

Corrélations à longue portée en collisions proton-proton à 7 TeV vues par l'expérience CMS

Raphaël Granier de Cassagnac Laboratoire Leprince-Ringuet

21 octobre 2010 Séminaire au LAL, Orsay

Avertissement

- Tout tourne autour de ce papier :
 - J. High Energy Phys. 09 (2010) 091
 - http://arxiv.org/abs/1009.4122
 - Communiqué de presse
 - http://cms.web.cern.ch/cms/News/2010/QCD-10-002/index.html
 - La première d'une longue série de surprises...
- Nombreuses diapos empruntées à Gunther Roland, présentation au CERN et séminaire au LLR...

Sommaire

- Définitions
- Minimum bias
 - 3,3 / 0,2 / 3,0 μb^{-1} $\,$ @ 0,9 / 2,36 / 7 TeV
- Haute multiplicité

– eq. 980 nb⁻¹ @ 7 TeV

- Interprétations possibles
- Quelques vérifications

Que présentons-nous exactement ?

Compact Muon Solenoid

Détection des particules ($|\eta| < 2,4$) 3m 4m 0m 1m 5m 6m 7m 2m Key: Muon Electron Charged Hadron (e.g. Pion) Neutral Hadron (e.g. Neutron) Photon ⊕ 4⊺ **HEALERANNESS** Ο Silicon Tracker Electromagnetic Calorimeter Hadron Superconducting Calorimeter Solenoid Iron return yoke interspersed **EMCal:** cristals Transverse slice with Muon chambers through CMS PbWO₄ |η|<3 Muon: drift tubes + RPC $|\eta|$ < 2.4 Silicium: pixels (3) HCal: Scintillation and strips (10) $|\eta| < 2.4$ |η|<5 + Higher rapidity extension

Quelques caractéristiques utiles

- 2. Fort champ magnétique
 - 3,8 Teslas
- 3. Large bande passante
 - Niveau 1 = Tout Pb-Pb collisions (≈5 kHz)
 - − Trigger de haut niveau (HLT) → 10 à 100 Hz

1. Grande couverture angulaire

\rightarrow Grande acceptance, en particulier à grand p_T

Le signal

- Idée : regarder la corrélation des particules dans tout l'espace des phases
 - $-\Delta\eta = \eta_1 \eta_2$
 - $\Delta \varphi = \varphi_1 \varphi_2$
- Dans chaque événement de multiplicité N
 - Toute paire de particules
 - Normalisé au nombre de paires

 $S_N(\Delta\eta,\Delta\phi) = rac{1}{N(N-1)} rac{d^2 N^{
m signal}}{d\Delta\eta d\Delta\phi}$

Le fond combinatoire

- Événements différents de même multiplicité N
 - Reflet de l'acceptance

 $B_N(\Delta\eta,\Delta\phi) = \frac{1}{N^2} \frac{d^2 N^{\text{mixed}}}{d\Delta\eta d\Delta\phi}$

La fonction de corrélation R

- Signal / Bruit 1
 - Resommer et pondérer par la multiplicité
- « Cartographie » des collisions
 - Longue portée = temps courts

Jusqu'ici tout va bien...

COLLISIONS DE BIAIS MINIMUM

Corrélations angulaires (4/4)

Corrélations versus Vs

CMS, données de biais minimum

-4 -2 M

Corrélations CMS - LAL - raphael@in2p3.fr

-4 -2 M

-2 bn

4

Projection sur l'axe $\Delta \eta$

- _(a) 3.0 2.5 کے 10° کھ 1.5 (b) 0.8 0.6 S^{m|3} CMS, extrapolated PHOBOS ISR SPS-UA5 (p+p) 0.4 **PYTHIA**, default PYTHIA, D6T 10² 10⁴ 10^{3} √s (GeV)
- Ajuste une hauteur (K_{eff} force ou taille du cluster) et une largeur δ
 - K_{eff} augmente avec \sqrt{s}
 - Sous-estimée par Pythia (D6T)
 - $-\delta$ constante
- Ici extrapolé à p_T = 0 et |η|<3 pour comparaison →

18

19

GRANDE MULTIPLICITÉ

C'est ici que ça se passe...

Déclenchement dédié

21 octobre 2010

Déclenchement dédié

Résultats pour tout p_T

Davantage de jets à haute multiplicité ($\Delta \phi \approx 0$)

Résultats pour tout p_T

Biais minimum

Haute multiplicité (N>110)

Davantage de jets à haute multiplicité ($\Delta \phi \approx \pi$)

Résultats pour $p_T = 1-3 \text{ GeV/c}$

Haute multiplicité (N>110)

Que dit PYTHIA* ?

- Qualitativement, tout y est, sauf le « ridge »
- Idem avec d'autres générateurs
 - Herwig++,
 madgraph,
 Pythia6...

* Pythia 8, qui traite mieux la multiplicité

Corrélations CMS - LAL - raphael@in2p3.fr

26

Projection sur $\Delta \phi$ ($|\Delta \eta| > 2$)

Quantification

- Trouver le minimum de R
- Intégrer l'excès à gauche
- Grandit avec multiplicité

21 octobre 2010

Honnêtement, c'est encore très flou...

POSSIBLES INTERPRÉTATIONS

Déjà vu quelque part !

- Dans des collisions d'ions lourds à RHIC
 - $\sqrt{s_{NN}} = 200 \text{ GeV}$
 - Par plusieurs expériences

Vu où exactement ?

• Vu dans

- Collisions p+p @ 7 TeV, de haute multiplicité
- Collisions Au+Au et
 Cu+Cu @200 GeV
- Absent dans
 - Collisions p+p @ 7 TeV de basse multiplicité
 - Collisions p+p et d+Au @
 200 GeV

d+Au: STAR, PRC80 (2009) 064912 个 Cu+Cu: PHOBOS, PRC81 (2010) 024904

Un peu de logique

- http://cms.web.cern.ch/cms/News/2010/QCD-10-002/index.html
- « Bien qu'il n'y ait pas d'explication définitive à la cause de cet effet, la <u>structure nouvelle</u> observée n'est pas sans rappeler des <u>caractéristiques similaires</u> vues dans des expériences au RHIC [...] qui furent interprétées comme dues à la présence de <u>matière</u> <u>dense et chaude</u> formée dans les collisions d'ions lourds relativistes. »
- Tout est vrai, mais attention :
 - Pas forcément la seule interprétation
 - Pas la seule mesure qui permit de conclure à la présence d'une matière chaude et dense

À titre d'exemple...

Extrait d'une revue sur la matière produite à RHIC, donnée en 2009 (par un orateur sans doute biaisé...) Le « ridge » y occupe 1/4 de diapo sur 36 !

En revanche...

What's the matter at RHIC? - raphael@in2p3.fr 23/04/2009

4. IDEAL HYDRODYNAMICS

- - + QGP equation of state,
 - + Early thermalization \times (0.6 fm/c)
 - + High density \times (\approx 30 GeV/fm³)
- Little need for viscosity!
 - + First estimations are
 - approaching the quantum limit $\eta/s = \hbar/4\pi$
 - lower than Helium at T

- Ideal hydrodynamics... ... reproduces fairly well
 - 1. Single hadron p_T spectra
 - × (mass dependence) $\times <\beta_T > \approx 0.6$
 - 2. Elliptic flow
 - × Not the foreseen ideal partonic gas!
 - \rightarrow "sQGP" (s stands for strong, not super (3)
 - → "Perfect fluid"
 - → The matter is strongly interacting and liquid like @ LHC, could it approach a quark gluon gas?

26

Par exemple : le flot elliptique

- + gradient de pression
- = Asymétrie finale en ϕ
- Mesure de $v_2 = \langle \cos 2\phi \rangle$
 - $-\phi = \phi_{\text{part}} \phi_{\text{réaction}}$

PHENIX, PRL98 (2007) 162301

(atomes ultrafroids après ouverture du piège)

1. Un « ridge » dû au flot ?

- Idée : l'explosion

 pousse » des clusters
 dans une direction
 azimutale donnée
- Effets de flot maximum à la bonne échelle :
 - $1 < p_T < 3 \text{ GeV}/c$
- Ok pour A+A, hydro atteinte pour p+p ?

Shuryak, arXiv:1009.4635

 Un <u>exemple</u> : flux triangulaire dû aux fluctuations géométriques peut contribuer

Alver & Roland, arXiv:1003.0194 To appear in Phys. ReV. C

2. au « Glasma » ?

- À haute énergie, saturation de gluon
- « Colour Glass
 Condensate » comme état initiale des collisions
- Flux de couleur
- Expliqueraient le ridge en A+A et p+p ?

Dumitru et al, arXiv:1009.5295

3. aux jets ?

- 5-6 (mini)jets dans les événements p+p de haute multiplicité, c'est nouveau !
- Partons initiaux colorés
- Connectés par des flux de couleur qui produiraient des particules dans leur plan ?
- Événements à trois jets ?
- À suivre...

4. À quoi d'autre ?

• « We briefly comment on the ridge-like structure origin in the nuclear and hadronic reactions emphacizing that this structure [...] can result from the rotation of the transient state of matter »

Troshin and Turyin, arXiv:1009.5229

Interprétations du ridge

- Au moins trois effets concurrentiels:
 - 1. Hydrodynamique, collectivité → Plasma
 - 2. État initial, saturation \rightarrow Colour Glass
 - 3. Jets \rightarrow Physique p+p standard
- Possible superposition des trois...
 - Beaucoup d'arguments jet+milieu pour RHIC
 - Le flot radial focalise les particules
- Autres observables pour discriminer

L'a-t-on bien vu ?

QUELQUES VÉRIFICATIONS

21 octobre 2010

Signes identiques et opposés

• Pas de différence notable

Déclenchements

Empilement

Differentes zones de vertex (Empilement ~ $dN/dvtx_{z}$)

Test ultime : mesure calorimétrique

- Le ridge apparaît aussi avec des « photons » !
 - Cluster Ecal, majoritairement des π^0
 - Préliminaire (pflow, pas d'efficacité, de correction...)

Nombreuses autres vérifications

- Cf. présentation du CERN pour détails
- (diapositives de secours)

Sources	Syst. on ridge yield	
Pileup	15%	
HLT efficiency	4-5%	
Tracking	1-2%	
ZYAM	0.0025	

RÉSUMÉ

21 octobre 2010

Corrélations CMS - LAL - raphael@in2p3.fr

47

Résumé

- Phénomène nouveau en collisions p+p @ 7 TeV
- Similaire à celui observé en A+A @ 200 GeV
- L'idée qu'un « plasma » pourrait être créé dans les collisions p+p au LHC est à la mode...
 - Effets collectifs observés à RHIC à des multiplicités équivalentes (Cu+Cu, N ≈ 100)
- Vérifions le !
 - Mesures d'autres observables collectives : flots radial et elliptique, composition (du ridge, baryon/méson, étrangeté...), etc.
 - Études des jets vs multiplicité, etc.

Plasma testable en p+p

Eccentricity fluctuations make flow measurable in high multiplicity p-p collisions

Jorge Casalderrey-Solana¹ and Urs Achim Wiedemann¹

¹ Physics Department, Theory Unit, CERN, CH-1211 Genève 23, Switzerland

Elliptic flow is a hallmark of collectivity in hadronic collisions. Its measurement relies on analysis techniques which require high event multiplicity and could be applied so far to heavy ion collisions only. Here, we delineate the conditions under which elliptic flow becomes measurable in the samples of high-multiplicity $(dN_{\rm ch}/dy \ge 50)$ p-p collisions, which will soon be collected at the LHC. We observe that fluctuations in the p-p interaction region can result in a sizable spatial eccentricity even for the most central p-p collisions. Under relatively mild assumptions on the nature of such fluctuations and on the eccentricity scaling of elliptic flow, we find that the resulting elliptic flow signal in high-multiplicity p-p collisions at the LHC becomes measurable with standard techniques.

Wiedemann and Casalderrey-Solana PRL104 (2010) 102301

DIAPOSITIVES DE SECOURS...

21 octobre 2010

$$\exp\left[-(\Delta \eta)^{2}/(4\delta^{2})\right]$$

$$\bigwedge^{R}(\Delta \eta) = \alpha \left[\frac{\Gamma(\Delta \eta)}{B(\Delta \eta)} - 1\right]$$

$$\bigvee^{K_{eff}} = \alpha + 1:$$

Corrélations CMS - LAL - raphael@in2p3.fr

51

Autres générateurs

No ridge effect in these models (with the tunes used)

21 octobre 2010

Indices du QGP

What's the matter at RHIC? - raphael@in2p3.fr 23/04/2009

WHICH SIGNATURES?

- 1. Total multiplicity
- 2. High p_T suppression
- 3. Back to back jets
- 4. Elliptic flow
- 5. Baryon/meson
- 6. Heavy flavour

- ≈ "Color Glass Condensate"
- ≈ "Jet quenching"
- ≈ "Perfect fluid"
- 7. J/ψ suppression
- 8. Thermal radiation

But they are not the only ones! "There was a general feeling that if the quark-gluon plasma was indeed produced, it would manifest itself in a variety of

- unknown but dramatic ways, including...
- H. Satz @ Lattice 2000 hep-ph/0009099

7

Event Backgrounds

Correlate tracks from high multiplicity vertex with tracks from different collision (vertex) in same bunch crossing

BSC High Multiplicity Trigger

Preliminary results from BSC high multiplicity trigger

Agreement with standard results within statistical uncertainty

ϕ Symmetry

No indication of "hot spots" in event-by-event ϕ distribution

Preliminary 900 GeV Analysis

Efficiency Correction

Tracking efficiency correction has small effect on correlation function

Signal and Background

Signal is visible in raw data before dividing by (flat) background

Removing events with "suspicious" vertex distributions does not change result

20 octobre 2010

Corrélations CMS - LAL - raphael@in2p3.fr

cm

Select Beamspot "Core"

No dependence on radial distance from center of beam

@1 octobre 2010

Reconstruction Code (d) N>110, 1.0GeV/c<p_<3.0GeV/c N>110 $1 < p_T < 3GeV/c$ **R**(Δη,Δφ) $\mathbf{R}(\Delta\eta,\Delta\phi)$ Ŋη. -2 *Dn* -2

Pixel-only tracks 3 hits in pixel detector

"HighPurity" tracks Pixel + Silicon Strip tracker

(Largely) independent code Independent detectors Also: Variation of tracking +vertexing parameters 64 octobre 2010 Corrélations CMS - LAL - raphael@in2p3.fr

Event Backgrounds

@5 octobre 2010

Ridge region shows no structure in η_1 vs η_2

Trace + Photon

- Le ridge apparaît en corrélant avec un photon
 - Préliminaire (pflow, pas d'efficacité, de correction...)

Luminosity and energy

Key Parameters of "Early" Pb Ion Beam (from LHC Design Report)

Parameter	Units	Early Beam	Nominal
Energy per nucleon	TeV	2.76	2.76
Initial ion-ion Luminosity L_0	cm-2 s-1	~ 5 ×10 ²⁵	1 ×10 ²⁷
No. bunches, k _p		62	592
Minimum bunch spacing	ns	1350	99.8
β*	m	1.0	0.5 /0.55
Number of Pb ions/bunch		7 ×107	7 ×107
Transv. norm. RMS emittance	μm	1.5	1.5
Longitudinal emittance	eV s/charge	2.5	2.5
Luminosity half-life (1,2,3 expts.)	h	14, 7.5, 5.5	8, 4.5, 3
At full energy, luminosity lifetime is determined mainly by collisions		Only possibility for 2009 or early 2010	Goal for 2-3 years (?) beyond

Vs_{NN} ≈ 0.4 x Vs_{pp} 5.5 TeV nominal 2.76 TeV for run 1

At full energy, luminosity lifetime is determined mainly by collisions ("burn-off" from ultraperipheral electromagnetic interactions) $\sigma \approx 3$

electromagnetic interactions) $\sigma \approx 520$ J.M. Jowett, Chamonix, 2009

Pb+Pb	√s _{NN}	Max.	Av.
1st year	2.8 TeV	≈ 150 Hz	≈ 100 Hz
Nominal	5.5 TeV	≈ 8 kHz	≈ 3 kHz

→ 1^{st} year 5 to 30 µb⁻¹ > 40 Mevts

Elliptic flow v₂

- v₂ = <cos 2φ> reflecting pressure gradients in the overlap area
- @ RHIC, close to the hydro limit
 - Scaling with constituents x excentricity x transverse kinetic energy
- → « strongly interacting, perfect liquid » sQGP @ RHIC
- \rightarrow wQGP, gaz @ LHC ?
- @ CMS, reaction plane can be measure in ECAL
 - $\sigma = 20^{\circ} @ b = 9 fm$
 - $(dN_{ch}/d\eta = 3000)$
- But also in tracker, or forward detectors...

21 octobre 2010

Two hadrons correlations

near side**≪**

trigger◄

away

side

- Another look at jet quenching :
 - Back to back suppression ($\Delta \phi = \pi$)
 - (after v₂ subtraction)
- A large zoology à RHIC: *near side, away side, ridge, mach cones,* etc.
- In CMS, first run: at least up to p_T = 20 GeV/c for the reference particle (*trigger*)

