

Figure 1 | The ALPHA central apparatus and mixing potential.

ALPHA, Nature 17 novembre 2010 atomes \overline{H} piégés plus de 170 ms

irfu

doi:10.1038/nature09610

Trapped antihydrogen

G. B. Andresen¹, M. D. Ashkezari², M. Baquero-Ruiz³, W. Bertsche⁴, P. D. Bowe¹, E. Butler⁴, C. L. Cesar⁵, S. Chapman³, M. Charlton⁴, A. Deller⁴, S. Eriksson⁴, J. Fajans^{3,6}, T. Friesen⁷, M. C. Fujiwara^{8,7}, D. R. Gill⁸, A. Gutierrez⁹, J. S. Hangst¹, W. N. Hardy⁹, M. E. Hayden², A. J. Humphries⁴, R. Hydomako⁷, M. J. Jenkins⁴, S. Jonsell¹⁰, L. V. Jørgensen⁴, L. Kurchaninov⁸, N. Madsen⁴, S. Menary¹¹, P. Nolan¹², K. Olchanski⁸, A. Otin⁸, A. Povilus³, P. Pusa¹², F. Robicheaux¹³, E. Sarid¹⁴, S. Seif el Nasr⁹, D. M. Otherski¹⁵, G. S. K. Staris, S. K. Staris, S. Seif el Nasr⁹, A. Seif el Nasr⁹, S. Seif el Nasr⁹, S. M. Staris, S. Saris, S. S D. M. Silveira¹⁵, C. So³, J. W. Storey⁸[†], R. I. Thompson⁷, D. P. van der Werf⁴, J. S. Wurtele^{3,6} & Y. Yamazaki^{15,16}

P. Debu - Irfu

Synthesis of Cold Antihydrogen in a Cusp Trap

Y. Enomoto,¹ N. Kuroda,² K. Michishio,³ C. H. Kim,² H. Higaki,⁴ Y. Nagata,¹ Y. Kanai,¹ H. A. Torii,² M. Corradini,⁵ M. Leali,⁵ E. Lodi-Rizzini,⁵ V. Mascagna,⁵ L. Venturelli,⁵ N. Zurlo,⁵ K. Fujii,² M. Ohtsuka,² K. Tanaka,² H. Imao,⁶ Y. Nagashima,³ Y. Matsuda,² B. Juhász,⁷ A. Mohri,¹ and Y. Yamazaki^{1,2}

ASACUSA, Phys Rev Lett 105 10 décembre 2010 Synthèse et extraction d'un faisceau d'atomes \overline{H}

saclay

Projets antimatière et gravité

- Motivation
- Limites indirectes
- Projets en cours
- GBAR
- Conclusions

Testé pour la matière avec une très grande précision avec de nombreux matériaux

Principe d'équivalence faible (balance de torsion)

$$(\Delta a / a)_{Be/Ti} = (0.3 \pm 1.8) x 10^{-13}$$
 s.schla

S.Schlamminger et al, Phys Rev Lett 100 (2008) 041101

Principe d'équivalence fort (Lunar Laser Ranging)

$$(\Delta a / a)_{\text{Terre/Lune}} = (-1.0 \pm 1.4) \times 10^{-13}$$
 J.G.Williams et al, Phys Rev Lett 93 (2004) 261101

œ

Limites indirectes

saclay

Considérations théoriques et limites indirectes sur une violation du principe d'équivalence par l'antimatière

-Argument de Morrison (1958) : antigravité en RG \rightarrow violation de la conservation de l'énergie

si
$$m_G(+) = -m_G(-)$$
:
 $E_A = E_B = 2m_Ic^2 = hv_C$
 $h\Delta v_{CD} = hv_C(gL/c^2) = 2m_IgL$
 $E_D = E_A + 2m_IgL$

11/01/2011

œ

Limites indirectes

saclay

 \rightarrow pas exclu ? voir :

- G. Chardin et J.M. Rax, Phys Lett B282 (1992) 256
- G. Chardin, Hyperfine Interactions 109 (1997) 83

 \rightarrow introduire des champs gravi-vecteurs et gravi-scalaires non couplés aux photons pour différencier m_G et \overline{m}_G

(voir par exemple : J. Scherk, Phys. Lett. B (1979) 265)

$$V = -G \frac{mm'}{r} (1 \underbrace{\mp a \exp(-r/v) + b \exp(-r/s)}_{\text{supergravité : une contribution répulsive}})$$

Les tests avec la matière contraignent seulement ~ |b-a|

saclay

- Contenu en antimatière de la matière ordinaire (« argument de Schiff ») mais :

 $\rho_{\text{vide}} = \int_0^{\Lambda} \sqrt{k^2 + m^2} \frac{4\pi k^2}{2(2\pi)^3} dk \approx \frac{\Lambda}{16\pi^2} \sim 10^{73} \text{ GeV}^4 \text{ pour } \Lambda = E_p \qquad \text{F}$ $\rho_{\text{critique}} \sim 10^{-47} \text{ GeV}^4$

FIG. 2: Loop contribution to the electrostatic self-energy of the nucleus

	Scenario	Argument	Bound on $ g_{\rm H} - g_{\overline{\rm H}} /g_{\rm H}$
$g - \overline{g} g - g_{AE} $	Modification of CB	Lamb shift	$\lesssim 10^{-2}$
$\frac{\delta}{\delta} \frac{\delta}{\delta} \sim \left \frac{\delta}{\delta} \frac{\delta}{\delta} \frac{\delta}{\Delta \text{Erad}} \right \Rightarrow$	Modification of Git	Electrostatic self-energies of nuclei	$\lesssim 10^{-7}$
g g		Antiquarks in nucleons	$\lesssim 10^{-9}$
	Scalar-vector	Radiative damping of binary systems	$\lesssim 10^{-4}$
		Scalar charges are not vector charges	$\lesssim 10^{-8}$
		Velocity dependence	$\lesssim 10^{-7}$

- Compensation exacte scalaire/vecteur impossible (*D.S.M.Alves et al SU-ITP-09/36*)

11/01/2011

P. Debu - Irfu

irfu

œ

Limites indirectes

-Mesures de η^{\pm} et Φ^{\pm} en fonction du temps par CPLEAR Oscillations K⁰- \overline{K}^0 dépendent d $\delta m_{eff} = M_{K^0} (g - \overline{g}) \frac{U}{c^2} \exp(-r/r_I) f(I)$

A. Apostolakis et al., Phys Lett B 452 (1999) 425

	<u> </u>		Stree spin e, r and z interactions		
	Source	Spin 0	Spin 1	Spin 2	
Variation du potentiel en fonction du temps	Earth Moon Sun	6.4×10^{-5} 1.8×10^{-4} 6.5×10^{-9}	4.1×10^{-5} 7.4 × 10 ⁻⁵ 4.3 × 10 ⁻⁹	1.7×10^{-5} 4.8×10^{-5} 1.8×10^{-9}	
Introduction d'un \longrightarrow potentiel absolu	Galaxy Supercluster	1.4×10^{-12} 7.0×10^{-14}	9.1×10^{-13} 4.6×10^{-14}	3.8×10^{-13} 1.9×10^{-14}	

Summary of limits on $|g - \overline{g}|$ for spin 0, 1 and 2 interactions

Limites indirectes

irfu

saclay

-Mesure des fréquences cyclotron p (H⁻) et p̄ dans un même champ B *R. Hughes and M. Holzscheiter, Phys Rev Lett 66 (1991) 854 G. Gabrielse et al. Phys Rev Lett 82 (1999) 3198*

 $\omega = qB/2\pi m + \alpha U/c^{2} \quad |\omega - \overline{\omega}|/\omega = (9\pm 9)x10^{-11} \rightarrow |g - \overline{g}|/g \le 10^{-6}$ Limite directe ?

-Temps d'arrivée d'1 (? : 90 % CL) neutrino et de 18 antineutrinos de la SN1987a

délai gravitationnel : $\delta t = MG \left[-R / \sqrt{R^2 + b^2} + (1 + \gamma) \ln \left| R + \sqrt{R^2 + b^2} / b \right| \right]$ $\left| \delta t(\upsilon_e) - \delta t(\overline{\upsilon}_e) \right| / \delta t(\overline{\upsilon}_e) < 10^{-6} \rightarrow \left| \gamma(\upsilon_e) - \gamma(\overline{\upsilon}_e) \right| / \gamma(\overline{\upsilon}_e) < 10^{-6}$

(S. Paksava et al. Phys Rev D 39 (1989) 1761)

11/01/2011

Cosmologie

saclay -Asymétrie matière antimatière
-Accélération de l'expansion de l'univers
+ Matière noire + inflation
Y a-t-il une répulsion matière antimatière ?

 \rightarrow Univers de Dirac Milne Ω_{M} -Tentative de construire une cosmologie avec :

Symétrie matière-antimatière

Mécanisme séparant matière et antimatière

(Thèse Paris XI d'A. Benoît-Lévy – dir G. Chardin (2009))

irfu

Tentatives et propositions passées

saclay

-positrons : F. Witteborn and W. Fairbank, Phys Rev Lett 19 (1967) 1049)

-antiprotons : PS200 Proposal Los Alamos Report LA-UR 86-260

-Systématiques trop grandes :

 $m_e g / e = 5.6 \times 10^{-11} V / m$ (une charge élémentaire à 5 m)

-antineutrons : difficile de les ralentir suffisamment T. Brando et al, Nucl. Instrum. Methods 180 (1981) 461

-positronium : temps de vie très court (142 ns) si n = 1 possibilité discutée s'il est excité n>>1 $(\tau \approx (n/25)^{5.236} \times 2.25 \text{ ms})$ Pbs : refroidissement, polarisabilité, ionisation par rayonnement... A.P. Mills, M. Leventhal, Nucl. Instrum. Meth. in Phys. Research. B192 (2002) 102

11/01/2011

$\stackrel{\text{\tiny irfu}}{\textcircled{\ }}$ Système suivant $\overline{H} \rightarrow$ Projets en préparation

saclay

Principe : Vol parabolique des H Interféromètre, déflectomètre, chute libre

-L = 1 m et $v_h = 1000 \text{ m/s} \rightarrow h = 5 \mu \text{m} (T(\overline{H}) \sim 4 \text{ K} \sim 0.3 \text{ meV})$ $\rightarrow AGE : LOI FNAL en suspens - atomes \overline{H} (neutres)$

-L = 1 m et $v_h = 500 \text{ m/s} \rightarrow h = 20 \text{ }\mu\text{m}$ (T(\overline{H}) ~ 100 mK ~ 7 μeV) $\rightarrow AEGIS : expérience CERN - atomes <math>\overline{H}$ (neutres)

 $\begin{array}{rcl} - \ L = 0.1 \ m \ et \ v_h = 0.5 \ m/s & \longrightarrow \ h = 20 \ cm & (T(\overline{H}) \sim 15 \ \mu K \sim 1 \ neV) \\ & \longrightarrow \ Gbar : LOI \ CERN - \ \overline{H}^+ \ refroid is \ \rightarrow \ \overline{H} \ lents \end{array}$

P. Pérez et al, LOI CERN –SPSCI-038 (2007) Irfu, Riken, Tokyo U.

œ

Antimatter Gravity Experiment at FNAL

saclay -Flux \bar{p} at FNAL (4x10¹² / jour) >> CERN AD (2x10¹⁰ / jour)

- -AGE Letter of Intent in 2009 (12 USA institutes)
- -Status : staged tests with matter required by FNAL committee

Aims :

-First step :

- produce \overline{H} at FNAL and measure \overline{g} to 1 % soon after with a three grating interferometer
- run a few months to reach 10⁻⁴ precision

-Second step :

-reach 10⁻⁹ precision with laser atomic (Raman) interferometer

- Additional physics : CPT test with spectroscopy

AGE proposed method

saclay -Deceleration $\bar{p} \rightarrow 1 \text{ GeV} + \text{degrader foils} + \text{trap } (20 \text{ kV}) (\epsilon \sim 10^{-4})$

45 % efficiency for v = 1 km/s and L = 10 cm11/01/2011 P. Debu - Irfu

AGE first step

 $\overline{\text{saclay}}$ -Fly through 3 diffraction gratings (1 µm period)

-Vertical deflection
$$\mathbf{D} = \overline{\mathbf{g}} \frac{\mathbf{L}^2}{\mathbf{v}^2}$$

-Measure ratio of \overline{H} exiting interferometer vs time of flight (10⁶ extracted atoms (few hours) $\rightarrow \Delta g/g \approx .6 \%$)

irfu

The *AE* ḡ *IS* experiment at AD Antimatter Experiment: Gravity, Interferometry, Spectroscopy

Primary goal:

measurement of the Earth gravity acceleration on antihydrogen

Precision : first goal : 1% with 10⁵ antihydrogen atoms higher accuracy in the future

Other physics : high precision antihydrogen spectroscopy (CPT tests) positronium physics (as by product)

AEGIS METHOD :

- Collect 10⁴-10⁵ extremely cold antiprotons (T~0.1K) in a trap
- Accumulate a cloud of positrons in a trap: 10^8 (or more) in some minute
- Produce very slow ground state Ps sending the e⁺ into a nanoporous target
- Produce Rydberg positronium via laser excitation
- Form cold (100 mK) antihydrogen atoms by the charge exchange process

 $\overline{\mathbf{p}} + (\mathbf{Ps})^* \rightarrow \overline{\mathbf{H}}^* + \mathbf{e}^- \ (\overline{\mathbf{H}}^*: \mathbf{Rydberg state n} \approx 30)$

- accelerate the $\overline{\mathrm{H}}*$ to ~ few 100 m/s using Stark Effect
- get \overline{g} through a measurement of the \overline{H} beam deflection with a Moiré deflectometer

5 antihydrogen formation : 100 mK

6 measurement : 4 K -10 K

- v = 50m / s
- Time to prepare pbar and e⁺: few hundreds s
 Pulsed Antihydrogen production
- •100-1000 antihydrogen/(AEGIS cycle)

- •The distribution of the vertical coordinates in the detector position shows a spatial modulation
- •Extract g from this modulated distribution
- •Use a position sensitive antihydrogen detector

The Moiré deflectometer : principle of operation

The positron accumulator: "Surko type"

- •²²Na source: > 50 100 mC
- •Moderation through solid neon
- •Accumulation in trap
- •Buffer gas cooling
- •3 10^8 e+ in few minutes
- •B= 0.15 -0.2 T

The AEGIS trap design : the traps in the high (5T) field

B= 5 Tesla Antiproton and e+ trap on the same axis

Toward ultracold (100 mK) antiprotons

Antiprotons in trap cannot be directly cooled to 100 mK Cool antiprotons by collisions with a partner particle stored in the same trap (sympathetic cooling) that can be cooled

electrons

Resistive cooling with a resonant tuned circuit + radiation cooling

Negative ions: Os-

Laser cooling of Os⁻

Ultimate temperature :240 nK

•A demonstration of laser cooling of negative ions is needed

 \overline{H}^* formation : Charge exchange cross section (CTMC calculation)

•High cross section

•Small effects due to 1 T magnetic field (new result, not included in the proposal: publication in preparation)

- •Ps velocity of some tens Km/sec : about 100 K (10 meV)
- •In progress: measurement of the positronium velocity distribution

AEGIS schedule (from SPSC presentation in 2009)

2010Start construction (magnet, cryostat, traps ...) & installation in the zone2011 -2012Run with and without antiprotons (e⁺ commissioning)
(catch, cool & transfer \bar{p} , e⁺ accumulation and transfer)
Complete construction and installation
(antihydrogen detector, laser installation)
Rydberg positronium & \bar{H} formation
Cooling antiprotons to 100 mK
Optimization of the antihydrogen beam2014, 2015Run with the grating system and the position sensitive detector

Effective schedule will depend on the funding availability

irfu Gbar : \bar{g} experiment using H⁺ to get H atoms

$\overline{\mathrm{H}}^{ullet}$ in ion trap	∆g/g
5 10 ⁵	0.001
10 ⁴	0.006
10 ³	0.02
11/01/2011	P. Debu - It

$$h = 10 \text{ cm} \rightarrow \Delta t = 143 \text{ ms}$$
$$h = 1 \text{ mm} \rightarrow \Delta t = 14 \text{ ms}$$

P. Debu - Irfu

Synoptic scheme

irfu

irfu SOPHI Installation at Saclay (Nov'08)

œ

Funded CEA-CG Essonne

Demonstrator e⁻ Linac Ec = 5.5 MeV $I_{measured}$ = 0.14 mA

11/01/2011

e⁺/e⁻ selector

US Patent 2004 Brevet français 2005

expected positron yield from 1 mm W target at 5.5 MeV ~ 1 10⁻⁴ per electron Linac peak current ~ .12 mA during 4 μ s expected positron charge on pads 11-12 from simulation ~ 13 pC per burst charge seen ~ 4 pC per burst :

- electron additional background ?
- LINAC energy below 5.5 MeV ?

11/01/2011

Synoptic scheme

irfu

a) er Plasma Formation

RIKEN MultiRing Trap

電子プラズマを用いた陽電子蓄積装置 Development of a positron accumulator with an electron pla

小島 隆夫*, 大島 永康*[†], 新垣 恵*[†], 毛利 明博*, 山崎 泰規*[†] Takao M. Kojima*, Nagayasu Oshima*[†], Megumi Niigaki[†], Akihiro Mohri*, and Yasunori Yamazaki*[†] 理研原子物理研究室 *Atomic Physics Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan** 東京大学大学院・総合文化 Institute of Physics, University of tokyo, 3-8-1 Komaba, meguro, Tokyo 153-8902, Japan[†]

$\overline{\mathbf{H}}$ production via $\overline{\mathbf{H}}^+$

saclay

Standard production

$$\overline{p}$$
 + e^+ + e^+ \rightarrow \overline{H}^* + e^+

H⁺ Formation

p	+	Ps	\rightarrow	Ħ	+	e ⁻
Ħ	+	Ps	\rightarrow	$\overline{\mathbf{H}}^+$	+	e ⁻

11/01/2011

irfu

Cross-sections on PS

11/01/2011

Yield of o-Ps : comparison CERN/UCR

No loss in conversion efficiency in spite of the 10¹¹ intensity factor

P. Debu - Irfu

^{11/01/2011}

Efficiencies

saclay

(CEC)

Electrons						
Linac frequency (Hz)	Ie- (mA)	Ie-/pulse (mA)	pulse length (s)	Ne ⁻ / pulse	Ne ⁻ (s ⁻¹)	
200	1.40E-01	1.75E+02	4.00E-06	4.38E+12	8.75E+14	
Positrons						
ε (e- → e+)	ε (transport)	ϵ (moderation)	Ne+fast / pulse	Ne+ fast (s^{-1})	Ne+ slow / pulse	Ne+ slow (s^{-1})
1.50E-04	0.8	1.00E-03	5.25E+08	1.05E+11	5.25E+05	1.05E+08
Positron Storage						
ε (trapping)	accum. time (s)	Ne+stored				
0.2	1200	2.52E+10				
Positronium						
$\epsilon (e+ \rightarrow Ps)$	volume tube (cm ³)	Ps density (cm ⁻²)	ε (excitation)			
0.35	0.01	8.82E+11	10	ev	ery 20 mm	nes puise
Ħ						
Np̄ / pulse	$\sigma(\bar{p}+Ps \rightarrow \bar{H})$	$\sigma(\overline{H}+Ps \rightarrow \overline{H}^+)$	NĦ	NĦ ⁺ ∠		
1.00E+07	1.00E-15	1.00E-16	8.82E+04	7.78E+00		

œ

2011-2012

Gbar : perspectives

-Installation du piège de RIKEN

saclay -Modération des positons, transport jusqu'au piège

- -Piégeage des positons lents produits par le linac
- -Optimisation de la production de positronium (linac, modérateur)

-Proposition CERN

(CSNSM, Irfu, LKB, Riken, Swansea, Tokyo Komaba, Tokyo U. of Science+ intérêt de ETHZ) -Demande ANR refroidissement Be⁺

-Décision sur ELENA ?

-Applications sciences des matériaux (equipex PAM, ANR Parmes) ?

2012-1013

-Excitation du positronium

-Conception piège \overline{H}^+ et photodétachement

-Conception du dispositif de mesure de chute. $\underline{2014}$

-Installation au CERN et tests avec les \bar{p}

Bientôt ELENA (Extra Low ENergy Antiproton ring) ?

saclay

 Nouvel anneau en projet pour décélérer encore un peu plus les antiprotons de l'AD (gain d'efficacité ~10 suivant les expériences)

• ELENA:

p 100 keV en continu
possibilité de distribuer
plusieurs lignes
Nouvelle ligne possible

• Décision Cern en 2011?

Conclusions

saclay

- Une mesure de la chute libre d'atomes d'antihydrogène serait le premier test direct du principe d'équivalence avec de l'antimatière.
- Les projets en préparation proposent des méthodes très différentes. La proposition d'expérience pour Gbar est en cours de rédaction (CSNSM, *ETHZ*, IPCM, Irfu, LKB, Riken, Swansea, Tokyo Komaba, Tokyo U. of Science).
- Ces expériences ont une taille et un coût matériel modestes (hors production des \overline{H}), mais leur mise au point est longue et délicate (physique atomique, lasers, pièges, accélérateurs, science des matériaux, physique des particules).
- La construction d'Elena est très attendue par l'ensemble de la communauté anti H.

11/01/2011

P. Debu - Irfu