
Enhancing Grid Infrastructures with
Virtualization and Cloud Technologies

StratusLab D4.1 Architecture

Deliverable D4.1 (V0.1)
3 September 2010

Abstract

This document presents the initial architecture of the StratusLab Toolkit (or distri-
bution). This architecture defines the foundation that will form the v1.0 of Stratus-
Lab. This document is a starting point and is expected to evolve. It will be updated
at XX with D4.X.

StratusLab is co-funded by the
European Community’s Seventh

Framework Programme (Capacities)
Grant Agreement INSFO-RI-261552.

The information contained in this document represents the views of the
copyright holders as of the date such views are published.

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED
BY THE COPYRIGHT HOLDERS “AS IS” AND ANY EXPRESS OR IM-
PLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IM-
PLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
THE MEMBERS OF THE STRATUSLAB COLLABORATION, INCLUD-
ING THE COPYRIGHT HOLDERS, OR THE EUROPEAN COMMISSION
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EX-
EMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SER-
VICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTER-
RUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THE INFORMATION CONTAINED IN THIS DOCUMENT, EVEN
IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Copyright c© 2010, Members of the StratusLab collaboration: Centre Na-
tionale de la Recherche Scientifique, Universidad Complutense de Madrid,
Greek Research and Technology Network S.A., SixSq Sàrl, Telefónica In-
vestigación y Desarrollo SA, and The Provost Fellows and Scholars of the
College of the Holy and Undivided Trinity of Queen Elizabeth Near Dublin.

This work is licensed under a Creative Commons
Attribution 3.0 Unported License
http://creativecommons.org/licenses/by/3.0/

2 of 36

http://creativecommons.org/licenses/by/3.0/

Contributors
Name Partner Sections

Marc-Elian Bégin SixSq All

Eduardo Huedo UCM 3.1, 3.2, 3.3, 3.5.1 and 6

Rubén S. Montero UCM 3.1, 3.2, 3.3, 3.5.1 and 6

Document History

Version Date Comment

0.1 16 July 2010 Initial version for comment.

0.2 8 August 2010 Chapters 3 and 6.

3 of 36

Contents

List of Figures 6

List of Tables 7

1 Introduction 8

2 Requirements 10

2.1 Users. 10

2.2 User Stories . 10

2.3 Constraint Requirements 11

2.4 Performance Requirements 12

2.5 Security Requirements 12

3 Service Decomposition 14

3.1 Computing . 16

3.2 Networking . 18

3.2.1 Virtual Network . 20

3.2.2 IP Address Assignation 20

3.2.3 Firewall Configuration 20

3.3 Storage. 20

3.3.1 Persistent Storage 21

3.3.2 Caching . 22

3.4 Appliance Repository . 22

3.5 Service Image Creation Engine 22

3.5.1 Virtual Machine Contextualisation 23

3.5.2 Base Images . 24

4 of 36

3.5.3 Image Creation Service 25

3.6 User Management . 25

3.7 Accounting . 25

3.8 Extensibility . 25

4 Build, Packaging, Deployment, Installation, Configuration and
Testing Strategy 26

4.1 Reference Deployment Model 26

4.2 Installation . 27

4.3 Configuration . 27

4.4 Testing . 27

5 Grid Service Support 29

6 Cloud Interoperability 30

6.1 Cloud interfaces. 30

6.2 Image management . 31

6.3 Network management . 32

7 Summary 34

References 36

5 of 36

List of Figures

3.1 High-level architecture. 15

3.2 OpenNebula architecture. 16

3.3 VM state diagram. 18

3.4 Networking model.. 19

3.5 Image management.. 21

3.6 VM Contextualisation. 23

6.1 Hybrid cloud. 31

6.2 Cloud brokering.. 32

6.3 VPN-based network configuration for a multi-cloud infrastruc-
ture . 33

6 of 36

List of Tables

7 of 36

1 Introduction
This document presents the initial architecture of the StratusLab Distribution. This
architecture defines the foundation that forms the v1.0 of StratusLab, and the ver-
sion that will follow over the next few months. This document is a starting point
and is expected to evolve. It will be updated at XX with D4.X.

The project continuously follows and tracks trends in the domain of cloud com-
puting, grid computing and the communities that gravitate around these fields.
While we need a certain level of consistency in our development work, we also
need to remain flexible and agile in order to better leverage the latest relevant de-
velopment and better support our user communities.

The overall goal of the project is to identify existing technologies, standards
and implementations, as well as what is required in order to on the one hand deliver
to infrastructure system administrators an easy to deploy, install and configure local
cloud system, and on the other hand, provide end-users with the ability to leverage
the benefit of using cloud computing in a grid context.

This document reviews the requirements driving the StratusLab project, includ-
ing identification of potential user categories, user stories (as functional require-
ments), constraint requirements, performance requirements and security require-
ments. We then describe the anatomy of a cloud in the Service Decomposition
chapter. In that chapter we review the functionality already provided by identified
distributions, tools and implementations such as OpenNebula. We also discuss in
the Service Decomposition chapter missing elements that have to be provided, or
existing systems that have to be configured to implement a given missing func-
tion (e.g. using LDAP and Apache2 to provide the functionality of the Appliance
Repository in which to store virtual images, or Squid to provide caching of popular
virtual images).

The reader of this document also needs to understand the development process
used in StratusLab. Although unusual in the context of FP7 projects, agile develop-
ment processes are gaining in popularity in industry and government development.
Faced with a challenging and fast moving eco-system around web and distributed
technologies, we need to be able to quickly react to changes without loosing focus
nor impacting our performance with constant perturbation on our programme of
work. Most project members have also a long history of collaboration. We there-
fore have decided to apply an agile methodology (REF) called Scrum (REF) to
drive the development, integration and release efforts in the project. This allows

8 of 36

us to define small units of work, able to add value to our users, on a quick turn-
around time scale. Users can then provide valuable feedback which we can use
to improve the project. This process includes the entire chain from collecting user
requirements, architecture, design, implementation and testing, but also dissemina-
tion of our releases, and active pursuit of new user communities and management
of feedback.

In this context, the architecture document is there to provide a high-level overview
of the StratusLab, leaving the details of implementation, integration and testing to
the technical tasks and experts that perform the work. This iterative process causes
the architecture to evolve, change and improve, and is therefore not set in stone.
However, it is fundamental that the architecture of the system remains crystal clear
in all project members’ head, and that any changes to the architecture be discussed
and agreed by the Technical Board and disseminated to all project members.

The project wiki is also an important source of up-to-date technical, including
architectural, information. Each end of development cycle requires that the data
provided on the project wiki be updated, such that we can always refer to accurate
information.

9 of 36

2 Requirements
The development of the StratusLab distribution is driven by user requirements.
These requirements are or different natures - e.g. functional, constraints, perfor-
mance, security. Te following sections describe our methodology for defining and
handling these requirements.

2.1 Users
We have identified several categories of users (or actors) that will interact with
the system. While real users might fulfil several roles at once, it is important to
separate and identify the concerns that these different types of users will have in
the context of StratusLab.

• Scientists: End-users that take advantage of existing machine images to run
their scientific analyses.

• Software Scientists and Engineers: Scientists and engineers that write and
maintain core scientific community software and associated machine images.

• Community Service Administrators: Scientists and engineers that are re-
sponsible for running community-specific data management and analysis
services.

• System Administrators: Engineers or technicians that are responsible for
running grid and non-grid services in a particular resource center.

• Hardware Technicians: Technicians that are responsible for maintaining
the hardware and infrastructure at a resource centre.

Adding to this list of external users, we add the StratusLab team members,
since we are our first users. This allows us Further, since several project activities
consists of engineering tasks to better

2.2 User Stories
The functional requirements are expressed a user stories. User stories are a high-
level description of a need the different actors of the system have, and a description
of way the system fulfils this need. Most user stories are captured according to the

10 of 36

following template: ”As a ¡actor/user¿ i can ¡action¿ in order to ¡benefit¿. The
scope and complexity of each story is such that it can be implemented within a
single development iteration (or sprint in the Scrum agile methodology we are
using). This guarantees that entire stories can be implemented and delivered, such
it can be demonstrated and evaluated by project team members and/or target users.

We don’t list all user stories in this document since it would represent a sig-
nificant effort and would cause duplication. StratusLab uses a collaboration tool
called JIRA (from XX), augmented by the GreenHopper plugin which provides
JIRA with the added features for agile and Scrum support, including management
of user stories. The user stories are assigned to sprints by the technical board, at
the start of every sprint, which is every three weeks. At the end of every sprint,
completed and accepted user stories are declared ’Done’ and closed. Others are
either rejected as not complete and rescheduled if still relevant.

2.3 Constraint Requirements
This section describes the constraint requirements that have been identified on the
system which must be taken into consideration. The StratusLab initial system ad-
ministrators community will come from the grid world. This community largely
uses Scientific Linux (REF) as the base operating system. While this is likely to
remain the case initially, it is important that the StratusLab distribution be multi-
operating system. Therefore, right from the start, StratusLab shall support more
than one operating systems. The logical candidates are: CentOS (close cousin of
Scientific Linux and also Red-Hat based), Ubuntu (a Debian based operating sys-
tem), but also SUSE (an other RPM based operating system as CentOS).

Ease of installation and configuration is an important tenet of StratusLab. This
probably means that StratusLab will have to be opinionated, which means that
while customisation and extension shall be possible, assumptions will be made to
facilitate the installation and configuration of the system. An important trade-off
is required between flexibility and usability, where our user communities will be
instrumental in reaching. It therefore shall be possible to install and configure Stra-
tusLab using manual tools and automated fabric management tools (e.g. Quattor
(REF)).

It is important that StratusLab is viewed as a high quality distribution. Build-
ing credibility is an important driver for our dissemination activities. It is also
important to realise that StratusLab will largely be composed of existing tools, li-
braries and implementations, which have to be carefully selected. It is therefore
important that each constituent of the distribution be well supported and mature.
Ideally members of the StratusLab will be part of or in contact with the developers
communities behind these.

We have pledged that StratusLab would be an open source (REF) distribution.
While it should be possible to substitute open source compoenents with commer-
cial ones, it is critical that the entire feature set provided by StratusLab be available
under open source licenses. Whenever possible, every effort should be taken to se-

11 of 36

lect harmonious licenses. If components only available under commercial license
are required, then all project members should be given equal access to the license
to the duration of the project.

2.4 Performance Requirements
This section describes the performance requirements that have been identified on
the system which must be taken into consideration.

The survey conducted earlier and reported in D2.1 illustrate clearly that system
administrators are expecting to be able to handle in the order of tens of thousands
of virtual machines over thousands of physical hosts. These numbers are therefore
defining clearly what is the expectation in terms of expected performance of the
system.

Another important performance parameter is the need for the system on which
StratusLab is deployed to remain elastic, from a user perspective. While there are
physical limitations that limit the elasticity of any system, it is important that the
system behaves elastic, which means a reasonable response time to all requests,
without exposing to the user the semantic of queues.

Cloud computing is based on virtualization and virtualization means virtual
images, which can be large files. We are therefore, faced with manipulating larges
files, over potentially wide area networks. Since these images are largely ’write
once and read many’, a caching strategy is appropriate to avoid having to transfer
several times the same files over the network.

2.5 Security Requirements
While the grid doesn’t have as stringent security requirements as some commercial
and military applications, it is important that the system provide a reasonable level
of security.

It is important that the system administrators trust that running virtual ma-
chines on their infrastructure is not a threat to that same infrastructure. Similarly,
end-users deploying virtual machines on a remote infrastructure via the StratusLab
cloud API must also feel certain that the execution of their machine will not be
tempered with and that data used in that context can also remain secure.

Virtualisation technologies by there very nature already provide a powerful
level of separation between the physical hosts, under the control of the system
administrators, and the running virtual machine instances, manages by the end-
users. However, virtualisation technologies are complex, it is therefore important
that their installation and configuration is performed such that it doesn’t leave back
doors open to malicious exploitation.

An important aspect of security is establishing a trust relationship between the
system administrators and the end-users, such that a foreign virtual machine can be
deployed on a remote infrastructure. For the cloud model to work in supporting the
grid, it is fundamental that this trust relationship can be established and negotiated
without the constant required intervention of humans. It is therefore required that

12 of 36

virtual machines be signed in some way such that the pedigree of the machine, it’s
provenance and composition be tracked back to a trusted user.

Another important aspect to security that requires our attention is regarding
credential management. All the services integrated in StratusLab shall integrate
with a centralised and shared secure credential server, for example LDAP. This
means that the same credentials can be used to authenticate and authorise access to
the different StratusLab integrated services.

13 of 36

3 Service Decomposition
In general, a IaaS cloud consists of several main components, namely:

• virtualization layer: on top of the physical resources including network,
storage and compute

• virtual infrastructure manager (VIM) that control and monitor the VMs
over the distributed set of physical resources

• appliance repository as the source of VMs and container for newly created

• cloud interface that provides the users with a simple abstraction to manage
VMs.

• credentials manager that provide credentials authentication and authorisa-
tion services to the StratusLab integrated services.

In the last years, a constellation of technologies that provide one or more of
these components have emerged. So, a variety of hypervisors have been developed
and greatly improved, most notably KVM, Xen and VMWare. Also several VIM
technologies that cover the functionality outlined above have appeared, like Plat-
form VM Orchestrator, VMware DRS, or Ovirt. On the other hand, projects like
Globus Nimbus [9], Eucalyptus [8] or OpenNebula [6] (developed by UCM in the
context of the RESERVOIR project), or products like VMware vSphere, that can
be termed cloud toolkits, can be used to transform existing infrastructure into an
IaaS cloud with cloud-like interfaces.

While the virtualization eco-system is now rich and reasonably mature, a gap
still exists in order integrate a single IaaS cloud distribution, accessible from out-
side the infrastructure, over a clear service API. This is critical since, for example in
a grid context, user cannot be granted direct remote access to the machines running
the virtualisation management engine (OpenNebula in the case of StratusLab).

The contextualisation of virtual machines is also an important aspect in which
we need to fill a gap. This is important in order to be able to reuse virtual images
between sites running StratusLab. Contextualisation currently lacks standardisa-
tion. While this is an aspect where StratusLab will engage the standardization
organisations over the project lifetime, we currently need to define conventions

14 of 36

Figure 3.1: High-level architecture.

that will guarantee virtual machine interoperability between sites running the Stra-
tusLab distribution in the first place, and eventually develop solutions for letting
users and sites utilise other cloud services beyond the StratusLab frontier.

The following image shows a high-level view of the composition of the envis-
aged StratusLab cloud deployment.

The heavy-lifting in terms of virtual machine management is provided by Open-
Nebula. The Appliance Repository is based on a simple Apache Web Server (i.e.
HTTPD), but could also be implemented

Key differentiating factors of OpenNebula with other commercial virtual in-
frastructure managers are its open and flexible architecture and interfaces, which
enable its integration with any existing product and service in the Cloud and virtu-
alization ecosystem, and its support for building any type of Cloud deployment. On
the other hand, compared to other open-source alternatives, OpenNebula provides
superior functionality on a wider range of virtualization technologies for building
private and hybrid clouds.

Therefore, OpenNebula has been chosen as the VIM of the StratusLab cloud
toolkit. OpenNebula is an open-source toolkit to easily build any type of cloud: pri-
vate, public and hybrid. It has been designed to be integrated with any networking
and storage solution and so to fit into any existing data center.

OpenNebula manages VMs and performs life-cycle actions by orchestrating
three different management areas, namely: networking by dynamically creating

15 of 36

Figure 3.2: OpenNebula architecture.

local area networks (LAN) to interconnect the VMs and tracking the MAC ad-
dresses leased in each network; image management (storage) by transferring the
VM images from an image repository to the selected resource and by creating on-
the-fly temporary images; and virtualization by interfacing with physical resource
hypervisor, such as XEN or KVM, to control (e.g. boot, stop or shutdown) the
VMs. Moreover, it is able to contact cloud providers to combine local and remote
resources according to allocation policies. Figure 3.2 shows the architecture of
OpenNebula. Phase I of StratusLab focus on the virtualization of grid services,
phase II will focus on the use of novel resource provisioning methods using cloud
interfaces.

OpenNebula uses a set of managers to orchestrate the management of VMs. In
turn, these managers are helped by a set of pluggable modules that decouple the
managing process from the underlying technology, such as virtualization hypervi-
sors, operating systems, file transfer mechanisms or information services. These
modules are called drivers in the OpenNebula jargon, and they communicate with
the OpenNebula core using a simple ASCII protocol; this simplifies the develop-
ment of new drivers.

3.1 Computing
A VM within the OpenNebula system consists of:

16 of 36

• Capacity in terms memory and CPU.

• A set of NICs attached to one or more virtual networks (see Section 3.2).

• A set of disk images. In general, it could be necessary to transfer some of
these image files to/from the execution host (see Section 3.3).

• A state file (optional) or recovery file, that contains the memory image of a
running VM plus some hypervisor specific information.

The above items, plus some additional VM attributes like the OS kernel and
context information to be used inside the VM, are specified in a VM template file.
OpenNebula manages VMs by interfacing with the physical resource virtualization
technology (e.g. Xen or KVM).

The scheduler module is in charge of the assignment between pending VMs
and known hosts. The OpenNebula scheduling framework is designed in a generic
way, so it is highly modifiable and can be easily replaced by third-party develop-
ments. This way, it can be used to develop virtual resource placement heuristics to
optimize different infrastructure metrics (e.g. utilization or energy consumption)
and to fulfill grid service constraints (e.g. affinity of related virtual resources or
SLA).

Whenever the VM request enters OpenNebula, it is placed in PENDING state.
In this state, the VM is eligible for placement by the scheduler. At a user request,
the machine can be kept on hold, and won’t be deployed until released. The VM
enters then the HOLD state, going back to PENDING upon release. As soon as the
scheduler finds a suitable physical resource for the VM, OpenNebula invokes its
Virtual Machine Manager which, aided by a pluggable driver, writes the deploy-
ment descriptor suitable for the hypervisor running in the chosen physical resource.
Afterwards,the same manager, aided by the same driver, starts the VM invoking the
hypervisor with the deployment descriptor. At this point, the VM enters the AC-
TIVE state.

In order to comply with certain policies, the scheduler may decide to migrate
the VM to another physical host (this is done again by the Virtual Machine Manager
component). During this migration, the VM stays in the ACTIVE state.

The user or the scheduler might decide to stop the VM, putting it in the STOPPED
state. Upon restoring, the VM will fall back to the PENDING state. A similar
procedure is followed whenever a VM suspension is triggered, although the SUS-
PENDED state is different because it returns to the ACTIVE state whenever it is
decided to get restored. At the end of the life cycle, if all the process went fine, the
VM will end in the DONE state, after a shutdown or a cancellation. Otherwise, if
for whatever reason there is a failure in the process, the VM will be placed in the
FAILED state.

The whole state diagram is shown on Figure 3.3

17 of 36

Figure 3.3: VM state diagram.

3.2 Networking
VMs are the basic building blocks used to deliver IT services of any nature, from a
computing cluster to the classical three-tier business application. In general, these
services consists of several interrelated VMs, with a Virtual Application Network
(VAN) being the primary link between them. OpenNebula dynamically creates
these VANs and tracks the MAC addresses leased in the network to the service
VMs. Other TCP/IP services such as DNS, NIS or NFS, are the responsibility of
the service (i.e. the service VMs have to be configured to provide such services).

The physical hosts that will conform the fabric of the virtual infrastructures
will need to have some constraints in order to effectively deliver virtual networks
to the VMs. Therefore, from the point of view of networking, we can define our
physical cluster as a set of hosts with one or more network interfaces, each of them
connected to a different physical network.

Figure 3.4 shows two physical hosts with two network interfaces each, thus
there are two different physical networks. There is one physical network that con-
nects the two hosts using a switch, and another one that gives the hosts access to
the public internet. This is one possible configuration for the physical cluster, and
it is the recommended one since it can be used to make both private and public
VANs for the VMs. Moving up to the virtualization layer, we can distinguish three
different VANs. One is mapped on top of the public internet network, and a couple
of VMs take advantage of it. Therefore, these two VMs will have access to the
internet. The other two (red and blue) are mapped on top of the private physical

18 of 36

Figure 3.4: Networking model.

19 of 36

network. VMs connected to the same private VAN will be able to communicate
with each other, otherwise they will be isolated and won’t be able to communicate.

3.2.1 Virtual Network
OpenNebula allows for the creation of Virtual Networks by mapping them on top
of the physical ones. All Virtual Networks are going to share a default value for
the MAC prefix, set in the oned.conf file.

There are two types of Virtual Networks in OpenNebula:

• Fixed, which consists of a set of IP addresses and associated MACs, defined
in a text file.

• Ranged, which allows for a definition supported by a base network address
and a size, either as a number or as a network class (B or C).

Other approaches, like configuring a DHCP server for the datacenter, are also pos-
sible.

3.2.2 IP Address Assignation
When virtual...

3.2.3 Firewall Configuration
This section describes the performance requirements that have been identified on
the system which must be taken into consideration.

3.3 Storage
VMs are supported by a set of virtual disks or images, which contains the OS and
any other additional software needed by the service. There will be an image repos-
itory (see Section 3.4) that holds the base image of the VMs. Also, the images can
be shared through NFS between all the hosts, or transferred through SSH between
them.

OpenNebula uses the following concepts for its image management model:

• Image Repositories, refer to any storage medium, local or remote, that hold
the base images of the VMs. An image repository can be a dedicated file
server or a remote URL from an appliance provider, but they need to be
accessible from the OpenNebula front-end. See Section 3.4 for more details
about the image repository to be used in StratusLab.

• Virtual Machine Directory, is a directory on the cluster node where a VM
is running. This directory holds all deployment files for the hypervisor to
boot the machine, checkpoints, and images being used or saved?all of them
specific to that VM. This directory should be shared for most hypervisors to
be able to perform live migrations.

Any given VM image goes through the following steps along its life cycle:

20 of 36

Figure 3.5: Image management.

• Preparation implies all the necessary changes to be made to the machine’s
image so it is prepared to offer the service to which it is intended. OpenNeb-
ula assumes that the image(s) that conform to a particular VM are prepared
and placed in the accessible image repository.

• Cloning the image means taking the image from the repository and placing it
in the VM’s directory in the physical node where it is going to be run before
the VM is actually booted. If a VM image is to be cloned, the original image
is not going to be used, and thus a copy will be used. There is a qualifier
(clone) for the images that can mark them as targeting for cloning or not.

• Save or Remove. If the save qualifier is disabled, once the VM has been
shutdown the images and all the changes thereof are going to be disposed of.
However, if the save qualifier is activated, the image will be saved for later
use.

3.3.1 Persistent Storage
It is important to be able to persist data independently from running virtual images.
Amazon has a feature called Elastic Block Store, which allows a cloud user to de-
fine a persistent volume, attached to the running instance via a device and mounted
on the local file system. Even if the instance stops or crashes, the data behind this
volume is persisted and can be re-attached to a different running instance. This

21 of 36

feature also allow cloud users to be able to create complex data-sets and manage
them independently from the machine images. For example, a data-set might be
maintained for testing, which can be applied to different versions of a system and
composed at runtime, without being ’baked’ into each image needing this data-set.
This feature can be achieved in StratusLab using the current contextualisation fea-
ture of OpenNebula, where this disk image is saved and made available to the user
via the appliance repository. If true persistence is required (data surviving beyond
a physical node crash) the disk image could be associated with a distributed or
replicated file system. Performance and network consideration have to be take into
account for this feature. Further, other options also exists, which we will explored.

3.3.2 Caching
...

3.4 Appliance Repository
The StratusLab Applicance Repository is leveraging a simple web enabled file
system. The current version of the Appliance Repository is implemented using
Apache2 (httpd), configured to authenticate with the project LDAP server. Here’s
an example of the structure of the repository, following the Maven structure con-
vention: https://appliances.stratuslab.org/images/base/ubuntu-10.04-i686-base/1.0/.
In this directory, we find the manifest file (ubuntu-10.04-i686-base-1.0.img.manifest.xml)
and the image (ubuntu-10.04-i686-base-1.0.img.gz). The image file
should be compressed as a single file (i.e. not archived).

The currently proposed manifest format is an XML document. Here’s an ex-
ample of a manifest file:

<manifest>
<created>2010-08-18 20:34:28.334763</created>
<type>base</type>
<version>1.0</version>
<arch>i686</arch>
<user>A. Joseph</user>
<os>ubuntu</os>
<osversion>10.04</osversion>

<compression>gz</compression></manifest>

As we explore features like the Persistent Storage (3.3.1), we might then extend
the definition of ’Appliance’, which could mean to also add data images to the
appliance repository.

3.5 Service Image Creation Engine
Since in cloud the fundamental building block for users is the virtual machine, we
need to facilitate the creation of virtual machine images, which will work with our

22 of 36

Figure 3.6: VM Contextualisation.

contextualisation. This section describes several aspects of this creation and how
can StratusLab provide support to users for image creation.

3.5.1 Virtual Machine Contextualisation
In general, a VM consists of one or more disk images, which contain the operating
system and any additional software or data required. When a new node is needed,
the images are transferred (cloned) to a suitable physical resource and a new VM
is booted. During the boot process the VM is contextualized, i.e. the base image is
specialized to work in a given environment by, for example, setting up the network,
the machine hostname or registering a new worker node in a cluster service (e.g.
job queuing system). Different techniques are available to contextualize a VM,
for example, using an automatic installation system (like Quattor [1], or a context
server [4], or accessing a disk image with the context data for the VM (Open Virtual
Format, OVF [3], recommendation).

OpenNebula uses an ISO image (OVF recommendation) to give configuration
parameters to a newly started VM. This method is network agnostic so it can be
used also to configure network interfaces. In the VM description file, the user
can specify the contents of the ISO file (files and directories), tell the device the
ISO image will be accessible and specify the configuration parameters that will be
written to a file for later use inside the VM.

Figure 3.6 shows an example with a VM and two associated disks. The Disk
Image holds the filesystem where the Operating System will run from. The ISO
image has the contextualization for that VM, including the following files:

• context.sh: file that contains configuration variables, filled by Open-
Nebula with the parameters specified in the VM description file.

• init.sh: script called by VM at start that will configure specific services
for this VM instance.

23 of 36

• certificates: directory that contains certificates for some service.

• service.conf: service configuration.

This is just an example of what a contextualization image may look like. Only
context.sh is included by default. The user has to specify the values that will
be written inside context.sh and the files that will be included in the image.

In VM description file the user can tell OpenNebula to create a contextualiza-
tion image and to fill it with values using the CONTEXT parameter. For example:

CONTEXT = [
hostname = "$NAME",
ip_private = "$NIC[IP, NETWORK=\"Private LAN\"]",
ip_gen = "10.0.0.$VM_ID",
files = "/service/init.sh /service/certificates /service/service.conf",
target = "sdc"

]

Variables inside the CONTEXT section will be added to context.sh file
inside the contextualization image. The variables starting with $ are substituted
by the values that this specific VM instance has (you can check the values with
onevm show). In this case $NAME gets its value from the NAME specified in the
VM description file. $NIC[IP, NETWORK="Private LAN"] will get the IP
assigned to the interface that associated to Private LAN network. The file gen-
erated will be something like this:

Context variables generated by OpenNebula
hostname="somename"
ip_private="192.168.0.5"
ip_gen="10.0.0.85"
files="/service/init.sh /service/certificates /service/service.conf"
target="sdc"

Some of the variables have special meanings: the files attribute contains the
files and directories that will be included in the contextualization image, and the
target attribute contains the device where the contextualization image will be
available to the VM instance (note that the proper device mapping may depend on
the guest OS, e.g. ubuntu VMs should use hd* as the target device).

The VM should be prepared to use the contextualization image. First of all it
needs to mount the contextualization image somewhere at boot time. Also a script
that executes after boot will be useful to make use of the information provided.

The file context.sh is compatible with bash syntax, so users can easily
source it inside a shell script to get the variables that it contains.

3.5.2 Base Images
...

24 of 36

3.5.3 Image Creation Service
...

3.6 User Management
All services used by StratusLab must be integrated with a single identity system.
OpenNebula is already been extended to support LDAP. It is important to ensure
that all services use such strategy to limit the propagation of specific credential
mechanism across the distribution. Further, the grid uses a digital certificate mech-
anism to ensure proper integration of authentication and authorisation across its
services and sites. StratusLab will need to integrate this certificate-based mecha-
nism with its own mechanism.

3.7 Accounting
Both cloud and grid services require adequate tracking of resource usage, per user.
While OpenNebula maintains several key accounting metrics, they are not readily
available (see 3.8) to accounting services. In a grid context, it is important to be
able to extract these values and aggregate. It is therefore important to make the
raw accounting parameters available via a convenient API, such that they can be
securely queried and retrived.

3.8 Extensibility
As the StratusLab experience with OpenNebula grows, we are also gaining expe-
rience and confidence in its capability. Several members of the StratusLab project
are now contributors on the OpenNebula project. The latest development on the
Web Monitor, which add monitoring capability of an OpenNebula installation over
the web, showed the power of the XMLRPC API exposed by OpenNebula. Being
able to extend more easily the data available via that interface will improve the rate
at which we can extend and better integrate OpenNebula, StratusLab’s core virtu-
alization management engine, with existing and new services. Other extensibility
mechanisms are likely to be identified over the course of the project, which we
hope we will be able to exploit in collaboration with the main developers of these
systems.

25 of 36

4 Build, Packaging, Deployment, Installation,
Configuration and Testing Strategy
StratusLab is composed of several components, integrated into a coherent whole.
However, it is important for the success of the distribution, and hence the project,
that StratusLab be seen, from an deployment, installation, configuration and test-
ing point-of-view as a well integrated system. For this reason, we are releasing
StratusLab as a set of packages, including well identified dependencies, in the na-
tive format of the different operating system distribution that we support. It is also
important that StratusLab be well separated from the grid services and other appli-
cations that will be used on top of it in a grid site. Yet, we want to be sure that it is
easy to deploy the system such that it integrates well with these know grid services.
We therefore need to strike the right balance between a generic cloud setup and fa-
cilitating the life of grid site system administrator, such that the specific needs of
grid services are well catered for by the under-lying cloud layer.

4.1 Reference Deployment Model
The following logical components will be deployed as part of a standard site run-
ning StratusLab:

• Front-End: OpenNebula Virtual Machine Manager

• Nodes: on which VM are deployed by the VM Manager, including the nec-
essary virtualisation support software (e.g. kvm, xen, vmware)

• Monitoring: Web Application providing monitoring service

• Accounting: Accounting service available over a web application and/or
service.

• Caching: HTTP caching service providing cache of popular requests, espe-
cially interesting for large files such as VMs.

While part of the StratusLab distribution, other services in a grid context will
be treated as singleton (i.e. only one instance of the service will be deployed and
remotely accessed by all other sites). There services are:

26 of 36

• Appliance Repository: Store for trusted appliances (i.e. virtual machine
images)

• Credential Manager: Service providing credentials management

This setup will be expected when deploying a StratusLab installation. Open-
Nebula and virtualisation libraries and tools provide a very wide range and rich set
of parameter settings. In order to reduce the range of these parameters exposed to
the system administrator, we are proposing to expose only a subset of parameters,
taking into account reasonable assumptions on the setup.

4.2 Installation
The preferred installation strategy for StratusLab will be from packages. We will
support RPM and DEB packages, popular with Red-Hat, Debian and SUSE-like
operating system distribution.

All required dependencies for StratusLab will be expressed as dependencies
in the StratusLab packages. Further, all dependencies will be on packages, either
pointing to official and supported packages repository (preferred option), or in the
case were these dependencies are not available in package format, or if the wrong
versions are available, we will package and maintain these package ourselves. All
the StratusLab packages will be available in our dedicated package repository (i.e.
YUM and APT repositories).

The installation itself will be available via two mechanisms:

• Automated: Using the Quattor fabric management system, already the de-
fact standard for several grid sites

• Manual: Using dedicated stratus-* system administrator commands

The source of metadata for both systems will be shared and maintained together
with each release of StratusLab

4.3 Configuration
The configuration of the StratusLab system will be performed via a single config-
uration file, including parameters grouped in sections. No duplication will exist in
the configuration file, reducing the chances of conflicts, resulting in a faulty sys-
tem. Further, since the certain parameter, for example the choice of the hypervisor
or share strategy (e.g. NFS, SSH), could result in installing different packages,
some installation technique could decide to make those choices up-front, reducing
therefore flexibility for the system administrator but also reducing complexity in
installing the system.

4.4 Testing
Testing the StratusLab distribution is required to ensure that the advertised func-
tionality works, and as we release new features and fix bugs, that we do not intro-

27 of 36

duce regressions. The best way to ensure that each release of StratusLab is of the
expected quality and that no regression is introduced is to have a test-suite, built
over each sprint, which covers the main features. In order to execute this test-suite
often, such that mistake committed in our version control system, or released in
a new version of the dependencies we integrate in StratusLab, is to have the test-
suite execution automated. However, a challenge in testing distributed systems, and
worst a cloud system designed to deploy distributed systems, is the setup required
for the test-suite to perform on a meaningful deployment of the system.

StratusLab already has a series of tasks automated using a continuous inte-
gration server called Hudson (REF). This server fires build, deployment and test
tasks (called jobs in Hudson) soon after new or updated files are committed in our
version control system.

Further, once more complex deployment scenario are required, SlipStream will
be used to deploy complex multi-node systems automatically, without having to
write special code for this. The execution of the SlipStream deployment scenario
will also be integrated in Hudson jobs, which in turn will be triggered by commits
in our version control system.

28 of 36

5 Grid Service Support
This document is a simple example for producing StratusLab reports. It should be
used for formal deliverables and milestones that require a written report. It should
also be used for general reports intended for the wider scientific community or
general public.

29 of 36

6 Cloud Interoperability
StratusLab sites will expose elastic behaviour exploiting the underlying capabilities
of the StratusLab cloud in order to adapt to peak loads observed from various
grid applications. The infrastructure will also be able to utilize external resources
residing outside the borders of the participating institutes. Such resources will be
for instance large public cloud providers, like Amazon’s EC2 service, therefore
demonstrating that the EGI infrastructure can operate in a hybrid public–private
cloud platform, able to tap on external cloud resources when peak demand requires
it.

A hybrid cloud is an extension of a private cloud to combine local resources
with resources from remote cloud providers. The remote provider could be a com-
mercial cloud service, such as Amazon EC2 or ElasticHosts, or a partner infras-
tructure running the StratusLab cloud distribution. Such support for cloudbursting
enables highly scalable hosting environments.

An hybrid cloud deployment powered by OpenNebula is fully transparent to
infrastructure users. Users continue using the same private and public cloud in-
terfaces, so the federation is not performed at service or application level, but at
infrastructure level. It is the infrastructure administrator who takes decisions about
the scale out of the infrastructure according to infrastructure or business policies.

However, the simultaneous use of different providers to deploy a virtualized
service spanning different clouds involves several challenges, related to the lack
of a cloud interface standard; the distribution and management of the service mas-
ter images; and the inter-connection links between the service components. The
following sections briefly analyze these issues.

6.1 Cloud interfaces
Currently, there is no standard way to interface with a cloud, and each provider
exposes its own APIs. Moreover the semantics of these interfaces are adapted
to the particular services that each provider offers to its costumer (e.g. firewall
services, additional storage or specific binding to a custom IP).

A traditional technique to achieve interoperation in this scenario is the use of
adapters [5]. The pluggable and modular architecture exhibited by OpenNebula,
makes easy the integration with specialized adapters to interoperate with differ-
ent hypervisor technologies (Xen, KVM, etc.), or different cloud providers, like

30 of 36

Figure 6.1: Hybrid cloud.

Amazon EC2 and Elastic Hosts (EH) (see Figure 6.2).
Several standardization bodies, like the Open Grid Forum (OGF) or the Dis-

tributed Management Task Force (DMTF), include new working groups to produce
an standard cloud interface. For example, the Open Cloud Computing Interface
(OCCI) specification is being developed by the OCCI Working Group inside the
OGF community. The OCCI effort was initiated as the need for a global, open,
non-propietary standard to define the infrastructure management interfaces in the
context of cloud computing was made clear. OpenNebula supports this standard.

The OCCI specification defines a simple (about 15 commands) and extensible
RESTful API. It defines three types of resources: compute, storage and network.
Each resource is identified by a URI, has a set of attributes and is linked with other
resources. Resources can be represented in many formats such as OCCI descriptor
format, Open Virtualization Format (OVF) or Open Virtualisation Archive (OVA).
Create, Read, Update and Delete (CRUD) methods are available for each resource,
which are mapped to the typical REST methods over the HTTP protocol: POST,
GET, PUT and DELETE. Other HTTP methods are also included by OCCI, like
COPY, HEAD, MOVE and OPTIONS. Requests are used to trigger state changes
and other operations (create backup, reconfigure, etc). A request is sent by a POST
command to the resource URI, of which body contains the request and its parame-
ters.

6.2 Image management
In general, a virtualized service consists in one or more components each one sup-
ported by one or more VMs. Instances of the same component are usually obtained

31 of 36

Figure 6.2: Cloud brokering.

by cloning a master image for that component, that contains a basic OS installation
and the specific software required by the service.

Cloud providers use different formats and bundling methods to store and up-
load these master images. We could assume that suitable service component im-
ages has been previously packed and registered in each cloud provider storage
service. So when a VM is to be deployed in a given cloud the image adapters skip
any image transfer operation. This approach minimizes the service deployment
time as no additional transfers are needed to instantiate a new service component.
However, there are some drawbacks associated to the storage of one master image
in each cloud provider: higher service development cycles as images have to be
prepared and debug for each cloud; higher costs as clouds usually charge for the
storage used; and higher maintenance costs as new images have to be distributed
to each cloud.

Therefore, the project will investigate the feasibility of offering a repository
of reference images for cloud users, with demonstrated interoperability among the
supported public cloud infrastructures, and following the existing standards in the
areas of VM images and virtual appliances.

TODO... StratusLab contextualisation strategy

6.3 Network management
Resources running on different cloud providers are located in different networks,
and may use different addressing schemes (public addresses, private addresses with
NAT, etc.). However, some kind of services require all their components to follow
a uniform IP address scheme (for example, to be located on the same local net-

32 of 36

Figure 6.3: VPN-based network configuration for a multi-cloud infrastruc-
ture

work), so it could be necessary to build some kind of overlay network on top of the
physical network to communicate the different service components. In this con-
text, there are some interesting research proposals like ViNe [11], CLON [7], etc.,
or some commercial tools, like VPN-Cubed [2], which provide different overlay
network solutions for grid and cloud computing environments.

Virtual Private Network (VPN) technology could interconnect the different
cloud resources with the in-house data center infrastructure in a secure way. In
particular, OpenVPN [10] software allows implementing Ethernet tunnels between
each individual cloud resource and the data center LAN, as shown in Figure 6.3.
In this setup, which follows a client-server approach, the remote cloud resources,
configured as VPN clients, establish an encrypted VPN tunnel with in-house VPN
server, so that each client enables a new network interface which is directly con-
nected to the data center LAN. In this way, resources located at different clouds
can communicate among them, and with local resources, as they were located in
the same logical network, and they can access to common LAN services (NFS,
NIS, etc.) in a transparent way, as local resources do.

33 of 36

7 Summary
This document serves as both a template for StratusLab official documents and as
a guide on using that template. Feedback on this document should be sent to the
author as well as the TSCG.

34 of 36

Glossary

Virtual Machine / VM Running and virtualized operating system
Instance see Virtual Machine / VM
Machine Image Virtual machine file and metadata providing the source for Virtual

Images or Instances
Appliance Virtual machine containing preconfigured software or services
Appliance Repository Repository of existing appliances
Regression Features previously working which breaks in a new release of the

software containing this feature
Front-End OpenNebula server machine, which hosts the VM manager
Node Physical host on which VMs are instantiated
Web Monitor Web application providing basic monitoring of a single

StratusLab installation
DCI Distributed Computing Infrastructure
EGEE Enabling Grids for E-sciencE
EGI European Grid Infrastructure
EGI-TF EGI Technical Forum
GPFS General Parallel File System by IBM
Hybrid Cloud Cloud infrastructure that federates resources between

organizations
iSGTW International Science Grid This Week
NFS Network File System
NGI National Grid Initiative
Public Cloud Cloud infrastructure accessible to people outside of the provider’s

organization
Private Cloud Cloud infrastructure accessible only to the provider’s users
VM Virtual Machine
VO Virtual Organization
VOBOX Grid element that permits VO-specific service to run at a resource

center
Worker Node Grid node on which jobs are executed

35 of 36

References
[1] CERN. Quattor. Online resource., 2010. http://www.quattor.org.

[2] cohesiveFT. VPN-Cubed. Online resource. http://www.cohesiveft.com/
vpncubed.

[3] DMTF. Virtualization Management Initiative (VMAN). Online resource.
http://www.dmtf.org/initiatives/vman initiative.

[4] T. Freeman and K. Keahey. Contextualization: Providing One-Click Virtual
Clusters. In Proceedings of the eScience08 Conference, December 2008.

[5] E. Huedo, R. Montero, and I. Llorente. A modular meta-scheduling architec-
ture for interfacing with pre-WS and WS Grid resource management services.
Future Generation Computer Systems, 23(2):252–261, 2007.

[6] I. Llorente, R. Moreno-Vozmediano, and R. Montero. Cloud Computing for
on-Demand Grid Resource Provisioning. Advances in Parallel Computing,
IOS Press, 2009.

[7] M. Matos, A. Sousa, J. Pereira, and R. Oliveira. Clon: overlay network for
clouds. In WDDM ’09: Proceedings of the Third Workshop on Dependable
Distributed Data Management, pages 14–17, New York, NY, USA, 2009.
ACM.

[8] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L. Youseff,
and D. Zagorodnov. The Eucalyptus Open-source Cloud-computing System.
In Cloud Computing and Its Applications, October 2008.

[9] U. of Chicago. Globus Nimbus. Online resource. http://workspace.globus.
org.

[10] OpenVPN. Online resource. http://openvpn.net.

[11] M. Tsugawa and J. Fortes. A virtual network (ViNe) architecture for grid
computing. In Parallel and Distributed Processing Symposium, 2006. IPDPS
2006. 20th International, page 10 pp., 25-29 2006.

36 of 36

http://www.quattor.org
http://www.cohesiveft.com/vpncubed
http://www.cohesiveft.com/vpncubed
http://www.dmtf.org/initiatives/vman_initiative
http://workspace.globus.org
http://workspace.globus.org
http://openvpn.net

	List of Figures
	List of Tables
	Introduction
	Requirements
	Users
	User Stories
	Constraint Requirements
	Performance Requirements
	Security Requirements

	Service Decomposition
	Computing
	Networking
	Virtual Network
	IP Address Assignation
	Firewall Configuration

	Storage
	Persistent Storage
	Caching

	Appliance Repository
	Service Image Creation Engine
	Virtual Machine Contextualisation
	Base Images
	Image Creation Service

	User Management
	Accounting
	Extensibility

	Build, Packaging, Deployment, Installation, Configuration and Testing Strategy
	Reference Deployment Model
	Installation
	Configuration
	Testing

	Grid Service Support
	Cloud Interoperability
	Cloud interfaces
	Image management
	Network management

	Summary
	References

