



# Search for the Higgs boson in the gamma gamma channel in CMS



Yu-Wei Chang, National Taiwan University On behalf of the CMS Collaboration Higgs Hunting 2012, Orsay-France

# Overview



- Searches of 2 Higgs hypothesis are included:
  - the **Standard Model** (SM) Higgs  $\rightarrow \gamma \gamma$
  - the **Fermiophobic** (FP) Higgs  $\rightarrow \gamma \gamma$
- Results based on 2011 & 2012 data collected by CMS
  - ▶ 5.1 fb<sup>-1</sup> 2011 data at √s = 7 TeV
  - 5.3 fb<sup>-1</sup> 2012 data at vs = 8 TeV
- Search m<sub>H</sub> window: [110-150] GeV
- Blind analysis in 2012
- 3 independent analysis used in SM search
  - Mass fit Multi-Variate Analysis (MVA)
  - Mass Sideband Background MVA
  - Cut-based analysis
- Analysis used in FP search
  - Basically consistent with SM cut-based analysis
  - Additional modifications based on the FP topology

# **CERN-LHC and the CMS Detector**



19.July.2012 Yu-Wei Chang

# Introduction





- A discovery channel at low masses
  - decay involves virtual loops
  - Iow signal branching ratio
  - clean signature
  - identified as a narrow m<sub>γγ</sub> peak on the top of continuous background

- Published 2011 result,
   [Phys. Lett. B710 (2012), no 3, 403]
  - Observe 3.1σ local (1.8σ-global) excess at 124 GeV
- ▶ The 2011 result here is reloaded
  - improved detector calibration



19.July.2012 Yu-Wei Chang

# Analysis Strategy



- Main analysis uses Multi-Variate Analysis (MVA) technique to identify and to classify events:
  - improvement in expected limit about 15% with respect to the cut-based analysis
- Cross-checked with (independent) cut-based and mass sideband background MVA model
- Background model derived from data
- Final results extracted by fitting to the m<sub>γγ</sub> distribution in 6 event classes
- Mass resolution and signal to background ratio are crucial

# **Energy Corrections**

Estimated energy in the ECAL:

## $E_{e, \gamma} = F \sum_{clusters} G c_i A_i$ Corrections Calibration

- Energy correction scheme
  - F = 1 for 5x5 crystal sum for the energy of unconverted photons
  - $c_i$  intercalibration constants ( $\pi^0$ )
  - transparency correction with laser monitoring (LM)
- ECAL cluster energies corrected using an MC trained multivariate regression
  - performed after individual crystal transparency correction and intercalibration
  - also provides per photon energy resolution estimate



## Vertex Selection and m<sub>vv</sub> Reconstruction



- The opening angle between photon pair affects the mass and resolution
- Depend on the correct position of the primary vertex and correct reconstructed photon energy



- Vertex identification
  - Use MVA Boosted Decision Tree (BDT) method
  - Input information from tracks and photons



19.July.2012 Yu-Wei Chang

# **Event Selection**

- MVA Photon ID separates prompt photons from π<sup>0</sup> emerged from jets
  - MVA BDT input variables based on :
    - Shower Topology
    - Particle Isolation
    - The median energy density per solid angle
    - Supercluster pseudorapidity
- Form Higgs candidate from two isolated leading photons
  - ►  $p_T^{\text{lead}}/m_{\gamma\gamma} > 1/3$ ,  $p_T^{\text{sub-lead}}/m_{\gamma\gamma} > 1/4$
- Event selection based on diphoton MVA output <sup>N</sup>/<sub>2</sub>
  - photon-like kinematic characteristics
  - signal-like kinematic characteristics
    - predominantly giving high score to high  $p_T^{\gamma\gamma}$
  - good diphoton mass resolution
- Diphoton MVA input variables are designed to be m<sub>vv</sub> independent



# **Event Categorization**

CMS

- ► To improve the analysis sensitivity
- Event with 6 categories:
  - 4 diphoton MVA categories
    - Boundaries optimized to give the best expected limit
  - 2 dijet-tagged categories
- Exclusive selection of di-photon events with VBF-like topology:
  - two high p<sub>τ</sub> jets with wide separated in η
  - Higher S/B
- Use 2 categories based on m<sub>jj</sub> and jet p<sub>T</sub> in 2012 analysis





10

# Result of the Search for the SM H $\rightarrow \gamma\gamma$

19.July.2012 Yu-Wei Chang

# 8 TeV Mass Distribution in Categories



- Background modeling: polynomial shape with order from 3 to 5
- Potential bias from background model is negligible
  - $\leq$  20% of statistical uncertainty

19.July.2012 Yu-Wei Chang

# 95% CL Exclusion for SM $H \rightarrow \gamma \gamma$



- Large range with expected exclusion below σ<sub>sM</sub>
- Largest excess at 125 GeV
- Cross-checked with (independent) cut-based and sideband background model:
  - give similar results within experimental uncertainties

19.July.2012 Yu-Wei Chang

# **P-Value & Significance**





- Minimum local p-value at 125 GeV with a local significance 4.1 σ
- New state around 125 GeV is observed
- Appears consistently in 2011 and 2012 data
- 3.2 σ global significance in the full search range (110-150 GeV)

19.July.2012 Yu-Wei Chang

# Signal Strength



Combined best fit signal strength at 125 GeV :

 $\sigma/\sigma_{SM}$  = 1.56  $\pm$  0.43

- In agreement with the SM expectation within uncertainties
- Best fit signal strength consistent between different categories

# S/B Weighted Mass Distribution



15

# Mass Estimation



- To reduce model dependence
  - allow for free signal strength in the MVA and dijet-tagged categories and fit for the common mass m<sub>x</sub>.
- The dominant systematic uncertainty
  - Energy scale (0.47% correlates between categories)



## $m_x = 125.1 \pm 0.4(stat) \pm 0.6(syst) \text{ GeV}$



# The result in the context of FP model with alternative EWSB mechanism

# Introduction of Fermiophobic Higgs

- In the Fermiophobic interpretation the Higgs boson couples at tree level only with W and Z.
- Decay modes: WW, ZZ, Zγ and γγ
- Testing beyond the SM scenario of EWSB (2 HDM)
  - suppressed fermion couplings
    - → enhance B(H → γγ)
  - the Fermiophobic model is extreme case
  - part of a couplings measurement program
- 2011 result, CERN-PH-EP-2012-174, submitted to JHEP



# Analysis Strategy of FP Higgs $\rightarrow \gamma \gamma$

### Cut-based photon ID selection

- ▶ VBF and VH production only
  - boosted kinematics
  - possibility to tag on recoil objects
  - Mutually exclusive sub-channels:

(S/B at  $m_H = 120 \text{ GeV}$ )

- $\blacktriangleright$  2 dijet-tagged sub-channels (VBF), S/B  $\sim$  1
- ▶ 2 lepton-tagged sub-channels (VH), S/B  $\geq$  1
- 1 MET-tagged sub-channels (VH), S/B < 1</p>
- 4 untagged sub-channels, S/B << 1</p>
- ► Use 1D m<sub>vv</sub> fit for tagged sub-channels
- Use 2D (m<sub>γγ</sub>, π<sub>T</sub><sup>γγ</sup>) fit for untagged sub-channels
   π<sub>T</sub><sup>γγ</sup> (= p<sub>T</sub><sup>γγ</sup>/ m<sub>γγ</sub>)



## 8 TeV Mass Distribution in Exclusive Sub-channels







#### Background modeling:

- polynomial shape with order from 3 to 4 for dijet and MET tagged sub-channels ►
- Power law for lepton tagged sub-channels ►
- Potential bias from background model is negligible

19.July.2012 Yu-Wei Chang

180

## 8 TeV Mass Distribution in Untagged Sub-channels



19.July.2012 Yu-Wei Chang

# 95% CL Exclusion for FP H $\rightarrow \gamma\gamma$



- The exclusion range of FP H  $\rightarrow$   $\gamma\gamma$  at 95% C.L. is [110-147] GeV.
- At 99% C.L. we exclude the FP H  $\rightarrow$   $\gamma\gamma$  in the range [110-134] GeV.
- The new state at 125 GeV observed in SM is at 99% C.L. excluded as FP

19.July.2012 Yu-Wei Chang

# P-Value & Signal Strength (FP)



- Largest excess at 125.5 GeV with a local significance 3.2 σ
- The observed signal strength at 125.5 GeV :  $\sigma/\sigma_{FP} = 0.49 \pm 0.18$
- The deviation is too weak to be consistent with the Fermiophobic hypothesis

23

# Summary



24

- The results of the search of H  $\rightarrow$  γγ in CMS have been presented:
  - ▶ In contexts of both the Standard Model and the Fermiophobic interpretation.
  - ▶ Using 5.1 fb<sup>-1</sup> 7 TeV and 5.3 fb<sup>-1</sup> 8TeV pp collision data collected by CMS.
  - ▶ We have reached the expected sensitivity in the low mass range.

### The Standard Model H $\rightarrow \gamma\gamma$ :

- Evidence of a new resonance decaying into two photons and appears consistently in 2011 and 2012 data with a mass of 125.1 ± 0.7 GeV is observed at 4.1 σ significance.
- Observed massive state is compatible with a Standard Model Higgs hypothesis within experimental uncertainties.

#### The Fermiophobic $H \rightarrow \gamma \gamma$ :

- ▶ The FP Higgs boson is excluded at 95% C.L. in the interval [110-147] GeV.
- ► At 99% C.L. the largest excess at 125.5 GeV is excluded as a pure FP Higgs.



# Backup

19.July.2012 Yu-Wei Chang

25

# Higgs production cross sections



26

# Data and Reconstruction Challenge

- Increasing pile-up environment in 2012 data taking mean pile-up (PU) 19 events
  - mean pile-up (PU) 19 events (MC reweighting)



## Particle Flow (PF) algorithm:

- provides a global event description in form of list of particles
- improvements in jet, τ and E<sub>T</sub><sup>miss</sup> measurement
- Improves reconstruction performance at high PU



19.July.2012 Yu-Wei Chang

# **ECAL Calibration**

## Dedicated calibration scheme:

- inter-crystal calibration:  $π^0$ , η
- crystal transparency correction (laser monitoring system)
- The energy scale stability after the response corrections:
  - barrel: 0.12% (2.5% loss)
  - endcap: 0.45% (10% loss)
- Exploit W → ev (E/p) and Z<sup>0</sup> → ee control samples to derive energy scale and resolution systematics





# **Vertex Location**

- Signal m<sub>νν</sub> resolution
  - The opening angle between photon pair affects the invariant mass and resolution
  - Depend on the correct position of the primary vertex
- Vertex identification
  - Use MVA Boosted Decision Tree method
  - Input information from tracks and photon pair
- High efficiency for the boosted Higgs:
  - presence of hard recoil objects
  - efficiency falls down with PU
- Correct vertex finding probability also estimated using a diphoton BDT



# MVA Photon ID



- MVA Photon ID separates prompt photons from π<sup>0</sup> emerged from jets
  - MVA BDT inputs
    - Shower Topology Variables (preshower shape in endcaps)
    - Isolation Variables

- ▶ The median energy density per solid angle
- Supercluster pseudorapidity



19.July.2012 Yu-Wei Chang

# Event Categorization (MVA)

- The MVA classifies with a high score events with:
  - signal-like kinematic characteristics
  - predominantly giving high score to high p<sub>T</sub><sup>γγ</sup>
  - good diphoton mass resolution
  - photon-like values from the photon identification BDT
- MVA input variables are designed to be mass independent
- Fit  $m_{yy}$  in each of 6 categories:
  - 4 diphoton MVA categories
  - 2 dijet-tagged categories



- MVA categories based on diphoton MVA output
- Boundaries optimized to give the best expected limit using MC background

# Signal Model & Mass Resolution



19.July.2012 Yu-Wei Chang

# 7 TeV Mass Distributions (SM $H \rightarrow \gamma \gamma$ )



Potential bias from background model is negligible

•  $\leq$  20% of statistical uncertainty

33

## 95% C.L. Exclusion Limit (SM $H \rightarrow \gamma \gamma MVA$ )



# Signal Strength at 136 GeV



35



19.July.2012 Yu-Wei Chang

# P-values per Class (SM $H \rightarrow \gamma \gamma MVA$ )



## Results of SM H $\rightarrow$ $\gamma\gamma$ Mass Sideband Background MVA



19.July.2012 Yu-Wei Chang

## Results of SM $H \rightarrow \gamma \gamma$ Cut-based Analysis



19.July.2012 Yu-Wei Chang

# Fermiophobic Higgs

- In the Fermiophobic interpretation the Higgs boson couples at tree level only with W and Z.
- Decay modes: WW, ZZ, Zγ and γγ
- Testing beyond the SM scenario of EWSB (2 HDM)
  - suppressed fermion couplings
    - → enhance B(H → γγ)
  - the Fermiophobic model is extreme case
  - part of a couplings measurement program
- LEP, Tevatron and ATLAS excluded at 95%
   C.L. a Fermiophobic Higgs boson lighter than 121 GeV.



## Analysis Strategy of FP Higgs $\rightarrow \gamma \gamma$

- Cut-based analysis
- VBF and VH production
  - boosted kinematics
  - possibility to tag on recoil objects
- Mutually exclusive sub-channels: (S/B at m<sub>H</sub> = 120 GeV)
  - 2 dijet-tagged classes (VBF)
    - ► S/B ~ 1
  - 2 lepton-tagged classes (VH)
    - ▶ S/B ≧ 1
  - 1 MET-tagged classes (VH)
     S/B < 1</li>
  - 4 untagged classes based on pseudorapidity and shower shape
    - ► S/B << 1



[arXiv:1201.3084]

| channel    | leading photon  | trailing photon        |
|------------|-----------------|------------------------|
| dijet-tag  | $p_T/m$ >60/120 | $p_T > 25 \text{ GeV}$ |
| lepton-tag | $p_T/m$ >45/120 | $p_T > 25 \text{ GeV}$ |
| MET-tag    | $p_T/m>45/120$  | $p_T > 25 \text{ GeV}$ |
| untagged   | $p_T/m$ >40/120 | $p_T/m > 30/120$       |

The order of event tagging:

muon  $\rightarrow$  electron  $\rightarrow$  di-jet  $\rightarrow$  MET  $\rightarrow$  untagged

# FP H $\rightarrow$ $\gamma\gamma$ Exclusive Sub-channels



## Di-jet tag

- The same selection as cut-based di-jet selection in SM analysis
- 1 category in 2011 and 2 categories in 2012 analysis
- Lepton tag
  - CMS Standard cut-based lepton ID updated in 2012 analysis to cope with new data taking conditions
  - ▶  $\Delta R(I, \gamma) > 1$ . (reject FSR γ),  $|\Delta M(e\gamma, Z)| > 5$  GeV (reject Zγ)
- MET tag (only 2012 analysis)
  - γ in the endcap are not considered due to negligible contribution

### MET > 70 GeV

|                                                   | $E_{\rm T}^{\rm miss}$ | Dijet                | Dijet        | Lepton |
|---------------------------------------------------|------------------------|----------------------|--------------|--------|
|                                                   | tag                    | high m <sub>jj</sub> | low $m_{jj}$ | tag    |
| Signal ( $m_{\rm H} = 120  {\rm GeV}$ )           | 3.8                    | 21.5                 | 15.3         | 5.7    |
| Data (115 < $m_{\gamma\gamma}$ < 125 GeV)         | 4                      | 20                   | 36           | 6      |
| Data (100 $< m_{\gamma\gamma} < 180 \text{GeV}$ ) | 41                     | 84                   | 271          | 30     |
| $\sigma_{\rm eff}  ({ m GeV})$                    | 1.91                   | 1.98                 | 2.02         | 2.0    |

19.July.2012 Yu-Wei Chang

# 2D-fit for Untagged Sub-channels

- Event classification based on  $\eta_{sc}$  and shower shape properties of photons
- **Exploit harder VBF, VH**  $p_{\tau}^{\gamma\gamma}$  spectrum:  $\pi_{T}^{\gamma\gamma} (= p_{T}^{\gamma\gamma} / m_{\nu\nu}) > 0.1$
- In the untagged class a 2D model is constructed by using ( $m_{yy}$ ,  $\pi_{\tau}^{\gamma\gamma}$ ):

$$\mathcal{L}(\mathbf{m}|\vec{\theta}) = \frac{e^{-\mu_s n_s + n_b}}{N!} \prod_{i=1}^N (\mu_s n_s \mathcal{P}_s^i(\mathbf{m}|\vec{\theta_1}) + n_b \mathcal{P}_b^i(\mathbf{m}|\vec{\theta_2}))$$
$$\mathcal{P}_s^i = \mathbf{A} \mathcal{A}^i(\mathbf{m}^{\gamma\gamma}|\vec{\theta}) \times \mathcal{K}^i(\pi^{\gamma\gamma}|\vec{\theta})$$

$$\mathcal{P}_s = \mathcal{M}_s(\Pi^{-1}|\theta) \times \mathcal{N}_s(\pi_{\mathrm{T}}^{-1}|\theta)$$

$$\mathcal{P}_b^i = \mathcal{M}_b^i(\mathbf{m}^{\gamma\gamma}, \pi_{\mathbf{T}}^{\gamma\gamma} | \vec{\theta}) \times \mathcal{K}_b^i(\pi_{\mathbf{T}}^{\gamma\gamma} | \vec{\theta})$$

 $\mathcal{M}_{s}(\mathbf{m}^{\gamma\gamma}|m_{0},\sigma_{CB},\alpha,n,f_{G},\sigma_{G}) = (1-f_{G})\mathcal{C}(\mathbf{m}^{\gamma\gamma}|m_{0},\sigma_{CB},\alpha,n) + f_{G}\mathcal{G}(\mathbf{m}^{\gamma\gamma}|m_{0},\sigma_{G})$ Crvstal-ball Gaussian

$$\mathcal{K}_{s}(\pi_{\mathrm{T}}^{\gamma\gamma}|\mu_{c},\sigma_{c},f_{c},\mu_{o},\sigma_{L},\sigma_{R}) = \begin{array}{c} f_{c}\mathcal{G}(\pi_{\mathrm{T}}^{\gamma\gamma}|\mu_{c},\sigma_{c}) + (1-f_{c})\mathcal{B}(\pi_{\mathrm{T}}^{\gamma\gamma}|\mu_{o},\sigma_{L},\sigma_{R}) \\ \hline & \\ Gaussian \end{array}$$

$$\mathcal{M}_b(\mathrm{m},\pi_\mathrm{T}|a_0,a_1) = \mathrm{m}^{a_0+a_1\pi_\mathrm{T}}$$
  
Power law

GeV 250 CMS Prelimi √s = 8 TeV L = 5.3 fb Events / ( Max(InI)<1.5, Min(R\_)>0.94 15 10 50 110 120 130 140 150 160 170 m,,, (GeV (0.02 500 CMS Preliminary √s = 8 TeV L = 5.3 fb<sup>-</sup> Events / 300 400 Max(IηI)<1.5, Min(R<sub>a</sub>)>0.94 200 100 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 Untagged (b) (a) (c) (d) Signal ( $m_{\rm H} = 120 \,{\rm GeV}$ ) 29.2 37.9 18.5 22.0 Data (115 <  $m_{\gamma\gamma}$  < 125 GeV) 1712

683

4992

1.44

9546

2.00

19.July.2012 Yu-Wei Chang

Search for the Higgs boson in the vy channel in CMS **Higgs Hunting 2012** 

 $\sigma_{\rm eff}$  (GeV)

Data (100 <  $m_{\gamma\gamma}$  < 180 GeV)

1755

8574

3.76

902

5105

3.72

# 2012 Cut-based Photon Selection

|  |  | CMS |
|--|--|-----|
|--|--|-----|

43

|                                 | barrel       |              | endcap       |              |
|---------------------------------|--------------|--------------|--------------|--------------|
|                                 | $R_9 > 0.94$ | $R_9 < 0.94$ | $R_9 > 0.94$ | $R_9 < 0.94$ |
| PF isolation sum, chosen vertex | 6            | 4.7          | 5.6          | 3.6          |
| PF isolation sum worst vertex   | 10           | 6.5          | 5.6          | 4.4          |
| Charged PF isolation sum        | 3.8          | 2.5          | 3.1          | 2.2          |
| $\sigma_{i\eta i\eta}$          | 0.0108       | 0.0102       | 0.028        | 0.028        |
| H/E                             | 0.124        | 0.092        | 0.142        | 0.063        |
| R9                              | 0.94         | 0.298        | 0.94         | 0.24         |

CiC4PF Photon ID cuts

Use PF Isolation to improve performance at 2012 high PU

## Selection Cuts for FP Exclusive Sub-channels



#### **Electron ID cuts**

|                                        | loose WP    |        |
|----------------------------------------|-------------|--------|
|                                        | Barrel      | Endcap |
| $\sigma_{i\eta i\eta}$                 | 0.01        | 0.03   |
| $\Delta \phi_{in}$                     | 0.015       | 0.010  |
| $\Delta \eta$                          | 0.007       | 0.009  |
| $\sigma_{i\eta i\eta}$                 | 0.01        | 0.03   |
| H/E                                    | 0.12        | 0.10   |
| $d_0$ w.r.t. selected vertex < 0.02 cr |             | 02 cm  |
| $d_z$ w.r.t. selected vertex           | < 0.2  cm   |        |
| 1/E - 1/p                              | 0.05        |        |
| Combined relative PF isolation         | lation 0.15 |        |
| vertex fit probability (conv. rej)     | $10^{-6}$   |        |
| missing hits (conv. rej.) 1            |             | 1      |

#### **Muon ID cuts**

| Description                     | criterion             |
|---------------------------------|-----------------------|
| Number of pixel hits            | > 0                   |
| $\chi^2/n.d.f$                  | < 10                  |
| Number of muon hits             | > 0                   |
| Number of matched muon stations | > 1                   |
| Number of tracker layers        | > 5                   |
| $d_0$ w.r.t. selected vertex    | < 0.02  cm            |
| $d_z$ w.r.t. selected vertex    | $< 0.05 \mathrm{~cm}$ |
| Combined relative PF isolation  | < 0.2                 |

#### **Di-jet event selection**

#### Jet ID cuts

| jet <i>ŋ</i>        | $\beta^*$                   | RMS     |
|---------------------|-----------------------------|---------|
| $\eta < 2.5$        | $< 0.2 \log N_{vtx} - 0.64$ | < 0.06  |
| $2.5 < \eta < 2.75$ | $< 0.3 \log N_{vtx} - 0.64$ | < 0.05  |
| $2.75 < \eta < 3$   | -                           | < 0.05  |
| $3 < \eta < 4.7$    | -                           | < 0.055 |

| Variable                                                   | cut VBF cat1     | VBF cat2          |
|------------------------------------------------------------|------------------|-------------------|
| $p_T^{\gamma_1}/m_{\gamma\gamma}$                          | > 0.5            | > 0.5             |
| $p_T^{\gamma_2}$                                           | $> 25  { m GeV}$ | $> 25{ m GeV}$    |
| $p_T^{j_1}$                                                | > 30  GeV        | > 30  GeV         |
| $p_T^{j_2}$                                                | > 30  GeV        | $> 20~{ m GeV}$   |
| $ \Delta \eta_{i_1 i_2} $                                  | > 3.0            | > 3.0             |
| Z                                                          | < 2.5            | < 2.5             |
| $M_{i_1 i_2}$                                              | > 500  GeV       | $> 250 { m ~GeV}$ |
| $ \Delta \hat{\phi}(\mathbf{j}\mathbf{j}, \gamma \gamma) $ | > 2.6            | > 2.6             |

## 8 TeV $\pi_{\tau}^{\gamma\gamma}$ Distribution in Untagged Sub-channels





19.July.2012 Yu-Wei Chang

# 2011 & 2012 Results of FP H $\rightarrow \gamma\gamma$



19.July.2012 Yu-Wei Chang