

BSM Higgs at LHC prospects end 2011 and before

Reisaburo TANAKA (LAL) On behalf of ATLAS and CMS Collaborations Higgs Hunting Workshop July 29-31, 2010 @ LAL-Orsay

1. Electroweak Symmetry Breaking Mecha

- Higgs as the origin of Electroweak Symmetry Breaking
 - Weak gauge bosons and fermions are massive.
 - ⇒ Electroweak symmetry must be broken.
 - Higgs Mechanism

Original idea on spontaneous symmetry breaking by Y. Nambu (1960).

- Application to relativistic gauge theory
 - by P. W. Higgs, F. Englert and R. Brout (1964).
- \ldots since then we are looking for Higgs particle \ldots
- Only one Higgs doublet?
 - Fine tuning problem, naturalness …
 - New physics may exist around electroweak energy scale (accessible by LHC) !
 - Most popular benchmark scenario
 SUSY-MSSM: Smoking-gun signature in 1991
 SUSY is still escaping from our detection.
 - But there are many other models: like Extra-Dimension, Little Higgs, Composite Higgs or even Higgsless.
 - ➡ Rich phenomenology.

W. de Boer

U. Amaldi, W. de Boer, H. Fürstenau, PL B260(1991) $\alpha_1, \alpha_2, \alpha_3$ coupling constants of electromagnetic –, weak–, and strong interactions $1/\alpha_i \propto \log Q^2$ due to radiative corrections (LO)

2

2. MSSM Higgs

- MSSM Higgs (2HDM Type-II)
 - 2x4-3=5 physical scalar fields: h/H/A and H[±]
 - Tree level: 2 free parameters: $m_A(m_{H^{\pm}}), \tan \beta = \frac{v_u}{v_d}$
 - CP-even h/H
 - LO mass $m_h < m_Z \ (m_h > m_Z \ due \ to \ radiative \ corr.)$
 - SM-like in large m_A
 - ${\small \odot}$ Enhanced coupling to down-type (b/ τ) at large $\tan\beta$
 - CP-odd A
 - No coupling to W and Z.
 - Decay predominantly to bb, $\tau \tau$, tt.
 - Mass degeneration at large $\tan \beta$ (h/A, H/A)
 - Charged Higgs H[±]
 - Decay predominantly to $\tau \nu$ and tb.
 - LO mass relation $m_{H^{\pm}}^2 = m_A^2 + m_W^2$ (+ loop correction)
- Benchmark scenario (m_h^{max} scenario most popular)

Scenario	$M_{ m SUSY}$ (GeV)	$\begin{array}{c} X_t^{\rm OS} \\ ({\rm GeV}) \end{array}$	μ (GeV)	M_2 (GeV)	$M_{\tilde{g}}$ (GeV)	Upper bound on m_h (GeV)
m_h^{max}	1000	2000	200	200	800	133
no mixing	2000	0	200	200	800	116
gluophobic	350	-750	300	300	500	119
small α_{eff}	800	-1100	2000	500	500	123

M. Carena et al., E.P.J. C26 (2003) 601-607

$gg\Phi/b\overline{b}\Phi, \Phi(h/H/A) \to \tau^+\tau$

Sevent selection

→ difficult····

 →

	$2\ell 4 u$	$\ell au_{jet} 3 u$	$2 au_{jet}2 u$
Trigger	single- or di-lepton	single-lep. or lepton+ τ_{jet}	single- or di- τ_{jet}
Higgs Decay	2 isolated leptons	1 isol. lepton + 1 τ_{jet}	$2 au_{jet}$
b-tagging	$ATLAS: \ge 0 b$ -jet. $CMS: = 1 b$ -jet.		
(against Z/γ^*)	(Not exactly two b-jets, due to the soft p_T^b -spectrum from the signal.)		
Central jet-veto	ATLAS: Not more than two jets (including the <i>b</i> -tagging jets).		
(against $t\bar{t}$)	CMS: No additional jets in the central region (except <i>b</i> - and τ -jets).		
Transverse mass	and Dul Emi	$\overline{ss\left(acc\left(\vec{nl},\vec{Emiss}\right)\right)}$ 1 in E	
(against W +jets)	$m_T = \sqrt{2p_T^{\circ} E_T^{\circ}}$	$\left(\cos(p_T^\circ, E_T^{mass})\right)$, key is E_T^{mass} measurement	
Higgs mass	Collinear approximation: τ decay products emitted in τ -direction		
reconstruction	No back-to-back decays, momentum fractions of ν 's should be positive.		

• Main backgrounds: $Z/\gamma^*(+jets), t\bar{t}, W+jets, QCD multi-jets$

Higgs Hunting: BSM Higgs at LHC

July 30, 2010

Data-driven background estim.

- W+jets transverse mass
 - Major bkg. in non b-tag ch.

 $gg\Phi/bb\Phi, \Phi(h/H/A)$

signal

Cross Section (fb / 2 GeV) of contended of the contend of the contended of

0

per bin

events

250

200

40

60

control

- Fake jet→tau.
- Use control region at M_w.
- Z(→T⁺T⁻)+jets ۲
 - Major bkg. for low $M_{H/A}$
 - کمبی for low M_{H/A} Use high purity Z→e⁺e⁻ and µ⁺µ⁻ to emulate -+-
 - 0 Match $Z \rightarrow II$ to $\tau\tau$ kinematics.
- Jet multiplicity in $t\overline{t}$ events
 - Major bkg. for b-tag ch.
 - Use control region of $E_T^{\text{miss}} > 100 \,\text{GeV}$ to get

July 30, 2010

Higgs Hunting: BSM Higgs at LHC

$bb(h/H/A), \Phi \longrightarrow \mu^+ \mu^-$

Branching ratio is small, 0

$$\operatorname{Br}(\Phi \to \mu^+ \mu^-) \sim \operatorname{Br}(\Phi \to \tau^+ \tau^-)/300$$

- But very clean signature with muons, 0 excellent mass resolution $\sim 3\%$ (20% for TT), allows precise mass measurement once discovered.
- Analysis 0
 - 0 b-jets (ATLAS) or \geq 1 b-jet (ATLAS and CMS) against Z.
 - 2 isolated muons of opposite charge, ۲
 - Missing E_{τ} and jet veto cuts against tt.

60

50

20

 $an \beta$ for 95% C.L. exclusion

Excluded by LEP

200

100

m₄ [GeV/c²]

500

5 σ discovery

400

300

4. MSSM Charged Higgs

- Charged Higgs H[±]
 - Observation is the direct sign of physics BSM
 - Solution Light H[±]: t→bH⁺ in tt (H[±]→TV, cs)
 - Early discovery possible.
 - Heavy H[±]: gg/gb \rightarrow t[b]H[±] (H[±] \rightarrow tb,Tv)
 - Difficult at early LHC.

MSSM Charged Higgs search

- Light charged Higgs
 - $H^{\pm} \rightarrow \tau_{had} \nu \nu$ mode highest discovery reach.
 - New ATLAS study in $H^{\pm} \rightarrow \ell \nu \nu \nu$ and $c\bar{s}$ at 7 TeV.
- Heavy charged Higgs
 - Limited sensitivity
 - Sensitive to the systematic uncertainties.

Charged Higgs Analysis Channels

Light Charged Higgs: $t\bar{t} \to (H^{\pm}b)(W^{\mp}b)$				
		$W^{\mp}b$		
H±		$W^{\mp} \to \ell \nu$	$W^{\mp} \rightarrow q \bar{q}'$	
$H^{\pm}h \rightarrow \pi^{\pm}uh$	$\tau \rightarrow \ell \mu \mu$	$(\ell u u u b)(\ell u b)$	$(\ell u u u b)(jjb)$	
	$I_{\nu} \rightarrow \ell \nu \nu$	ATLAS	ATLAS	
	$ au_{ u} ightarrow au_{ m had} u$	$(au_{ m had} u u b)(\ell u b)$	$(au_{ m had} u u b)(jjb)$	
		ATLAS and CMS	ATLAS	
$II^{\pm}h$, $c\bar{c}h$		$(jjb)(\ell u b)$	(jjb)(jjb)	
$11 0 \to CS0$		ATLAS	-	
Heavy Charged Higgs: $gg, gb \to H^{\pm}t[b]$				
		t o Wb		
		$W \to \ell \nu$	$W \to q \bar{q}'$	
$H^{\pm} \to \tau^{\pm} \nu$	$ au_{ u} ightarrow au_{ m had} u$	$(au_{ m had} u u)(\ell u b)$	$(au_{ m had} u u)(jjb)$	
		-	ATLAS and CMS	
$H^{\pm} \to tb$	t ightarrow q ar q' b	$(jjbb)(\ell\nu b)$	(jjbb)(jjb)	
		ATLAS and CMS		

√s=14TeV, ∫Ldt=1-30fb⁻¹ ATLAS arXiv:0901.0512

$t\bar{t} ightarrow (H^{\pm}b)(Wb)$				
Final state	Semi-leptonic $t\bar{t}, H^+ \to c\bar{s}$	Di-lepton $t\bar{t}, H^+ \to \tau^+ \nu$		
	$(c\bar{s}b)(\ell\nub) \to (jjb)(\ell\nub)$	$(\tau \nu b)(\ell \nu b) \to (\ell \nu \nu \nu b)(\ell \nu b)$		
Trigger	single-lepton	single-lepton		
Offline	missing transverse energy	2 oppositely charged leptons		
	≥ 4 jets	≥ 2 jets		
b-tagging	2 b-jets among leading $4 j$ ets	2 <i>b</i> -jets		
ν reconstruction	$p_T^{ec{ u}} = E_T^{ec{miss}}$	$\sum p_T^{ec{ u}} = E_T^{ec{miss}}$		
	M_W constraint via $p_L(\nu) = f(p_T(\nu), p_\ell)$			
Kinematical	4-fold ambiguity with 2 <i>b</i> -tagged jets	4-fold ambiguity		
ambiguity	$(2 \text{ for } \nu, 2 \text{ for } jj)$	$(2\ell, 2b$ -jets assignment)		
Kinematics	di-jet mass fitter	helicity angle $\cos \theta_{\ell}^*$		
\boldsymbol{W} and top reconst.		generalized transverse mass $m_{T2}^{H^+}$		
Systematic	jet energy resolution, <i>b</i> -jet energy scale,	jet energy scale,		
errors	(pile-up events)	<i>b</i> -tagging fake rate and efficiency		

• Main backgrounds: $t\bar{t}$, single top, $Wb\bar{b}/Zb\bar{b}$ +jets, W/Z+jets, QCD multi – jets

Di-jet Mass Fitter

 $t\bar{t} \to (H^+b)(Wb) \to (c\bar{s}b)(\ell\nu b)$

√s=10TeV, ∫Ldt=200pb⁻¹

Light Charged Higgs $M_{H^{\pm}} < M_{top}$

ATL-PHYS-PUB-2010-009 $\sqrt{s=7TeV}, \int Ldt=1fb^{-1}$

5. Beyond MSSM Higgs: 4th Generation

Sequential 4th generation of fermions

Main constraints:

- ✓ Invisible Z width at LEP-I: M_{v4} >50 GeV
- ✓ Direct searches at Tevatron: M_{u4}>256 GeV
- ✓ Generational mixing, EW oblique parameters
- \checkmark LEP2 bounds for unstable ν_4 : $M_{\nu 4}{>}100~GeV$
- 4th generation of quarks (extra doublet)
 - Higgs production cross sections: Additional quarks enhance by x3 ggH coupling, gg→H enhanced by ~x9! (regardless of how massive the two extra quarks might be.)
 ^g vecc
 VH and VBF remain at SM rate.
 - Higgs decay BRs:

H→gg significantly increased at low mass. $_g$ H→WW/ZZ dominant mode for m_H>135 GeV.

√s=7TeV, ∫Ldt=1fb⁻¹

CMS NOTE 2010/008

Current Tevatron limit (arXiv:1005.3216) 131<M_{higgs}<204 GeV/c² excluded at 95% C.L..

 M_{Higgs} < 400 GeV/c² can be excluded at early LHC.

Fermiophobic Higgs

- Fermiophobic over SM Higgs
 - Higgs couples only to bosons
 - Lose a factor of 10 in cross section
 - Gain a large factor in $Br(H \rightarrow \gamma \gamma)$
 - $\sigma x BR$ is larger than that of SM up to 130GeV
 - Current Tevatron exclusion $m_H < 106 GeVc^2$ (ICHEP2010)
- If we do nothing special for fermiophobic Higgs at LHC
 - r~4 for SM Higgs implies that we can exclude fermiophobic M_{Higgs} < 110 GeV/c² can be excluded at early LHC.

July 30, 2010

Higgs Hunting: BSM Higgs at LHC

18

6. Summary and Outlook

- Rich BSM Higgs physics ahead of us at early LHC !
 - First search for light non-SM Higgs(es) at $\sqrt{s}=7$ TeV and $\int Ldt=1$ fb⁻¹.
 - MSSM $\Phi=h/H/A$ in gg $\Phi/bb\Phi$ ($\Phi\rightarrow \tau\tau$)
 - Discovery down to $\tan\beta \sim 20$, exclusion down to $\tan\beta \sim 15$ at low m_A.
 - MSSM Charged Higgs in $t \to H^+ b$ in $t\bar{t} \ (H^{\pm} \to \tau\nu, cs)$
 - Limit on the branching ratio for $Br(t \rightarrow H^+b) < 5\%$ for low m_{H^+} .
 - Number of opportunities beyond SM and MSSM scenarios.
 - But the analyses are complex. We have to understand W, Z, τ, b and top.
 - Need to find/understand particles from A, a to Z !
 - Experimental issue:data-driven method to estimate the backgrounds.
 - Theoretical issue: MSSM 4-FS&5-FS calc., bb Φ NLO MC, b-quark p_T etc.

One day we may be able to use Higgs(es) to probe the EWSB mechanism !

Young Scientist Forum: SM/MSSM H→TT by K. Leney (Liverpool) and L. Bianchini (LLR Palaiseau)

Many thanks to: S. Heinemeyer, M. Spira, K. Tobe, A. Korytov, V. Sharma, K. Assamagan, S. Horvat, B. Murray and M. Schumacher

Celui qui vient à la Lumière

2HDM (Type-II)!

Leonardo di ser Piero DA VINCI, dit Léonard de Vinci - Vinci, 1452 - Amboise, 1519 Saint Jean-Baptiste © Musée du Louvre

Theorists: "Zero Higgs is even better for my future papers..." Experimentalists: "Let us concentrate on data analyses."

弥勒下生告知 Only 1HD! Mokuan 1333~1343 Hoteizu MOA Museum of Art, Japan

July 30, 2010

Higgs Hunting: BSM Higgs at LHC

Backups

July 30, 2010

ATLAS https://twiki.cern.ch/twiki/bin/view/Atlas/HiggsPublicResults

- ATLAS sensitivity prospects for Higgs boson production at the LHC running at 7TeV (ATL-PHYS-PUB-2010-009)
- Discovery potential of A/H \rightarrow t⁺t⁻ \rightarrow Ih in ATLAS (ATL-PHYS-PUB-2010-011)
- Expected sensitivity in light charged Higgs boson searches for H⁺→τ⁺v and H⁺→cs with early LHC data at the ATLAS experiment (ATL-PHYS-PUB-2010-006)
- Expected Performance of the ATLAS Experiment, Detector, Trigger and Physics ("CSC book") (CERN-OPEN-2008-020, arXiv:0901.0512)

CMS

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResults

- The CMS physics reach for searches at 7TeV (CMS NOTE 2010/008)
- Search for MSSM heavy neutral Higgs boson in $\tau+\tau\rightarrow\mu+jet$ decay mode (CMS NOTE 2006/105)
- Search for the heavy neutral MSSM Higgs bosons with the H/A→TT→electron+jet decay mode (CMS NOTE 2006/075)
- Study of MSSM H/A \rightarrow TT \rightarrow eµ+X in CMS (CMS NOTE 2006/101)
- CMS Physics TDR, Volume II (CERN-LHCC-2006-021)

LHC Higgs Cross Section Working Group

https://twiki.cern.ch/twiki/bin/view/LHCPhysics/CrossSections

LHC Energy and Luminosity

- Integrated luminosity of $\geq 1 \text{ fb}^{-1}$ by the end of 2011
 - requires a peak luminosity of $\geq 1 \times 10^{32} \text{ cm}^{-2} \text{s}^{-1}$ during 2011
 - \rightarrow must reach ~1 x10³² cm⁻²s⁻¹ during 2010

$gg\Phi/bb\Phi, \Phi(h/H/A) \to \tau^+ \tau^-$

ATL-PHYS-PUB-2010-011

July 30, 2010

Higgs Hunting: BSM Higgs at LHC

Helicity angle in top decay

SM top-quark decay: $t \rightarrow Wb$

ATL-PHYS-PUB-2010-006

- O Distortion in H⁺ distribution: t \rightarrow H⁺b
 - H+ is scalar (isotropic decay)
 - but M_{H^+} and M_W are different, τ leptonic decay (v's)
 - H⁺ signal peaked at -1.
 - Caveat: can measure in lab. Frame

$$\cos\theta_{\ell}^* \simeq \frac{4p_b \cdot p_{\ell}}{m_t^2 - m_W^2} - 1$$

√s=10TeV, ∫Ldt=200pb⁻¹

CMS CERN-LHCC-2006-021

26

H[±] Sensitivity at 14TeV

ATLAS arXiv:0901.0512

M. Hashemi et al., arXiv:0804.1228

SUSY mSUGRA Sensitivity at 7TeV

July 30, 2010

MSSM Neutral Higgs XS

LHC Higgs XS working group

 M_{Φ} [GeV]

MSSM Charged Higgs tbH[±] Cross Section

4-flavour scheme

5-flavour scheme

LHC Higgs XS working group

- + exact $g \rightarrow b\bar{b}$ splitting & mass effects - no summation of $\ln(M_H/M_b)$ terms
- + summation of $\ln(M_H/M_b)$ terms
- LL approximation to $g \rightarrow b \bar{b}$ splitting

