

Higgs production via vector-boson fusion

Stefan Dittmaier Albert-Ludwigs-Universität Freiburg

Physikalisches Institut

Contents

- **1** Introduction overview
- 2 NLO QCD and EW corrections to VBF
- 3 Effects beyond NLO
- 4 Conclusions

Introduction – overview

Cross sections and significance of the Higgs signal at the LHC

(not only) Spira et al. '98

Higgs production via VBF ("qqH")

represents second largest cross section in entire $M_{\rm H}$ range

Significance of the Higgs signal at the LHC

Higgs production via VBF ("qqH") is cornerstone in Higgs search in entire $M_{\rm H}$ range

 \leftarrow calculate / control higher orders to reduce theoretical uncertainty down to the level of PDF ($\sim 3-4\%$) and experimental uncertainties ($\sim 5-10\%$)

Process topology of Higgs production via VBF

colour exchange between quark lines suppressed \Rightarrow small QCD corrections

 \hookrightarrow "DIS-like approximation" (vertex corrections)

VBF cuts and background suppression:

- 2 hard "tagging" jets demanded: $p_{\rm Tj} > 20 \,{\rm GeV}, \quad |y_{\rm j}| < 4.5$
- tagging jets forward-backward directed: $\Delta y_{\rm jj} > 4$, $y_{\rm j1} \cdot y_{\rm j2} < 0$
- \hookrightarrow Suppression of background
 - from other (non-Higgs) processes, such as $t\bar{t}$ or WW production Zeppenfeld et al. '94-'99
 - induced by Higgs production via gluon fusion, such as $gg \rightarrow ggH$ Del Duca et al. '06; Campbell et al. '06

signature = Higgs + 2jets

WWH and ZZH coupling analyses

Higgs via VBF plays important role in global Higgs couplings analysis

Dührssen et al. '04

• azimuthal angle difference $\Delta \phi_{jj}$ of tagging jets is sensitive to BSM effects:

Work on radiative corrections to the production of Higgs+2jets

- NLO QCD corrections to VBF in DIS-like approximation
 - ♦ total cross section Han, Valencia, Willenbrock '92; Spira '98; Djouadi, Spira '00
 - distributions
 Figy, Oleari, Zeppenfeld '03; Berger, Campbell '04
 - * matching with parton shower (POWHEG) Nason, Oleari '09
- (full) NLO QCD+EW corrections to VBF \hookrightarrow NLO QCD \sim NLO EW $\sim 5-10\%$ Ciccolini, Denner, S.D. '07
- NNLO QCD corrections to VBF in DIS-like approximation $_{\rm Bolzoni,\ Maltoni,\ Moch,\ Zaro\ '10} \hookrightarrow {\rm NNLO\ QCD\ } \sim 1{-}2\%$
- NLO QCD corrections to $gg \rightarrow Hgg$, etc. Campbell, R.K.Ellis, Zanderighi '06 \hookrightarrow contribution to VBF ~ 5% Nikitenko, Vazquez '07 (NLO scale uncertainty ~ 35%)
- QCD loop-induced interferences between VBF and Hgg-initiated channels \rightarrow impact $\lesssim 10^{-3} \%$ (negligible!) Andersen, Binoth, Heinrich, Smillie '07 Bredenstein, Hagiwara, Jäger '08
- loop-induced VBF in gg scattering \hookrightarrow impact $\sim 0.1\%$

Harlander, Vollinga, Weber '08

• SUSY QCD+EW corrections \hookrightarrow |MSSM - SM| \lesssim 1% for SPS points (2-4% for low SUSY scales)

Work on related processes:

- NLO QCD corrections to H + 3jets via VBF Figy, Hankele, Zeppenfeld '07
- NLO QCD corrections to HH production via VBF Figy '08
- NLO QCD corrections to $H + \gamma$ production via VBF Arnold, Figy, Jäger, Zeppenfeld '10

LHC-Higgs cross section group \rightarrow mandate for theory update

CrossSections < LHCPhysics < TWiki - Mozilla Firefox									
Datei Bearbeiten Ansicht Chronik Lesezeichen Extras Hilfe									
븢 🔿 🖌 🍪 🙆 🖬 🖬 h	https://twiki.cern.ch/	twiki/bin/view/LHCPhysics/CrossSecti	8	이 수 Google	۹ 🐠 🗸				
🛅 Meistbesuchte Se 🗸 🐢 Getting Started 🔯 Latest Headlines 🗸									
(22-28 July 2010) 😰 (1) Indico - Management area 😰 1 CrossSections < LHCPhysics 😣									
Organization									
٠	Overall Contacts								
	ATLAS CMS THEORY								
Re	Reisaburo Tanaka (LAL) Chiara Mariotti (Torino) Stefan Dittmaier (Freiburg) Giampiero Passarino (Torino)								
 Subgroup Contacts and Link for Subgroup Wiki * We are organized in 10 subgroups, with 2 experimental contacts (one from ATLAS and one from CMS) and 2 theoretical contacts. * LHCb collaboration participates in WH/ZH group. 									
	Group	ATLAS	THEORY						
1.	ggF	Jianming Qian (Michigan)	Fabian Stöckli (CERN)		Massimiliano Grazzini (Firenze)	Frank Petriello (Wisconsin)			
2.	VBF	Daniela Rebuzzi (Pavia) Sinead Farrington (Oxford)	Christoph Hackstein (Karlsruhe)		Ansgar Denner (PSI)	Carlo Oleari (Milano- Bicocca)			
3.	WH/ZH	Giacinto Piacquadio (CERN)	Jim Olsen (Princeton)	Clara Matteuzzi (Milano- Bicocca)	Stefan Dittmaier (Freiburg)	Robert Harlander (Wuppertal)			
4.	ttH	Simon Dean (UCL)	Chris Neu (Virginia)		Laura Reina (Florida)	Michael Spira (PSI)			
5.	MSSM neutral	Markus Warsinsky (Freiburg)	Monica Vazquez Acosta (IC)		Michael Spira (PSI)	Georg Weiglein (DESY)			
6.	MSSM charged	Martin Flechl (Freiburg)	Sami Lehti (Helsinki)		Michael Krämer (Aachen)	Tilman Plehn (Heidelberg)			
7.	PDF	Joey Huston (Michigan State)	Kajari Mazumdar (TIFR)		Stefano Forte (Milano)	Robert Thorne (UCL)			
8.	Branching ratios	Daniela Rebuzzi (Pavia)	Ivica Puljak (Split)		Ansgar Denner (PSI)	Sven Heinemeyer (IFCA)			
9.	NLO MC	<u>Jae Yu (Texas)</u>	Marta Felcini (UCD)		Fabio Maltoni (Louvain)	Paolo Nason (Milano- Bicocca)			
10 ob	D. Pseudo- oservables	Michael Dührssen (CERN)	Martin Grünewald (Ghent)		Sven Heinemeyer (IFCA)	Giampiero Passarino (Torino)			
Fertig									

Available tools

- VV2H Spira
 NLO QCD for inclusive cross section
- VBF@NNLO Bolzoni, Maltoni, Moch, Zaro NNLO QCD for inclusive cross section
- PHANTOM Ballestrero et al. LO MC with PS for VBF \rightarrow H \rightarrow WW/ZZ \rightarrow 4f
- VBFNLO Zeppenfeld et al.
 MC with NLO QCD corrections, including Higgs decays
- HAWK Denner, S.D., Mück MC with NLO QCD and EW corrections, including *s*-channel
- POWHEG Frixione, Nason, Oleari, Ridolfi
 MC with matching of NLO QCD with PS

NLO QCD and EW corrections to VBF

Higgs production via VBF in LO

- $\sigma_{
 m LO} \propto lpha^3$, no $lpha_{
 m s}$ dependence
 - \hookrightarrow no $\mu_{\rm ren}$ dependence, scale dependence not a good measure of uncertainties
- many subcontributions from qq, $q\bar{q}$, and $\bar{q}\bar{q}$ channels
- each channel receives contributions from one or two topologies ("*t*, *u*, *s*"):

• s-channel involves W/Z resonances

Size of specific contributions:

	no cuts		VBF c	uts	
$M_{ m H}[{ m GeV}]$	120 - 200	700	120 - 200	700	
$\Delta_{s-\text{channel}}[\%]$	30 - 10	1	< 0.6	< 0.1	negligible with VBF cuts
$\Delta_{t/u-\text{interference}}[\%]$	< 0.5	< 0.1	< 0.1	< 0.1	negligible
$\Delta_{\mathrm{b-quarks}}[\%]$	≈ 4	1	≈ 2	1	

Higgs production via VBF in NLO:

- partonic channels
 - \diamond one-loop diagrams: qq, $q\bar{q}$, $\bar{q}\bar{q}$
 - \diamond real QCD corrections qq, $q\bar{q}$, $\bar{q}\bar{q}$ (gluon emission), qg, $\bar{q}g$ (gluon induced)
 - \diamond real QED corrections qq, $q\bar{q}$, $\bar{q}\bar{q}$ (photon emission), $q\gamma$, $\bar{q}\gamma$ (photon induced)
- collinear initial-state singularities
 - \hookrightarrow factorization and PDF redefinition for QCD and QED singularities
 - Note: MRSTqed2004 = the only PDF set including $O(\alpha)$ effects but: $O(\alpha)$ effects in PDFs $\leq 1\%$
 - $\hookrightarrow\,$ better use up-to-date PDFs without $\mathcal{O}(\alpha)$ effects than miss PDF updates
- W/Z resonances in s-channel
 - \hookrightarrow respect gauge invariance when introducing W/Z decay widths !

Possible solution: "complex-mass scheme" Denner, S.D., Roth, Wieders '05 i.e. consistent use of complex W/Z masses and complex weak mixing angle

- EW input parameter scheme define α in G_{μ} scheme: $\alpha_{G_{\mu}} = \sqrt{2}G_{\mu}M_{W}^{2}(1 - M_{W}^{2}/M_{Z}^{2})/\pi$
 - $\hookrightarrow\,$ absorbs running of α from Q=0 to EW scale and $\Delta\rho$ in $Wq\bar{q}'$ coupling

Survey of Feynman diagrams for NLO corrections

(one or two diagrams per flavour channel)

Typical one-loop diagrams:

+ tree graphs with real gluon or photons

Classification of NLO QCD corrections

Possible Born diagrams:

diagrams (2) only for $q\bar{q}q\bar{q}$ and $q\bar{q}q'\bar{q}'$ channels (q' = weak-isospin partner of q)

Classification of QCD corrections into four categories: (typical diagrams shown)

(b,c,d) = corrections to interferences (only for $q\bar{q}q\bar{q}$ and $q\bar{q}q'\bar{q}'$ channels)

(a)

Results on integrated cross sections

- QCD and EW corrections are of same generic size
- reasonable scale choice: $\mu_{\rm ren/fact} \sim M_{\rm W} \sim {\rm W/Z}$ virtuality (rather than $M_{\rm H}$)
- scale uncertainty $\sim 3\%$ within $M_W/2 < \mu_{ren/fact} < 2M_W$ in NLO ($\sim 10\%$ in LO)
- sensitivity to cuts: large for QCD, small for EW corrections

Size of specific corrections to cross sections:

	no cuts		VBF cuts		
$M_{ m H}[{ m GeV}]$	120 - 200	700	120 - 200	700	
$\delta_{ m QCD(a)}[\%]$	4 - 0.5	+1	≈ -5	-7	O(5-10%)
$\delta_{\rm QCD(b+c+d)}$ [%]	$\lesssim 0.2$	-0.1	< 0.1	< 0.1	negligible
$\delta_{\mathrm{EW},qq} [\%]$	pprox -6	+6	pprox -7	+5	$\mathcal{O}(5{-}10\%)$
$\delta_{{ m EW},q\gamma} [\%]$	$\approx +1$	+2	$\approx +1$	+2	
$\delta_{G^2_{\mu} M^4_{ m H}} [\%]$	< 0.1	+4	< 0.1	+4	negligible for $M_{\rm H} < 400 {\rm GeV}$

Heavy-Higgs corrections at $M_{\rm H} \sim 700 \,{\rm GeV}$: \hookrightarrow breakdown of perturbation theory

Distribution in the Higgs transverse momentum $p_{T,H}$

Ciccolini, Denner, S.D. '07

 \hookrightarrow QCD and EW corrections distort shapes QCD+EW ~ 20%(40%) at $p_{T,H} = 200 \,\text{GeV}(500 \,\text{GeV})$

Distribution in the rapidity y_{j_1} of the leading tagging jet

Ciccolini, Denner, S.D. '07

 \hookrightarrow Significant shape distortions by QCD effects, but EW effects almost uniform

Distribution in the azimuthal angle difference $\Delta \phi_{jj}$ of the tagging jets

Ciccolini, Denner, S.D. '07

→ QCD+EW corrections induce small distortions similar to BSM effects

Effects beyond NLO

Matching fixed order with partons shower at NLO QCD

POWHEG matching of NLO with HERWIG/PYTHIA: Nason, Oleari '09

- hardest radiation is generated first (largest $p_{\rm T}$) using exact matrix elements
- POWHEG output transferred to parton shower
- concept independent of shower algorithm
- unweighted events

Results on VBF:

 \hookrightarrow Characteristic features not changed by parton shower

NNLO QCD corrections

DIS-like corrections

structure-function approach

Bolzoni, Maltoni, Moch, Zaro '10

Non-DIS-like corrections:

loop-induced contributions with ext. gluons and HVV couplings Harlander, Vollinga, Weber '08

colour-exchange diagrams and Higgs radiation off quark loops expected small \rightarrow neglected

Results for σ_{tot} at the LHC:

Physikalisches Institut

- NNLO QCD corrections $\sim 1\%$ with scale Q = W/Z virtuality = $\mathcal{O}(M_W)$
- scale uncertainty \sim PDF uncertainty \sim 2%

Implementation of VBF cuts \rightarrow work in progress

Loop-induced contributions with ext. gluons and HVV couplings _{Harlander, Vollinga, Weber '08}

LO/NLO for VBF

"minimal" cuts $(p_{T,j}>20 \text{ GeV}, |\eta_j|<5, R>0.6)$

WBF cuts = miminal cuts

+ $(\eta_1 \cdot \eta_2 < 0, |\Delta \eta| > 4.2, m_{jj} > 600 \, \text{GeV})$

 \hookrightarrow reduction of σ by factor 2-3

Loop-induced parts with ext. gluons:

minimal cuts \rightarrow WBF cuts \rightarrow reduction of σ by factor ~ 30

Impact $\lesssim 0.1\% \rightarrow$ negligible

Mixed QCD–EW interferences

Andersen, Binoth, Heinrich, Smillie '07 Bredenstein, Hagiwara, Jäger '08

 \hookrightarrow cross-talk between HVV- and Hgg-initiated production

Explicit result:

- various suppression mechanisms at work (PDF weights, weak couplings, etc.)
- impact $\lesssim 10^{-3}\% \rightarrow \text{negligible}$

Conclusions

Stefan Dittmaier, Higgs production via vector-boson fusion

Higgs production via VBF is important at the LHC

- for Higgs discovery
- for Higgs coupling analyses

Status of VBF predictions – size of higher-order effects:

• significant corrections: $\sim 5-10\%$

◇ NLO QCD (DIS-like) and NLO EW

- \diamond gg fusion via effective Hgg
- small corrections: $\sim 1-2\%$
 - \diamond NNLO QCD (σ_{tot} available, VBF cuts in progress)
 - ♦ initial states with b-quarks or photons
- negligible effects: < 1% (after VBF cuts) s-channel contributions, interferences, non-DIS-like NLO QCD, QCD–EW interferences, loop-induced gg-fusion
- Heavy-Higgs effects negligible for $M_{\rm H} < 400 \,{\rm GeV}$ but 1-loop $\sim \,$ 2-loop at $M_{\rm H} \sim 700 \,{\rm GeV} \rightarrow$ breakdown of perturbation theory

Theoretical accuracy of cross section $\sim 2\%$ (for intermediate Higgs masses) matches uncertainties from PDFs and expected experimental errors

Extra slides

Scale dependence of LO and NLO cross sections

Ciccolini, Denner, S.D. '07

QCD:
$$\mu = \mu_{\text{fact}} = \mu_{\text{ren}}$$

QCD': $\mu = \mu_{\text{fact}} = M_{\text{W}}^2/\mu_{\text{ren}}$

Higgs rapidity distribution at NLO

Ciccolini, Denner, S.D. '07

 \hookrightarrow Significant shape distortions by QCD effects, but EW effects almost uniform

Distribution in the transverse momentum p_{Tj_1} of the leading tagging jet at NLO

Ciccolini, Denner, S.D. '07

 \hookrightarrow QCD and EW corrections distort shapes QCD+EW ~ 25%(40%) at $p_{\rm T,H} = 200 \,{\rm GeV}(500 \,{\rm GeV})$

