Photon production at hadronic colliders

J. Ph. Guillet

LAPTH CNRS/Université de Savoie

Higgs hunting – Jully 2010

J. Ph. Guillet Photon production at hadronic colliders

Outline

Inclusive photon production

- Single photon production
- Isolation criterion
- Double photon production
- Conclusion

▲□ ▶ ▲ □ ▶ ▲ □ ▶

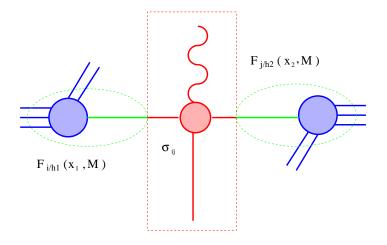
Outline

- Inclusive photon production
- Single photon production
- Isolation criterion
- Double photon production
- Conclusion

< 同 > < 回 > < 回 > -

- Inclusive photon production
- Single photon production
- Isolation criterion
- Double photon production
- Conclusion

▲□ ▶ ▲ □ ▶ ▲ □ ▶ →

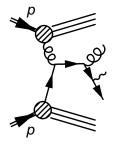

- Inclusive photon production
- Single photon production
- Isolation criterion
- Double photon production
- Conclusion

・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・

- Inclusive photon production
- Single photon production
- Isolation criterion
- Double photon production
- Conclusion

・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・

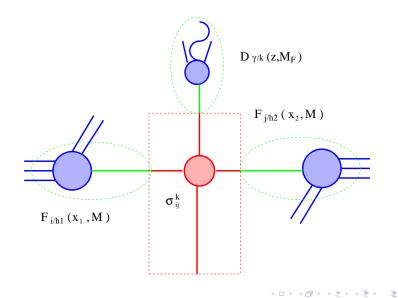
Inclusive photon production


<個>< 回> < 回> < 回> -

æ.

Inclusive photon production

Additional component for photon production

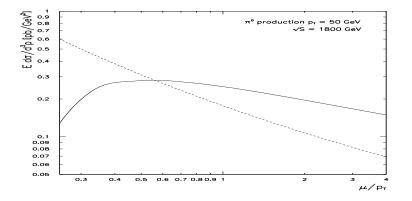


▲ロ → ▲圖 → ▲ 画 → ▲ 画 → …

æ.

Inclusive photon production

• Only the sum $\sigma^{D} + \sigma^{F}$ is a physical observable


• When $M_F \gg$ hadronic scale $D_{\gamma/k}(z, M_F)$ behaves like $\alpha/\alpha_s(M_F)$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- Only the sum $\sigma^D + \sigma^F$ is a physical observable
- When $M_F \gg$ hadronic scale $D_{\gamma/k}(z, M_F)$ behaves like $\alpha/\alpha_s(M_F)$

Inclusive photon production Why NLO?

$$\frac{\partial}{\partial \ln(M)} \left(\frac{d\sigma}{d\vec{P}_{T\gamma} dy_{\gamma}} \right) = O(\alpha_s^{n+1})$$

< □ > < 同 >

æ

• $\hat{\sigma}_{ij}^{(1)}$ contains other logarithmic terms such as $\ln(\hat{x}_T)$,

$$\ln(1-\hat{x}_T)$$
, where $\hat{x}_T = 2 P_{T\gamma}/\sqrt{\hat{s}}$.

- when $P_{T\gamma}$ is close to $\sqrt{S}/2$, the extra gluons are forced to be soft \rightarrow large logarithms of infra-red origin
- when $P_{T\gamma} \ll \sqrt{S}$, two scale problem, in this regime, the assumptions of the QCD improved parton model may not be valid \rightarrow The Altarelli-Parisi evolution may be not valid.
- assumption that the γ produced is collinear to the parent parton → inter jet activity cannot be described by this type of calculation
- the fragmentation functions are extracted from e⁺ e⁻ data in a range .1 < z < .8. What are the errors due to FF?

・ ロ マ ・ 雪 マ ・ 雪 マ ・ 日 マ

• $\hat{\sigma}_{ij}^{(1)}$ contains other logarithmic terms such as $\ln(\hat{x}_T)$,

 $\ln(1-\hat{x}_T)$, where $\hat{x}_T = 2 P_{T\gamma}/\sqrt{\hat{s}}$.

- when $P_{T\gamma}$ is close to $\sqrt{S}/2$, the extra gluons are forced to be soft \rightarrow large logarithms of infra-red origin
- when P_{T γ} ≪ √S, two scale problem, in this regime, the assumptions of the QCD improved parton model may not be valid → The Altarelli-Parisi evolution may be not valid.
- assumption that the γ produced is collinear to the parent parton \rightarrow inter jet activity cannot be described by this type of calculation
- the fragmentation functions are extracted from e⁺ e⁻ data in a range .1 < z < .8. What are the errors due to FF?

・ ロ マ ・ 雪 マ ・ 雪 マ ・ 日 マ

• $\hat{\sigma}_{ij}^{(1)}$ contains other logarithmic terms such as $\ln(\hat{x}_T)$,

 $\ln(1-\hat{x}_T)$, where $\hat{x}_T = 2 P_{T\gamma}/\sqrt{\hat{s}}$.

- when $P_{T\gamma}$ is close to $\sqrt{S}/2$, the extra gluons are forced to be soft \rightarrow large logarithms of infra-red origin
- when P_{T γ} ≪ √S, two scale problem, in this regime, the assumptions of the QCD improved parton model may not be valid → The Altarelli-Parisi evolution may be not valid.
- assumption that the γ produced is collinear to the parent parton → inter jet activity cannot be described by this type of calculation
- the fragmentation functions are extracted from e⁺ e⁻ data in a range .1 < z < .8. What are the errors due to FF?

・ コ マ チ (雪 マ チ (雪 マ ー)

• $\hat{\sigma}_{ij}^{(1)}$ contains other logarithmic terms such as $\ln(\hat{x}_T)$,

 $\ln(1-\hat{x}_T)$, where $\hat{x}_T = 2 P_{T\gamma}/\sqrt{\hat{s}}$.

- when $P_{T\gamma}$ is close to $\sqrt{S}/2$, the extra gluons are forced to be soft \rightarrow large logarithms of infra-red origin
- when P_{T γ} ≪ √S, two scale problem, in this regime, the assumptions of the QCD improved parton model may not be valid → The Altarelli-Parisi evolution may be not valid.
- assumption that the γ produced is collinear to the parent parton → inter jet activity cannot be described by this type of calculation
- the fragmentation functions are extracted from e⁺ e⁻ data in a range .1 < z < .8. What are the errors due to FF?

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト

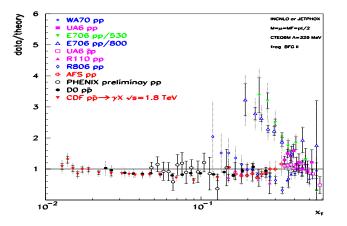
Large domain of energies experimentally studied (it was thought that the photon production gave a clean probe of parton dynamics!!!!!)

ヘロト 人間 ト イヨト イヨト

	type of code	Direct	Fragmentation
INCNLO (*)	I/FO	NLO	NLO
Vogelsang, Gordon (*)	I/FO	NLO	NLO
Owens et al.	G/FO	NLO	LO
Frixione, Vogelsang	G/FO	NLO	LO
JETPHOX (*)	G/FO	NLO	NLO

1	:	Inclusive
G	:	Generator
FO	:	Fixed Order

(*) http://wwwlapp.in2p3.fr/lapth/PHOX_FAMILY/main.html

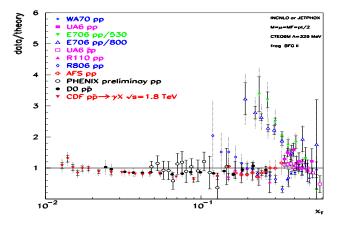

Threshold resummation:(*) Catani et al., Vogelsang, Sterman (*) Kidonakis, Owens

▲ロト ▲圖 ト ▲ 国 ト ▲ 国 ト

Single photon production Comparison with existing data

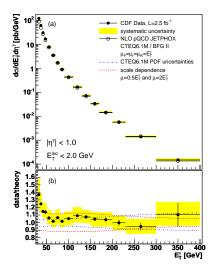
Disagreement between data and theory

 $23 \le \sqrt{S} \le 1960$ GeV: fixed target + ISR data + Tevatron data



< □ > < 同 >

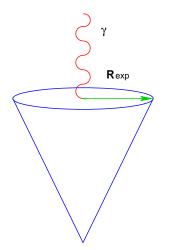
Single photon production Comparison with existing data


Disagreement between data and theory or disagreement among experimental data???

 $23 \leq \sqrt{S} \leq$ 1960 GeV: fixed target + ISR data + Tevatron data

< □ > < 同 >

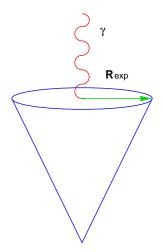
Single photon production *P_T* distribution



high energy resummation ($P_{T\gamma} << \sqrt{S}$) is negligible at Tevatron : G. Diana, J. Rojo and R. D. Ball (arXiv:1006.4250 [hepph])

・ロット (日) ・ (日) ・ (

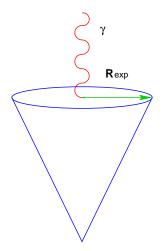
 $\exists \mapsto$


Isolation criterion Standard criterion

$$egin{array}{l} E_{T}^{had} \leq E_{T\,max} ext{ inside} \ (y-y_{\gamma})^{2} + (\phi-\phi_{\gamma})^{2} \leq R_{exp}^{2} \end{array}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

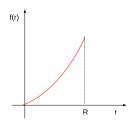
Isolation criterion Standard criterion



$$egin{aligned} E_{T}^{had} &\leq E_{T\,max} ext{ inside} \ (y-y_{\gamma})^{2} + (\phi-\phi_{\gamma})^{2} &\leq R_{exp}^{2} \end{aligned}$$

Large Log. when $R_{exp} \rightarrow 0$ and $E_{T\,max} \rightarrow 0$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

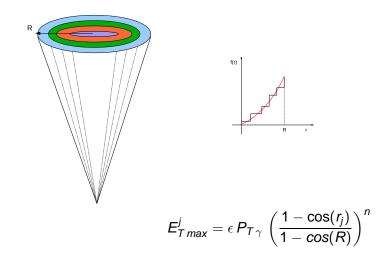

Isolation criterion Standard criterion

$$egin{aligned} E_{T}^{had} &\leq E_{T\,max} ext{ inside} \ (y-y_{\gamma})^{2} + (\phi-\phi_{\gamma})^{2} &\leq R_{exp}^{2} \end{aligned}$$

Large Log. when $R_{exp} \rightarrow 0$ and $E_{T\,max} \rightarrow 0$

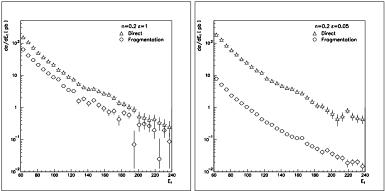
Underlying events, pile up,

Other isolation criterion (s. Frixione) where $E_{T had} < f(r)$


$$f(r) \rightarrow 0$$
 when $r \rightarrow 0$ like r^{2n}

kill the fragmentation contribution

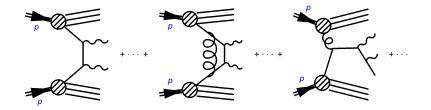
・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・


Isolation criterion

Discrete version

(日) (圖) (E) (E) (E)

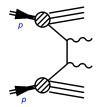
6 nested cones : 0.1, 0.16, 0.22, 0.28, 0.34, 0.4


3 k 3

Higgs search at LHC ($M_{Higgs} \leq 140 \text{ GeV}$)

J. Ph. Guillet Photon production at hadronic colliders

・ロン ・聞 と ・ ヨ と ・ ヨ と

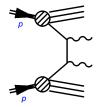

Double photon production Direct

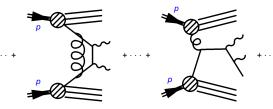


J. Ph. Guillet Photon production at hadronic colliders

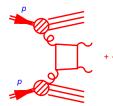
▲ロト ▲圖 ト ▲ 国 ト ▲ 国 ト

Double photon production

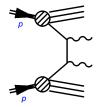


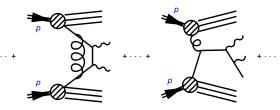

 $O(\alpha^2) + O(\alpha^2 \alpha_s)$

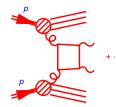
J. Ph. Guillet Photon production at hadronic colliders


▲ロト ▲圖 ト ▲ 国 ト ▲ 国 ト

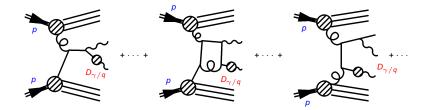
Double photon production




 $O(\alpha^2) + O(\alpha^2 \alpha_s)$

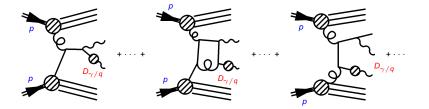

▲ロト ▲圖 ト ▲ 国 ト ▲ 国 ト

Double photon production


 $O(\alpha^2) + O(\alpha^2 \alpha_s)$

 $O(\alpha^2 \alpha_s^2)$

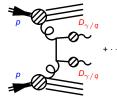
▲ロト ▲圖 ト ▲ 国 ト ▲ 国 ト

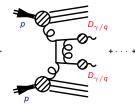

Double photon production One Fragmentation

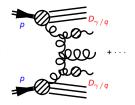
J. Ph. Guillet Photon production at hadronic colliders

▲ロト ▲圖 ト ▲ 国 ト ▲ 国 ト

Double photon production One Fragmentation

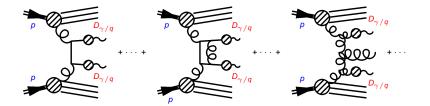



 $O(\alpha^2 \ \alpha_s) + O(\alpha^2 \ \alpha_s^2)$ but $D_{\gamma/q}(z, M_f^2) \simeq 1/\alpha_s(M_f^2)$


・ロト ・聞 ト ・ 国 ト ・ 国 ト ・

æ

Double photon production Two Fragmentation



・ロト ・聞 ト ・ 国 ト ・ 国 ト ・

æ

J. Ph. Guillet Photon production at hadronic colliders

Double photon production Two Fragmentation

 $O(\alpha^2 \alpha_s^2) + O(\alpha^2 \alpha_s^3)$

J. Ph. Guillet Photon production at hadronic colliders

・ロト ・聞 ト ・ 国 ト ・ 国 ト ・

æ

	type of code	Direct	One Frag.	Two Frag.
Aurenche et al.	I/FO	NLO	LO	none
Owens et al.	G/FO	NLO	LO	none
DIPHOX (*)	G/FO	NLO	NLO	NLO
RESBOS	G/SGS	NLO	LO	none

1 :	Inclusive
G :	Generator
FO :	Fixed Order
SGS:	Soft Gluon Summation

(*) http://wwwlapp.in2p3.fr/lapth/PHOX_FAMILY/main.html

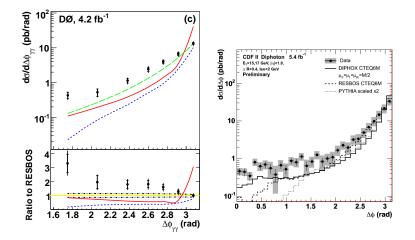
▲ロト ▲圖 ト ▲ 国 ト ▲ 国 ト

∃ 990

Comparison with existing data

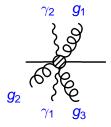
 $\begin{array}{l} \textbf{Preliminary CDF runll data} \\ P_{T\gamma_1} > 17 \ \text{GeV}, P_{T\gamma_2} > 15 \ \text{GeV}, |y_{\gamma_{1,2}}| < 1 \\ \textbf{Photon isolation:} \\ E_T^{had} \leq 2 \ \text{GeV} \ \text{in a cone of } R_{\text{exp}} = 0.4 \\ \text{Accllinearity cut between the photons:} \\ R_{\text{min}} : \sqrt{(y_{\gamma_1} - y_{\gamma_2})^2 - (\Phi_{\gamma_1} - \Phi_{\gamma_2})^2} > 0.3 \\ \text{Scale choice:} \end{array}$

 $\begin{array}{l} \textbf{also Data points D0 runll}_{P_{T\gamma_1} > 21 \text{ GeV}, P_{T\gamma_2} > 20 \text{ GeV}, |y_{\gamma_{1,2}}| < 1 \\ \textbf{Photon isolation:} \\ F_T^{had} \leq 2.5 \text{ GeV in a cone of } R_{exp} = 0.4 \\ \textbf{Acollinearity cut between the photons:} \\ R_{min} : \sqrt{(y_{\gamma_1} - y_{\gamma_2})^2 - (\Phi_{\gamma_1} - \Phi_{\gamma_2})^2} > 0.4 \\ \textbf{Scale choice:} \\ \mu = M = M_f = M_{\gamma \gamma} \\ extra cut : \end{array}$


 $q_T < M_{\gamma \gamma}$

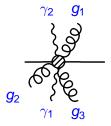
 $\mu = M = M_f = M_{\gamma \gamma}/2$

ヘロト 人間 ト イヨト イヨト


э

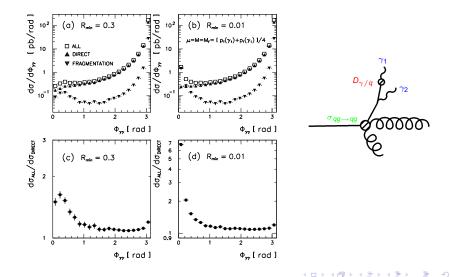
Azymuthal angle distribution

< 口 > < 同


Double photon production Divergence of IR origin at the end of phase space

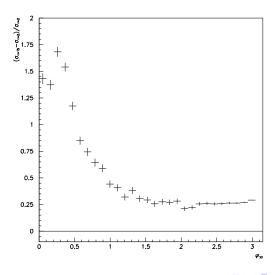
- φ_{γγ} ≃ π dominated by config. where the extra gluons are forced to be either soft or collinear to the initial or final state
 → large logarithms of infra-red origin
- *q_T* ≃ 0 dominated by config where the extra gluons are forced to be either soft or collinear to the initial state → large logarithms of infra-red origin

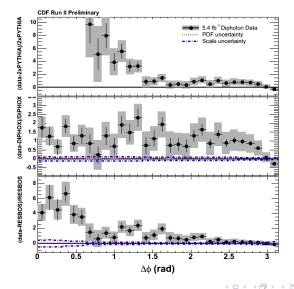
・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・


Double photon production Divergence of IR origin at the end of phase space

- φ_{γγ} ≃ π dominated by config. where the extra gluons are forced to be either soft or collinear to the initial or final state
 → large logarithms of infra-red origin
- *q_T* ≃ 0 dominated by config where the extra gluons are forced to be either soft or collinear to the initial state → large logarithms of infra-red origin

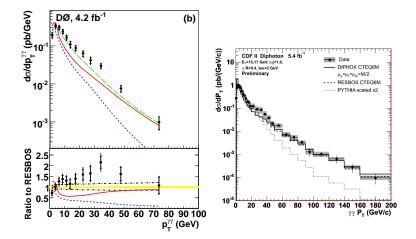
伺とくほとくほと


Double photon production Enhancement at $\phi_{\gamma,\gamma} = 0$

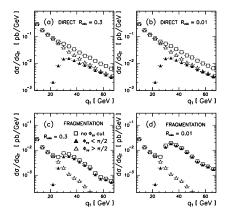

assume difficulties to measure the energy along the photon direction

 $R_2 = 0.4 R_1 = 0.1$ In the inner cone R_1 , $E_{T max} < 15 \text{ GeV}$ In the crown $R_2 - R_1$, $E_{T max} < 2 \text{ GeV}$

Azymuthal angle distribution th


Azymuthal angle distribution CDF

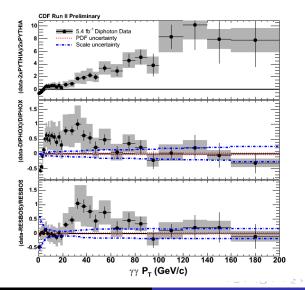
J. Ph. Guillet Photon production at hadronic colliders


ъ

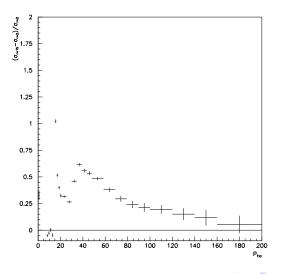
Double photon production q_{τ} distribution

< □ > < //>
</

Double photon production q_{T} shoulder


$$\begin{array}{rcl} q_T^2 & = & |\vec{P}_{T\gamma_1} + \vec{P}_{T\gamma_2}|^2 \\ & = & P_{T\gamma_1}^2 + P_{T\gamma_2}^2 \\ & & + 2 P_{T\gamma_1} P_{T\gamma_2} \cos \Phi_{\gamma\gamma} \end{array}$$

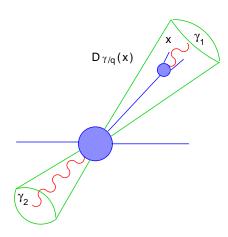
$$\begin{array}{lll} q_{T\,\,min} & = & \sqrt{P_{T\,\,\gamma_1\,\,min}^2 + P_{T\,\,\gamma_2\,\,min}^2} \\ & \simeq 20.34\,{\rm GeV} \\ q_{T\,\,lim} & = & P_{T\,\,\gamma_1\,\,min} + P_{T\,\,\gamma_2\,\,min} \\ & \simeq 28.75\,{\rm GeV} \end{array}$$


ъ

æ

Double photon production q_{T} distribution CDF

Double photon production q_{T} distribution th



J. Ph. Guillet Photon production at hadronic colliders

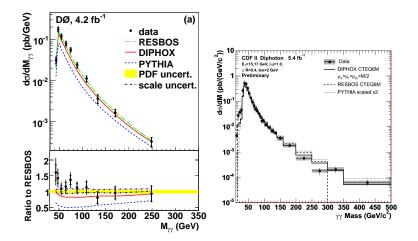
æ

ъ

Double photon production Divergence of IR origin inside spectrum

For one fragmentation, at LO:

$$\begin{array}{rcl} q_T &=& |\vec{P}_{T\gamma_1} + \vec{P}_{T\gamma_2}| \\ &=& (1-x) \, P_{T\gamma_2} \\ &=& E_T^{had} \end{array}$$

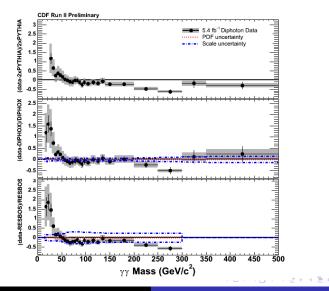

Because of isolation criterion:

$$\frac{d\sigma^{LO}}{dq_T} \simeq \Theta(E_{T\,max} - q_T)\,\sigma$$

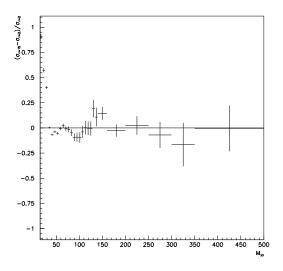
・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・

э

Invariant mass distribution



< □ > < 同 >


э

-

Invariant mass distribution : ratio

Invariant mass distribution : th

J. Ph. Guillet Photon production at hadronic colliders

э

Inclusive photon production is well undercontrol (if we remove E706 data)

• Two photon production at Tevatron is fairly described by theory, some corners need to be clean : better matching on isolation criterion between theory and experiment.

伺 とくき とくきと

- Inclusive photon production is well undercontrol (if we remove E706 data)
- Two photon production at Tevatron is fairly described by theory, some corners need to be clean : better matching on isolation criterion between theory and experiment.

伺 ト イ ヨ ト イ ヨ ト