

Photons in LHC data @ 7 TeV Results from ATLAS and CMS

Mathieu Aurousseau (LAPP) On behalf of the <u>ATLAS</u> and CMS Collaborations

Higgs Hunting : Discussions on Tevatron and first LHC results

> 29-31 July 2010 Orsay, France

<u>I - Introduction</u>

- Physics with photons at the LHC
- ATLAS and CMS : trackers and calorimeters

<u>II - Using photons in performance studies</u>

- Photons from π^0 decays [CMS/ATLAS]
- Conversions and Dalitz [CMS/ATLAS]

<u>III - Prompt photons results</u>

- Photon identification [CMS/ATLAS]
- Photon conversions [CMS/ATLAS]
- Beam-halo background [CMS]
- Prompt isolated photon signal and purity [ATLAS]

I- Introduction

Perspective for $H \rightarrow \gamma\gamma$ searches in CMS and ATLAS

Higgs Hunting 2010 Orsay (29-31 July 2010)

Material => non-negligible fraction of photon conversions (up to 50% in Si)

 → Consequences on photon ID, energy resolution, etc.
 → Use of conversions as a tool for material mapping
 ATLAS : add O(2X₀) before EM Calo (solenoid coil, cryostat)

Higgs Hunting 2010 Orsay (29-31 July 2010)

ATLAS and CMS : Calorimetry

II – Photons in performance studies

• Reconstruction of π^0 peaks

• Material mapping with photon conversions and Dalitz in ATLAS

Converted photons in ATLAS and CMS

Higgs Hunting 2010 Orsay (29-31 July 2010)

III – Prompt photons results

- Photon identification
- Photon conversions
- Non-collision backgrounds
- Extraction of isolated photon signal and purity

Data samples

Higgs Hunting 2010 Orsay (29-31 July 2010)

Mathieu Aurousseau - LAPP

Identifie ATIAC • C

TLA	ariable	Definition	Loose	
MIDDLE	Hadronic leakage	E _T (Had)/E _T	$\frac{1000 \text{sc}}{\text{selection}}$ selection → Had. Leakage + Middle variables $\frac{\text{Tight}}{\text{selection}}$ selection → Loose + Strips variables (different cuts for converted and unconverted photons)	h h ts d
	R _η	E _{3x7} /E _{7x7}		
	w _{η2}	RMS of energy in η in middle layer		
	R _φ	E _{3x3} /E _{3x7}		
	w _{stot}	RMS of energy in η in strips		
STRIPS	E _{ratio}	Asymetry between 1 st and 2 nd max		
	ΔΕ	Difference between 2 nd max and min (between the 2 max)		
	F _{side}	Fraction of energy in 7 cells outside the core of 3 cells		
	w _{s3}	RMS of energy in η in the core of 3 cells		STRIPS

Treated separately (see after)

Higgs Hunting 2010 Orsay (29-31 July 2010)

Shower shapes in the ATLAS EM Calorimeter

Higgs Hunting 2010 Orsay (29-31 July 2010)

Entries/0.025

lapp

Identification of photons in CMS

lapp,

	S iable	Definition	CMS Definition a CPO, CERW Data recorded: Thu Jul 1 09:08:48 2010 CEST Run/Event: 139103 / 222480885
C	R ₉	E _{3x3} /E _{SC}	
	Pixel seed	Match with track in pixels	jet
	Tracker Iso.	Sum(p_T) in a ring between R = 0.04 and R = 0.4	Separation of conversions,
	ECAL Iso.	Sum($E_T(EM)$) in a ring between R = 0.06 and R = 0.4	choice of cluster size
	HCAL Iso.	Sum(E_T (HCAL)) in a ring between R = 0.15 and R = 0.4	$\begin{array}{c c} & 10^5 \\ \hline 0 \\ $
	$\sigma_{i\eta - i\eta}$	Width in η of the SC	$\int_{0}^{10^{4}} L = 74 \text{ mb}^{-1}$ MC γ isR/FSR MC other
	Hadronic fraction	$H/E = E_T(Had)/E_T$	10³ [η] < 1.4442 • Purity (from MC) ~ 50%
	Additional cut : E _T > 30 GeV		• Increases with E_T
	• Efficien is	ncies computed on MC olated photons : \rightarrow EB : $\epsilon \approx 90\%$ \rightarrow EE : $\epsilon \approx 80\%$	
			10 ⁻² 0 50 100 150 200 250 Photon-E _∓ (GeV)

Identification variables in the CMS ECAL

Higgs Hunting 2010 Orsay (29-31 July 2010)))

Photon conversions in CMS and ATLAS

Non-collision background (I)

• Data driven method to estimate candidate contamination

- Estimate < 5.9 halo events in "candidate"
- sample (351 candidates) with MET > 25 GeV

Isolation

Isolation [GeV]

Higgs Hunting 2010 Orsay (29-31 July 2010)

Mathieu Aurousseau - LAPP

Signal extraction (I)

Signal extraction (II)

Signal yield with 15.8 nb⁻¹ of data

ET interval	Estimated signal yield (+/- stat. +/- syst.)
10 – 15 GeV	$1289 \pm 297 \pm 1362$
15 – 20 GeV	$706\pm69\pm86$
> 20 GeV	$618\pm42\pm59$

Systematics dominated by choice of first layer ID cuts, isolation cut and correlations.

Signal extraction (III) : Photon purity

Estimated purity with 15.8 nb⁻¹ of data

ET interval	Estimated purity in % (+/- stat. +/- syst.)
10 – 15 GeV	$24\pm5\pm24$
15 – 20 GeV	$58\pm5\pm8$
> 20 GeV	$72\pm3\pm6$

Systematics dominated by choice of first layer ID cuts, isolation cut and correlations.

Conclusions

Conclusions

Performance with photons

Check of photon ID variables

• Signal of prompt photons (incl. conversions)

- Good agreement between data and MC in general
 - Though some discrepancies to understand

Experiments are ready for next steps : (differential) cross section measurements, prompt di-photon signal, ...

Backup

Photon ID efficiency in ATLAS

Photon identification efficiency

- \rightarrow Estimated from MC
- \rightarrow Systematic uncertainties :
 - Material description
 - Cross-talk
 - Classification of conversions

• Photon trigger efficiency (L1 Calo 5 GeV) → Estimated from Data (bootstrap) • Sample of Min Bias triggered events • Lower threshold L1Calo trigger (2 GeV)

- \rightarrow Systematic uncertainty :
 - < 0.3%, estimated from signal/background differences, from MC

CMS

