

Jana Schaarschmidt (TU Dresden) for the ATLAS and CMS Collaborations

# I. ATLAS & CMS

# **II. Vector Boson Fusion and Prospects**

**III. Jet and MET Performance** 

# **IV. Inclusive Jet Cross Section**

A list of references can be found in the back-up.

# **The ATLAS Detector**

#### **Calorimeters**:

• Non-compensating:

Response to hadrons lower than to EM objects, correct for  $e/\gamma$ , but jet energy underestimated

- Dead Material before and between calos
- ⇒ Need jet energy correction by calibration



#### **Resolutions:**

|          |                         | · U                                |                                                                 |         |
|----------|-------------------------|------------------------------------|-----------------------------------------------------------------|---------|
| LAr {    | (EM & had) end-caps     | <b>1.5</b> <  η  < 3.2             | EM:<br>$\sigma / E = 10\% /\sqrt{E[CoV]} \oplus 0.7\% \oplus 0$ | ).3 Gel |
| l        | (EM & had) Forward calo | <b>3.2 &lt; ∣η∣ &lt; 4.9</b>       |                                                                 | Е       |
| Scintil- | (had) Tile Barrel       | η  < <b>0.7</b>                    | Hadronic:                                                       | 3 GeV   |
| lator )  | (had) Tile Ext. Barrel  | <mark>0.8 &lt;  η  &lt; 1.7</mark> | σ / E = 50% /∀E [GeV] ⊕ 1.7 % ⊕ −                               | E       |

#### Components:

LHC 2010 - Jets and Relevance for VBF

**EM Barrel** 

Inl < 1.5

### The CMS Detector

### Calorimeters:

 Calibration of hadronic energy deposits required due to nonlinear and non-compensating response

#### Components:

- ECAL: Lead-tungstate crystals
- HCAL: Brass absorber and plastic tile scintillators
- HF: Iron/quartz-fibre based Cherenkov detector

| ECAL Barrel + End-caps | η  < <b>3.0</b> |
|------------------------|-----------------|
| Central HCAL           | η  < <b>3.0</b> |
| Forward HCAL           | 3.0 <  η  < 5.0 |



#### **Resolutions:**

EM: 
$$\sigma / E = 3 \% / \sqrt{E [GeV]}$$
  
Had:  $\sigma / E = 100 \% / \sqrt{E [GeV]}$ 

LHC 2010 - Jets and Relevance for VBF

**Cross sections** 





### Vector Boson Fusion (VBF):



- 2nd largest cross section after gluon fusion (10 times below ggH)
- Provides special topology used to suppress (QCD) backgrounds
- Studied in  $\tau\tau$  (115-145 GeV), WW (  $\geq$  140 GeV) and  $\gamma\gamma$  (110-140 GeV) final states

# VBF Topology

### General signal signature:

- Two jets in opposite direction (,tagging jets') with large η gap
- Higgs boson decay products in central region
- No color flow between quarks

⇒ Central Jet Veto (CJV)

• Large invariant dijet mass





LHC 2010 - Jets and Relevance for VBF

# **Prospects for VBF H** $\rightarrow \tau \tau$

### Challenges:

- tau ID

### Dominant systematic uncertainties:

Impact on • MET resolution crucial: signal efficiency Expected uncertainty ( $\approx$  10 fb<sup>-1</sup>) - Higgs mass reconstruction JES  $\Delta E/E = 7 \%$ all jets - Discriminant variable ±10 % CMS JES  $\Delta E/E = 7 \%$  (15 %) central (forward) jets Jet resol.  $\sigma(E) = 0.45$  (0.63)  $\sqrt{E}$ +16 % / - 20 % • Influence by pile-up: **ATLAS** ±1% - CJV Tagging and CJV efficiency ATLAS & CMS each  $\pm$  2 % - Higgs mass resolution



# Prospects for $H \rightarrow WW$ (VBF and Gluon Fusion)

- $\bullet$  ee/µµ/eµ + MET final states considered
- Impact of jet uncertainties on backgrounds:
  - ATLAS (H+2j study @ 10 TeV) up to 15 %
  - CMS (14 TeV study) overall 10 %

### Prospects for 2011: ATLAS



- Sensitivity to SM Higgs starts with 250 pb<sup>-1</sup>
- Discovery of m<sub>H</sub>=160 GeV with 5 fb<sup>-1</sup> (full systematics)

- Dominant backgrounds: WW, ttbar, W/Z
- CMS: O jet strategy ⇒ ggH dominant
- ATLAS: 0/1/2 jet bins
   ⇒ VBF relevant in 2 jet analysis



- NNLO+NNLL signal cross sections
- Exclusion (1 fb<sup>-1</sup>) : 150 GeV < m<sub>H</sub> < 185 GeV

⇒ Hope to confirm and improve Tevatron limits with 1 fb<sup>-1</sup>

Higgs Hunting - Orsay

# III. Jet Reconstruction

• ATLAS: Topological clusters as inputs to the anti-k, algorithm with R = 0.6 or R=0.4

TopoCluster:

neutra

hadror

charged hadrons

- Seeded by calorimeter cells with energy deposit E<sub>cell</sub> > 4 \* noise
- + Neighbouring cells with E<sub>cell</sub> > 2 \* noise iteratively added
- + All nearest neighbours around cluster to accumulate shower tail

### • CMS: Three types of jets

1) Calorimeter jets (Calo)



- Calorimeter towers as inputs to the anti-k<sub>t</sub> jet finder with R=0.5 or R=0.7
- Calo Tower:
  - Built from HCAL cells + corresponding ECAL crystals
  - For  $|\eta| > 3.0$  each tower corresponds to one HCAL cell
- 2) Jet plus Track jets (JPT): Calo towers replaced by tracks if matched -

### 3) Particle Flow Jets (PF)

Coherent combination of all subdetectors for reconstruction and ID of all particles. Jets are computed out of these calibrated particles

• Track Jets (ATLAS and CMS) Reconstructed from tracks alone, independent from calos

### **Kinematic Distributions**

**ATLAS** 



# III. Jet Energy Scale (JES) and Uncertainty - ATLAS

Calibration factors C ( $p_T$ ,  $\eta$ ) from MC:



### Dominant contributions:

- Detector geometry
- Noise description
- Hadronic shower model
- + Additional 2 % from pile-up
- Cross checked by single particle response
- JES uncertainty for forward jets not yet evaluated

#### JES uncertainty for central jets obtained from MC:



#### Summary for anti-kt jets R=0.6:

| $\eta$ region        | Maximum relative JES Uncertainty    |                                     |  |
|----------------------|-------------------------------------|-------------------------------------|--|
|                      | $p_T^{\text{jet}} > 20 \text{ GeV}$ | $p_T^{\text{jet}} > 60 \text{ GeV}$ |  |
| $0 <  \eta  < 0.3$   | 9.4%                                | 6.9%                                |  |
| $0.3 <  \eta  < 0.8$ | 9.4%                                | 6.8%                                |  |
| $0.8 <  \eta  < 1.2$ | 9.3%                                | 7.0%                                |  |
| $1.2 <  \eta  < 2.1$ | 9.5%                                | 6.9%                                |  |
| $2.1 <  \eta  < 2.8$ | 10%                                 | 7.6%                                |  |

LHC 2010 - Jets and Relevance for VBF

# III. JES and Uncertainty - CMS



### JES correction depends on jet type

⇒ JES uncertainty depends on jet type

Conservative estimates:

- Calo jets: 10 %
- JPT and PF jets: 5%

} **+ 2 %** · |η|

From single particle responses, eg. PF jets:

- EM scale: 1-2 %
- low pT: JES uncertainty of charged hadrons < 1 % JES uncertainty of neutral hadrons 3-5 %

### Cross checks between jet types to evaluate JES uncertainty:



50 nb<sup>-1</sup>

# III. In-situ Jet Calibration - ATLAS

# Eta Inter-calibration with dijet $p_T$ balance

- Before: Calibration factors  $C(p_T, \eta)$  derived from MC
- Now: Use central calorimeter as reference region and quantify calorimeter response by the p<sub>T</sub> balance between central (reference) jet and a forward (probe) jet
- Asymmetry of dijet system:  $\mathcal{A} = \frac{p_{\mathrm{T}}^{\mathrm{probe}} p_{\mathrm{T}}^{\mathrm{ref}}}{n_{-}^{\mathrm{avg}}}$   $p_{\mathrm{T}}^{\mathrm{avg}} = \frac{1}{2} * (p_{\mathrm{T}}^{\mathrm{jl}} + p_{\mathrm{T}}^{\mathrm{j2}})$



• Selection: MinBias or L1\_J5 trigger, 2 jets with  $p_T^{avg}$  > 20 GeV,  $\Delta \Phi$  > 2.6 and  $p_T^{j3}$  < 0.25  $p_T^{avg}$ 



 $=\frac{2+\mathcal{A}}{2-\mathcal{A}}=1/c$ 

 $p_{\underline{\mathrm{T}}}^{\mathrm{probe}}$ 

### Eta Inter-calibration - Results

Mean value of asymmetry in each ( $p_{\tau}$ , $\eta$ ) bin used to calculate 1/c



Jet n

### Jet resolution from dijet asymmetry

This method was also applied in ATLAS

- Event selection:
  - Trigger: MinBias, dijet  $p_{\rm T}$  average 15 GeV and 30 GeV
  - Dijets:  $\Delta \Phi$  > 2.7,  $|\eta|$  < 1.4, veto on third jet with  $p_T < p_T^{j3,max}$



 Underlying event and out of cone particles by showering broaden p<sub>T</sub> resolution already at truth level ⇒ (Small) correction necesarry.



LHC 2010 - Jets and Relevance for VBF

# III. Forward Jet Performance in Min Bias Events - ATLAS



#### Jet width $w = (\Sigma_i R^i * E_T^i) / \Sigma E_t^i$ with distance R of cluster i to jet center:

#### Fraction of energy deposited in EM layers:

17 nb<sup>-1</sup>





LHC 2010 - Jets and Relevance for VBF

Data 2010 √s = 7 TeV

Ldt=0.34 nb<sup>-1</sup>



0.3 nb<sup>-1</sup> MinBias 14.3 nb<sup>-1</sup> L1Calo



• MET Calibration:

- LCW: Local cluster energy weighting
- ReFined: Association to reconstructed objects
- MET resolution measured in MinBias data:

$$σ_{EM}$$
 = 0.41  $√ΣE_T$   $σ_{GCW}$  = 0.39  $√ΣE_T$   
 $σ_{LCW}$  = 0.37  $√ΣE_T ≈ σ_{refined}$ 

At least one jet with  $p_T^{EM} > 20$  GeV:



**GCW** calibrated MET: ATLAS Preliminary

**MinBias** 

10<sup>6</sup>

10<sup>5</sup>



# III. MET Performance - CMS



#### MET Calo with Pile-Up:



### Track corrected MET

### **Particle Flow MET**



- Cleaning cuts applied to reject anomalous signals and beam induced backgrounds
- MET better described in Dijet than in MinBias data
- MET resolution comparison among three algorithms
   Same calibration determined in-situ from γ+jets events
   ⇒ Pf MET best resolution, before TcMET and CaloMET
- Fraction of pile-up events: 1 % Higher  $\Sigma E_T$  and MET expected

LHC 2010 - Jets and Relevance for VBF

Higgs Hunting - Orsay



- Systematics: JES, jet resolution, pile-up
- 11 % luminosity uncertainty (not included)
- Theory uncertainty: Renormalization & factorisation scales, PDFs,  $\alpha_{\!s}$  and effects from soft QCD modelling

#### Bin-by-bin data correction:

Correction factor from ratio of MC truth to simulation applied to data in each bin

 $\Rightarrow$  Corrections < 20 %

# IV. Inclusive Jet Cross Section - CMS



• JES correction from MC, in addition y dependent relative calibration correction in-situ from dijets

#### • Systematics:

- JES uncertainty: 10 % for calo jets
- 10 % jet resolution uncertainty
- 11 % luminosity uncertainty
- Bin-by-bin migration correction: ansatz for truth pT spectrum f(p<sub>T</sub>) smear f(p<sub>T</sub>) to data ⇒ F(p<sub>T</sub>)
   ⇒ unsmearing correction C<sub>res</sub> = f(p<sub>T</sub>) / F(p<sub>T</sub>)
- Theory uncertainties:
  - soft QCD modelling
  - PDFs
  - renormalization & factorization scales

60 nb<sup>-1</sup>

anti-k<sub>t</sub> R=0.5

60 nb<sup>-1</sup>



JES uncertainty: 5 % for JPT and PF jets

### **Conclusions and Outlook**







- Jet/MET reconstruction and control of uncertainties crucial for upcoming Higgs searches
- Energy calibration of jets and MET based on MC and/or in-situ
- JES uncertainty: ATLAS: 7-10 % (central jets)
   CMS: 10 % (calo jets), 5 % (JPT and PF jets) + 2% |η|

**Prospects:** 

- Further performance checks, understanding of small discrepancies between data and MC, testing of other MC tunes
- With 1 pb<sup>-1</sup>: Expect W→τν and Z → ττ events ⇒ Study real taus Approaching ttbar production with 1 pb<sup>-1</sup> Jet calibration with Z/W events
- With 250 pb<sup>-1</sup>: Sensitivity to exclusion of SM H→WW begins
- With 1 fb<sup>-1</sup>: Improve exclusion limits, Background studies to various SM and MSSM Higgs analyses

# Back-Up

### References

#### First Data Performances:

#### ATLAS:

- Jet production cross section (ATL-CONF-2010-049)
- Jets and input to calibration (ATL-CONF-2010-052)
- Eta inter-calibration and forward jets (ATL-CONF-2010-053)
- In-situ jet efficiency and resolution (ATL-CONF-2010-054)
- Single particle reponse and JES (ATL-CONF-2010-050)
- JES and JES uncertainty (ATL-CONF-2010-056)
- MET Performance (ATL-CONF-2010-055)
- Energetic jets at 7 TeV (ATL-CONF-2010-043)
- Jet cleaning cuts (ATL-CONF-2010-038)

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/RESULTS/summer2010.html

#### CMS:

- Inclusive jet cross section (CMS-PAS-QCD-10-011)
- Jet performance (CMS-PAS-JME-10-003)
- Forward jet performance (CMS-DPS-2010-026)
- Single particle response (CMS-PAS-JME-10-008)
- MET performance (CMS-PAS-JME-10-004)
- Tau reconstruction (CMS-PAS-PFT-10-004)
- Jet cleaning cuts (CMS-PAS-JME-09-008)

#### Sensitivity Studies:

- ATLAS CERN-OPEN-2008-20
- 10 TeV H → WW Atlas (ATL-PHYS-PUB-2010-006)
- H→WW CMS (CMS-PAS-HIG-07-001)
- CMS TDR Vol II (CERN/LHCC 2007-021)
- 7 TeV Sensitivity ATLAS (ATL-PHYS-PUB-2010-009)
- 7 TeV Sensitivity CMS (CERN-CMS-NOTE-2010-008)
- CMS H  $\rightarrow \tau \tau$  with 1 fb<sup>-1</sup> (CMS-PAS-HIG-08-008)

#### Misc:

- Cacciari, Salam: anti-k<sub>t</sub> jet algorithm (arXiv:0802.1189)
- ATLAS Topocluster algorithm (ATL-LARG-PUB-2008-002)

### **Trigger & Event Selection**

### ATLAS

- Minimum Bias events triggered by MBTS and/or signal from BPTX
- QCD events triggered by L1 jet trigger L1\_J5 (jet with 5 GeV, unprescaled)
- Primary vertex with at least 5 tracks

### CMS

- Minimum Bias triggered by Beam Scintillator Counter in coincidence with BPTX
- QCD triggered by high level jet triggers with different thresholds and prescales
- Veto on beam-halo events
- Primary vertex with at least 4 or 5 tracks



# Jet and MET Cleaning (ATLAS & CMS)

- Detector level: Only high quality data flagged as valuable for physics analysis (,good runs') with stable beam condition
- Object level:
  - Certain fraction of energy deposit distributed among certain number of channels to reject spurious (sporadic) signals
  - Jet timing within small difference to average event time, to suppress non-collision backgrounds: Cosmics, beam-gas, beam-halo, cavern background.
- Details: ATL-CONF-2010-038, CMS-PAS-JME-09-008

