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l) Introduction: what is
graphene?






Carbone seul

© profons 6 électrons dont:
2 électrons de coeur

(en oOrbite autour du noyau)

= 4 électrons de valence
© eclegire (périphériques)

,, =+ proton

2 O neutron

Carbon atom
Carbone dans une molécule ou un cristal .%
par exemple carbone sp2:
parmi les 4 electrons de valence

r

- 3 sont dans des liaisons chimiques avec les plusy, i
proches atomes voisins: structure en hexagones / e
- 1 est libre de se promener dans tout le cristal: - {

électron de conduction

#

6 el. = 2 coeur(1)+3 liaisons(2)+1 conduction(tous)
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II) Short history of
hexagonal carbon



Experiments ||g Pre-history
Graphite: marking of sheeps by shepherds
(Borrowdale, England, 1565), light bulbs,
nuclear moderator,..

o—"— e .
P / / Vs
— /D\‘ /0\‘ e

1962 HOPG (graphite monocrystal) [Ubbelohde] =

1960-1980 Graphite intercalation compounds
1985 Fullerenes [Kroto, Curl, Smalley]

1991-1993 Carbon nanotubes [lijima] [zl

1992-1993 Graphene (uncontacted) on metal substrate
[Land et al.]



Graphene Milestones

Discovery of graphene
Crystal structure
Graphite band structure calculation

Isolation and observation of freestanding graphene
Official naming of graphene

Debye P, Scherrer P (1916).

Wallace (1947) (includes “Dirac” cone)
Boehm et al (1962)

Boehm et al (1987)

Graphene on transition metals, carbides

SiC  Van Bommel, Surf. Sci. (1975)
LaB& Oshima Appl Phys (1977)
Pt Zi-Du Surface Science (1987)._..

Identification of: Ni Rosei PRB{1983)
“monolayer of graphite” Ir Kholin Surf Sci (1984)
"EiHEIE_E rﬁrgtal plﬂ"EH Re Gall Sov Phys Sol State (1985)
s“rwvo-dimensional graphitE" TaC Aizawa PRL 1990

TiC  MNagashima, Surf 5ci (1993)
Ru Marchini (2007)

WC TaC, HfC, .

SiC  Forbeaux (1998)

Graphene-based electronics conceived Georgia Tech (2001}
510, Novoselov Nature (2004)
ransport on transferred exfoliated few
Gateable ErﬂphE"ES ayer F&Dmp?lite observation
E|npha_5i_5 on trangpﬂrt nghEﬁE {GDﬂD FOR 2D PH"I"S|C5}

SiC  Berger ). Chem Phys (2004)

Transport an hene and few la
F £

r
Epitaxial  graphi 00D FOR ELECTRONICS)

Slide borrowed from Walt de Heer's talk delivered at Cargése october 2010



| II) Modern history
Experiments

2004 Contacted (and gated) graphene
on amorphous SiO, substrate

[Novoselov, Geim]
2004 Epitaxial “graphene” on SiC [Berger, de Heer]
2005 Graphene quantum Hall effect [N.,G., Zhang,Kim]

HARARRIER

2006 Graphene bllayer QHE [N.,G.,McCann, Falko]
2009: Macroscopic graphene flake (76 cm) via CVD
2010: Nobel prize in physics for Novoselov and Geim
01/2011: over 2300 papers on the arXiv after the QHE




The Mobel Prize in Fhysics 2010
Andre Geim, Konstantin MNovoseloy

¢ The Hobel Prize in Physics 2010

Andre Geim

Fonstantin Movoselow

Photo: Sergeom, Wikimedia Commeons  Photo: Universiy of hBnchester, UK

Andre Geim b.onstantin Movoseloy

The Mobel Prize in Physics 2010 was awarded jointhy to Andre Geim and

konstantin Novoseloy “for groundbreaking experiments regarding the
two-dimensionz! material graphenea”



Il) History: theories
1947 Graphene band structure [Wallace]

1956 Graphene Landau levels [McClure]

1985 Hofstadter butterfly [Rammal] € prm \

e dxﬂilmg,ﬁ_t?,.hh_ ¢ wr

1984-1988 Connection to 2+1 field theory _

[Semenoff, DiVicenzo & Mele, Fradkin, Haldane, etc.]

~90’s Theory of carbon nanotubes
[Dresselhauss?, Saito, Ando, etc.]

(D/(Do

2005 Z, (or QSH) topological insulator: graphene with

a (too) strong spin-orbit [Kane and Mele]



[1l) Experimental
techniques



Ill) Experimental techniques

Three main techniques:

a) Mechanically exfoliated graphene
Recipe: Take a monocrystal of graphite pencil and cleave it several
times using scotch tape. Rub the tape on a silicon substrate to
deposit graphite flakes. A small fraction are monolayers. Detect
them with an optical microscope (300nm SiO, thickness): that's

tough. Contact the monolayer with metallic leads (gold e.g.). Apply
an electric tension to the heavily n-doped Si backgate.

Gy contacts (Au) graphene (~1 to 100 pm?)

A Novoselov et al., Science 2004 and PNAS 2005

300nm of SiO,




Ill) Experimental techniques

Electric field effect (backgating of graphene): a gate tension V_

allows to control the filling on electrons in the graphene
sheet ("doping" of graphene). A capacitor =
plate(graphene)/dielectric(SiO,)/plate(n-doped Si)
Novoselov et al., Science 2004 and PNAS 2005

vV ! ' ' - 80

-40

typical mobility y ~ 1 m?/V.s

-0

(z-wo,,01) u

o typical density n ~ 107 m-2

-—80

80 -4 0 40 80
v, V)
Zhang et al., Nature 2005

Tunable and ambipolar (el- or h+) unusual 2D electron gas (2DEG)



Ill) Experimental techniques
b) Epitaxial graphene on SiC

ey,

Berger et al., J. Phys. Chem. 2004 [de Heer’s group]



lIl) Experimental techniques
b) Epitaxial graphene on SiC

Thermal decomposition of hexagonal silicon carbide (SiC) at
>1000°C in vacuum leads to surface graphitization.

Two kinds of SiC to start with:

1) Si-terminated: slow growth, monolayer (“low” mobility ~1000
cm?/V.s), multilayers are Bernal stacked (graphite like) and
called Few Layer Graphene (FLG).

2) C-terminated: fast growth, multilayers (high mobility ~10 000
cm?/V.s) but decoupled because of rotational stacking
disorder (not graphite like) and are called Multilayer Epitaxial
Graphene (MEG). Now also possible to have high mobility
monolayer (quantum Hall effect finally observed in 2009).

Berger et al., J. Phys. Chem. B 2004 [de Heer’s group]



Ill) Experimental techniques

c) Chemical vapour deposition (CVD) graphene

- Chemical vapour decomposition of hydrocarbons (CH, e.g.) on

metallic surface (such as reactive nickel or copper) allows
one to produce macroscopic graphene flakes (cm or almost
m).

- Efficient transfer technique to other substrates (such as roll to
roll technique)

- Typical mobility of 4000 cm?/V.s
QHE was observed

K.S. Kim et al., Nature 2009 [B.H. Hong's group]



IIl) Experimental techniques

c) Chemical vapor deposition (CVD): macroscopic
graphene flake (76cm) and application as
touchscreen

J.-H. Ahn et al, Nature Nanotechnology, 2010 [B.H. Hong's group]



IV) Atomic structure



IV) Atomic structure
Graphene = 2D honeycomb crystal of carbon/
\
/

Carbon atom: 6 electrons 1s*(core) 2s 2p? v}ﬁﬂeéce
hybridization: 1 x 2s orbital and 2 x 2p orbitals

— 3 X sp?orbitals
1 x 2p, orbital left

- 3 coplanar o bonds, with 120° angle: honeycomb
structure
- 1 conduction electron per C atom, 2p, orbital,

perpendicular to the plane, giving T bands: electronic
properties




IV) Atomic structure

Honeycomb crystal = triangular (2D) Bravais lattice +
2 atoms basis (important for Bloch's theorem)
Direct space:

- 2D triangular lattice : lattice vectors (74, 72)

lattice constant = 74 = 7o = aVv3~25 A
angle = (7, 72) = 60°
- atomic basis : C'4(0,0) et Cp(1/3,1/3)

X C' — C distance = a = 1.42 A

nearest neighbors vectors (eq, ez, e3)

L

- primitive unit cell contains 2 atoms, 1 C'4 and 1 Cp

= 2 conduction electrons per primitive unit cell
number of primitive unit cells N,, = A/(a*3v/3/2)




Reciprocal space:

IV) Atomic structure

Reciprocal lattice of the triangular lattice = triangular
lattice (Whatever the atomic basis)

S

\/

y

g

L AVAYR

A
/ P

1st Brillouin zone (1Bz)

!

- Reciprocal lattice (RL) =

2D triangular lattice :
lattice vectors (g1, g2)
lattice constant — g3 = g2 =
angle = (g1, g2) = 120°

3a

- primitive unit cell = 1st Brillouin zone
center of 1Bz : I

crystal momentum conservation =

only two inequivalent corners of the 1Bz :
we take K = 3\faeb——K’




IV) Atomic structure

Conclusion:

- Direct space: sublattice (basis) index
[|=A,B

- Reciprocal space: valley index
(has no connection to the 2 carbon atoms in the basis, but is
related to the Bravais lattice)

¢ = +1(K), —1(K")



V) Electronic
properties
(no magnetic field)



V) Electronic properties (B=0)

Nearest neighbor tight binding model for the conduction
electrons [Wallace 1947]

- nearest neighbor hopping amplitude : t =~ 3 eV
- no neighboring 2p. orbital overlap
- 2p. orbital energy : 9, =0

- 1 conduction electron per atom

= Hamiltonian (2nd quantization) :

H=—t) ) SJ bgﬂem ar + h.c. where R = integer x 7 + integer x 7o
RcBL m=1

to be diagonalized.
Bloch’s theorem (deals with the Bravais lattice (BL); not a FT) =

1 N 1 . .
AT Z —ik R - § : —ik-(R+em )]
M b1 B- T "M ke1Bz




V) Electronic propertles (B= O)

H = Z hkaak—F h.c. with hy = —tz —kem — \h |6tk
kelBz m=1

_ iy (0 hk (i
kc1Bz
2x2 matrix in sublattice (A,B) space
Then, a rotation in sublattice (A, B) space :

1 . .
CL «= ﬁ .k e fxe*‘g‘“mb;ﬁ) where o = £1

+3t
so that the Hamiltonian becomes
o
£
H = Z Z ukackackaﬂu El,oa = |l E
kc1Bz a=%1 =5
-3t

- the energy vanishes on two points, on the corners of the 1Bz :
4+ K. o EECHEL£I(|== 0

- band index a = +1(CB, 7", particle); —1(V B, 7, hole)
refers to the same space as the sublattice index [ = A, B



V) Band filling

VB and CB meet on 2 points, corners of the 1Bz
(where there usually is a gap!)

Why not here? What is special to graphene?
Undoped graphene (V, = 0) :
Number of single electron states per band = 2.NV,,
Number of conduction electrons = N, = 2N,,
= 2‘:?1 = 1: VB is full and CB is empty.
Graphene is a gapless semiconductor !
Or a metal (¢ = 0) with a vanishing density of states at the Fermi level !

DoS The big band (CB-+VB) is half-filled.

VB CB Doped graphene (Vg v 0)

N, = 2N,, + N where N. = C,V, /e
= filling = 2?\ x V,
| | ¢ | Metal with a small (tunable) density of states.

-3t -t t 3t
cp </ V, typically : ep ~ 0.1¢ when V, = 100V




V) Low energy effective theory

Close to the K point where ¢ = 0 = cp (similarly close to the K’ point, except
for a few signs), we expand the dispersion relation :
k=K + p/h with p/h < 1/ai.e. |¢| < t. Hence

3
Ek.on ™ O:Eta.|k — K| = avpp

where vp = 3ta/(2h) ~ 10° m/s ~ ¢/300 is an “effective speed of light”.
The dispersion relation is linear (rather than parabolic) : therefore the effective

electron mass m”* vanishes! (¢ = a:\/ -m*%} + pQ-U% = QUpp)

CB

ENERGY

VB

diabolo

=\



V) 2D massless Dirac Hamiltonian

The (2nd quantized) Hamiltonian becomes (with k = K + p/h) :

1 31 0 Up (pr +1ip Qg
ka b”‘}( UF (Px — 1Py) C 0 %) ( Dre )

D
, i h, =v, p exp(i Arctg(p,/p,))
— Z[ﬁL E}L)“FP o’ ( b ) where o, and o, are the Pauli matrices
D

H

&l

o = (o,,0,) is the sublattice spin.
Therefore the single electron Hamiltonian is a 2D massless Dirac Hamiltonian
(with a 2 x 2 matrix structure in sublattice space) :

Hyi =vpp-o" =vpo” - (—iAV)
Close to the K’ point, one finds :
Hyr=—vpp-o

Changing the representation : A= B and ¢ =' [KA, KB, K'B, K'A]

- valley Fermion doubling
He = Svpp - o|[H = vpp- 0 @ 7] (Nielsen & Ninomiya th.)




V) Dirac equation
The Dirac equation is

ihoy = Hp |, with Hp = ep - o + mc? 3

where o has d components (d—=space dimension) : ay,...,a4. Let ag1 = 3.
In order to have the correct relativistic dispersion relation, Dirac requires that

HE, — *p* + miet

which implies
la, o =20,, withp=1,...,d+1

(Clifford algebra)

Dirac 1928




|) Dirac 3+1 versus Weyl 2+1

Usual Dirac equation 341 : QED‘ Massless Dirac (Weyl) 241 : graphene
relativistic electron massless electron (~ charged neutrino)
e = 4+/p2c? + m2c? e = tupp
Hp =cp-a+mc?j Hw =vpp -«
c—light velocity vp—Fermi velocity =~ ¢/300
Oy, 0, 0, 30 four 4 % 4 matrices 0y, Oy, 32 three 2 > 2 (Pauli) matrices
spin T / | and electron/positron electron /hole (no spin)

E: E &

electron

@ /electron
2mc2? N

k

positron

Dirac sea

Dirac equation 1928 Weyl equation for neutrino 1929
Hole in semiconductors (Peierls 1929

"#l | Heisenbeg 1930)

Positron (Dirac 1930)



II) Chirality (helicity) and sublattice spin

Chirality — helicity — projection of sublattice spin & on the direction of motion

C=e- p
P
is the chirality operator. Its eigenvalues are v = 41. Chirality is conserved

[H¢,C] = 0. The Hamiltonian He = £vpp - 0 = vpp & C. Eigenvectors of He can

be indexed as [p.7v.&) :

1 Lifl=A
Eat) ! — ip?‘ h [ —_— c.-.-1 —_— ER]
m b &P y) = 7 %¢ \/2{ ~e'sr if | = B and ep ¢ = {Yvpp = avpp

where tanf, = p,/p..
Therefore :|band index (o) = valley (&) = chiralitv (~)

CB
"VB

Electrons in graphene are massless and chiral.



V) Velocity and Zitterbewegung

Velocity operator v ~ sublattice spin o

1
= E[T,Hg] = Svpo  (Breit 1928)

S5

Therefore He = v - p.

Velocity is not conserved [H¢, v| # 0 = Zitterbewegung (jittering motion).
On average :

Velocity is not proportional to p

Schrédihger 1930



V) Absence of backscattering

A smooth impurity potential at the lattice scale :
H=vrp -7 4+ V(r)lixa

It can not scatter between valleys. It does not act on the sublattice spin o. It
does act on p.

Initial state |p.~,&). Final state |p’,~/, &’). Elastic scattering and intravalley =
‘Sf — ‘f: ﬂ.’“f — s pf — P

Scattering probability at the Born approximation :

P(Q) X pr:'ﬁf:‘E|I’fgmp|paﬁ"a$}|2 - H’J;irmp(p! —p)|2{3082(9/2)

Absence of backscattering : P(m) = 0.

0

Ando, Nakanishi, Saito, J. Phys. Soc. Jpn 1998



V) Klein tunneling

An electron normally incident on a high potential step (Vy == 2me?) is perfectly
transmitted. Indeed it can not be backscattered. It propagates in the potential

step as a hole. Charge conservation? The vacuum is charged !
. energy

»

0 X

Proposal for an experimental observation with graphene:
Katsnelson, Novoselov, Geim, Nature Physics 2006.



V) Effective theory: summary

The 2 x 2 structure of the Dirac Hamiltonian is in sublattice space (sublattice
index [ = A, B), i.e. band space. Physically : one has to consider the two bands
simultaneously.

There are 4 copies of the Dirac equation (4 types of electrons) :

4 = 2(spin) x 2(valley)

= 8 x 8 Hamiltonian H = vpp - o @ 7y2ley o [spin,

Spin index s. =1, | and valley index & = +1(K), —1(K").

In the absence of interactions, disorder, special boundary conditions, etc., the
four types of electrons are (almost) independent.

Beware of “spin‘”’, “pseudospin”, “isospin” that may refer to the (real) spin, or to
the[sublattice index| or to the valley index!




V1) In a magnetic field



V1) Electronic properties (B#0)

Strong perpendicular magnetic field B : w.7 = puB > 1 T
where ;1 ~ 1 m?/V.s is the mobility, 7 the time between B
collisions and B ~ 10 T.

e Classical 2D cyclotron motion for an isotropic dispersion relation =(p) :

dp dr
— = —e— X B ou p = momentum B
dt dt P
hence ,.
2 v eB Oc
Ve = ——= and We — — = — —
eB Te p Op v
examples :
P2 eB V2m*e
e = = w. = — independent of ¢ and 7. =
2m* m* e
ffB 1 £
e = vpp =lw. = s |x e " and r. =
£ / v i e Bv F

effective cyclotron mass m. = ¢/v. = hkp /vp < /n.



V1) Electronic properties (B#0)

e Semiclassical quantization of the cyclotron orbits :
Bohr’s correspondence principle =

Ens1 — En ~ hw(g,) when n integer > 1

hence

de
/ htl () =n+youl<~<1

C

examples :

p° el _
e = = |En = ﬁ__—Jn + ) x Bn §

2m* m

En = &\/QH'I.J%EB(TE +v) x aVv Bn

™
|
=
&
-
U

n = 0.1,2,... = Landau level index
v = phase mismatch (integration constant)



V1) Electronic properties (B#0)

e Phase mismatch ~, Berry phase and zero energy states :

- usually : v = 1/2 (cf. Bohr-Sommerfeld) and ¢,, = hw.(n + 1/2)

- if the cyclotron trajectory in reciprocal space surrounds a contact point bet-
ween two linear bands, there is an extra (Berry) phase of 7 in the semiclassical

quantization condition and therefore v = 0 (Mikitik and Sharlai, PRL 1999) :
A €

[ §
o

—

P,
P P

B=0

Hence

Ena = a\/Qh-v%eBn oun =0,1,2,... [McClure 1956] | (exact result)

- there are zero energy states : n =0, g =0, r. = 0!



V1) Electronic properties (B#0)

e Cvclotron radius and Landau level degeneracy :

En h —_— :
o = 0] = V2n4/ B= V2nlg|where [g = magnetic length
€

eBvup

Area occupied by a quantized cyclotron orbit : 7r2 . | — 7rs = 2wl3
Number of orbits with energy s,, in the sample :

A BA  flux in the sample

i\T = = —
“ T awlL T hje flux quantum en/\/2h02%eB
A
Landau level degeneracy : 2(spin)x 2(valley) xNg4 = 4N — an
e Landau level filling : V3 4N, 3
“Undoped graphene : the big band (VB | CB) is half-filled. \2 o 2
Filling factor defined so that v(V, =0) =0 1 1
- Doped graphene (V, #0) :
4N
N Y,
"~ N, B

- No partially filled Landau level when :

v =+2:46;410;... = +4(n + 1/2)



VII) "Relativistic’
quantum Hall effect



VIl) « Relativistic » quantum Hall effect

Plateaux in the Hall conductivity o,, = re?/h expected when
all LLs either full or empty v = £f(n+1/2+~) = +4(n + 1/2)
where f = extra LL degeneracy = 2(spin)x2(valley)=4

~v = phase mismatch = 0 in graphene

-A— 7/2

Usual IQHE : v =1/2 and f =2
Experiment :|v = Oland|f = 4

— 5/2

— 3/2

— =3/2

— —5/2

_.1L__» Novoselov et al., Nature 2005
Zhang et al., Nature 2005




VIl) Graphene at large B: extra QH states

Exp.: filling factor = 0:+1:+2:+4:+6

Th.: Landau levels + Zeeman: p.:
: but not fllllng factor = £3;+5

filling factor = 0;+2;+4;+6:+8:etc.
[ " H4i] i
_ | b o IL__' ___________
» = sgu(n) v/l + LppBuo | b g
T ‘:»‘ﬁ-‘ ~unsafismangs i_"__37T
i — e A -1“—-5'--———.r’-,f—"£r-¢";42-|_
: = hwpvV2/lp i
i ’_-'f
_ SO
=1 " ——

' 4 . i 80 -
I Az =g upB
v, (V)
Zhang et al., Phys. Rev. Lett. 2006.

o




Parity breaking of the honeycomb lattice

If A and B atoms are different (e. g boron nitride) then the honeycomb lattice's
the valley degeneracy is lifted (in n=0).

Inversion symmetry is broken an

B

A and B carbon atoms are now assumed to
be different. Tight-binding model with different
on-site energies M (Haldane, PRL 1988):

A =

0 ul—

?1:0\

hiw,

Ay

En,oa T Sgﬂ( ”'} \/jufz h"‘-'c

= oM + %r‘f if n =20

{Lijl i

|n|+7r:r if n £ 0

Central Landau level (n=0 a=+1=Aanda=-1=B

Not true for the other Landau levels (n#0)

==
g
e



Magnetic field driven Pelerls distortion

Fuchs and Lederer, Phys. Rev. Lett. 2007

How can one have A # B?
Out-of-plane lattice distortion
AND substrate (SiO2) # superstrate (air)

B moves towards the silicon dioxide substrate (-n)

A moves away from the substrate (+n)

N, a
Electronic energy (gain): FE,—j = — — |v|)M; E, 0 = 0.1 'ri”lf” M = Dy

w
Elastic energy (cost): Egjastic = IVp G’?;' where Np = number of unit cells.
Effective elastic energy: E, ;. = Eelastic + Enco = “”’.r;ri with & =G - U.Tﬂgufﬁﬁ-uﬁ-

Total energy: Ei, = E, ¢ + EHWH

Minimizing the total energy: N = 5, 88 W}




Estimate of the constants D and G

G = elastic constant corresponding to the out-of-plane optical phonon mode (ZO)

wo/2me ~ 800cm ! (for graphite)  Ga® ~ m wﬂnz /4 ~ 14eV

D = “deformation potential”, coupling to the substrate

Rough estimate of the coupling to the substrate via the Lennard-Jones interaction
of a carbon atom with the substrate: Da = 1 to 14 eV

No deformation when B=0: G' > 0 therefore Da < 9,8eV
Valley splitting is larger than Zeeman splitting if Da > 6.3eV
To explain the experiments, we choose Da = 7.8 eV, therefore G'a ?= 4,2eV

A, =2M ~ 4.2K x (1 — |v|/2)B[T]
hw. ~ 420K x /B, [T]

Az = g 1By = 1.5K X Btut[ ]
Aimp ~ 30K

Fuchs and Lederer, Phys. Rev. Lett. 2007



Experimental tests

Experiments should decide which mechanism is responsible for lifting the
valley degeneracy in graphene. Out-of-plane lattice distortion implies:

-- Valley gap as a function of the magnetic field: A, x B}
-- Valley gap as a function of the gate voltage: A, x (2 — |v|) with v x V

-- Lattice distortion: X-ray diffraction at grazing incidence; STM,;
Helium surface diffraction; etc.

-- IR absorption spectroscopy of the ZO phonons

-- In a symmetric dielectric environnement, the lattice distortion should
vanish (e.g. for a suspended graphene sheet).

Recent experiments: Checkelsky, Li and Ong, Phys. Rev. Lett. And Phys. Rev. B (2009).



VIII) Extras



2010 Nobel prize arwardied for what?

Andre Geim Kostya Novoselov

1) Scotch tape trick: brought graphene to every lab (but certainly
not as an industrial material). Brought graphene to the masses

(researchers but not laymen).

2) Graphene isolated on a dielectric substrate, contacted and
gated: it provides a new tunable and ambipolar 2D electron gas
(2DEG) with unique properties unlike standard 2DEGs such as
those based on semiconductors (silicon-MOSFET, AsGa/AsGaAl
heterostructures, etc.). The most spectacular consequence being
the « relativistic » guantum Hall effect that confirms the presence

of massless Dirac fermions.




There is no such thing as a 2D crystal!

A theorem stating that 2D crystals can not exist at finite

temperature (Mermin et Wagner 1968 phyS|caI arguments by
Peierls et Landau 1930) | S -

Actually, this theorem assumes a 2D crystal embedded in a
2D space and proofs by contradiction that the crystalline order
Is destroyed by thermal fluctuations.

However, graphene is a 2D crystalline membrane embedded
in a 3D space: the out-of-plane (bending) fluctuations couple

to the in-plane ones (stretching) and stabilise the membrane.
It neither melts nor crumples, but it ripples.

51
Fasolino, Los and Katsnelson, Nature Materials 2007



Suspended graphene

J. Meyer et coll., Nature 2007

scroll

RecentlyB.E. Kane's proposal of floating and spinning graphene (PRB 2010)



Graphene crinkles in order to exist

J. Meyer et coll., Nature 2007

Height of the ripples (static waves in a graphene sea) = 3 atoms

Typical length of the ripples = 30 atoms




There i1s no such thing as a 2D metal!

Still conducting even in the absence of doping (minimal conductivity
of the order of the conductance quantum e?/h)

Ando calls it a 2D semi-metal with zero band overlap rather than a
2D gapless semiconductor

And at the lowest temperature despite the presence of disorder: no
localization by disorder? Seems to contradict the scaling theory

of localization.
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Bilayer: different and also unique

%' ----------- Monolayer: massless Dirac electrons
& (chiral: 1r Berry phase, gapless, 2 bands)

' \/
S-S |
Bilayer: massive chiral (21T Berry phase)
f electrons (but still gapless, 4 bands)
g AN
e =t Gated bilayer: gapped and massive chiral
1 Electrons (4 bands, inversion symmetry lost)

McCann and Falko, PRL 2006



Is graphene expensive?

www.grapheneindustries.com

Roughly: « scotch tape trick » graphene cost
about 1000 euros for 10000 squared microns
(but remember the 76cm flake by CVD)


http://www.grapheneindustries.com/

Conclusion: main ideas Direct space

i %
Graphene = 2D honeycomb carbon L 4
crystal (thickness of a single atom), a £
carbon membrane that is rippled. ;}_{
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Graphene’s magic comes from its peculiar
band structure:

- The valence (VB) and conduction bands
(CB) meet in 2 (not 6) points (K,K') in
reciprocal space [Dirac points].

- The dispersion relation close to the Dirac
points is linear [diabolo].

- The VB is full, the CB is empty: the Fermi
level is right at the Dirac points.

— Graphene is a 2 valleys (K,K') 2D semi-
metal (with zero band overlap).
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- Faire du graphéne soi-méme (site de Scientific American):
http://www.sciam.com/article.cfm?id=diy-graphene-how-to-make-carbon-layers-with-sticky-
tape

- Transparents de cours sur le graphéne (école de Cargése octobre 2010):
http://www.graphene-nanotubes.org/fr/nanotubes-summer-school/lectures.html

- Site du prix Nobel de physique 2010:
http://nobelprize.org/nobel_prizes/physics/laureates/2010/ 58



http://www.sciam.com/article.cfm?id=diy-graphene-how-to-make-carbon-layers-
http://www.graphene-nanotubes.org/fr/nanotubes-summer-school/lectures.html
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