV

After the selection listed above, the main background is $\gamma\gamma$ (+jets), around 65%.

 γ +jets and jet(s)+jet(s) together contribute to around 34%.

Drell-Yan process contributes to 1%. 5

Exclusion limit

A simple and robust analysis based on 1fb⁻¹ (expected at next year) of data at $\sqrt{s} = 7$ TeV: Inclusive analysis uses only invariant mass as the discriminating variable. Likelihood Model: $L(\mu, N_B, \xi) = \mu N_S P_S(M_{\gamma\gamma}) + N_B P_B(M_{\gamma\gamma}, \xi)$ A simple and robust analysis based on 1fb⁻¹

 μ : signal strength parameter.

 N_{B},ξ : nuisance parameters.

Take into account of the following systematics uncertainties: for signal:

 \diamond Resolution for invariant mass (+13%)

 \diamond Photon efficiency (-1%)

♦Luminosity (-10%)

For background:

 \diamond Systematic uncertainty automatically included by nuisance parameters $N_{\rm B}$, ξ

Limits at 95% CL, 1fb⁻¹, 7TeV

m _H (GeV)	110	115	120	130	140
μ	6.8	5.9	5.3	5.1	6.0

Conclusion

An inclusive analysis of $H \rightarrow \gamma \gamma$ based on Monte Carlo simulation at ATLAS has been presented.

The expected exclusion limit was evaluated by CL_S and CL_{S+B} (in backup) methods, using two photon invariant mass as the discriminating variable.

We could exclude 5.3 times the SM prediction of $\sigma x BR(H \rightarrow \gamma \gamma)$, for Higgs mass at 120 GeV/c² with 1 fb⁻¹ of data at $\sqrt{s} = 7$ TeV.

backup

Other discriminants

Results with CL_{S+B} method

Limits at 95% CL, 1fb⁻¹, 7TeV

m _H (GeV)	110	115	120	130	140
μ	5.8	5.0	4.6	4.4	5.2

Photon identification efficiency

SM Higgs limits

The M $\gamma\gamma$ spectrum in the search region is used to derive limits, which are a factor of ~20 above the SM expectation for m_H = 100 ~ 140 GeV

Krisztian Peters