

Search for high mass standard model Higgs boson at Tevatron

Boris Tuchming – Irfu/Spp CEA Saclay

on behalf of the CDF and $\mathsf{D} \ensuremath{\varnothing}$ collaborations

Higgs Hunting 2012, Orsay

Where to look for SM Higgs boson ?

lrfu

CEO saclay

The Tevatron proton-antiproton collider

Run I (1993-1996) ~120 pb⁻¹ per experiment-top quark discovery Run II: (2002-2011) Shutdown 30 september 2011 ~12 fb⁻¹ delivered per experiment ~9.5 fb⁻¹ for physics analysis

rfu

 $\overline{\mathbf{O}}$

Higgs production at the Tevatron

Production cross section (for $115 < m_{\mu} < 180 \text{ GeV}$)

- In the 1.2-0.3 pb range for gluon fusion $gg \rightarrow H$
- In the 0.2-0.03 pb range for WH associated vector boson production
- In the 0.08-0.03 pb range for the vector boson fusion $qq \rightarrow Hqq$

Low Mass vs High Mass

lrfu CCCC saclay

The different high mass channels

l r f u CCC saclay

- Trilepton + E_{T}

Clean signature, but small σxBr

- Lepton + E_T + 4 jets : challenging

Also $H \rightarrow ZZ$

W vs W decays

Backgrounds to Higgs

- Di-boson WW, WZ, ZZ
 - Can yield 1, 2, 3 or 4 real leptons
 - NLO calculation for cross-sections
 - WW = irreducible background for $H \rightarrow WW$
 - NLO correction for \boldsymbol{p}_{T} and di-lepton opening angle
- Z+jets, Z+γ
 - Mismeasured jets or leptons yielding \mathbf{E}_{T}
 - Jet or gamma faking a 3rd lepton
 - NNLO or data cross-sections, data-based corrections to model p_T(Z)
- W+jets, W+γ
 - Jet or γ faking lepton for multi-lepton signatures
 - W+jets background to semi hadronic signatures
 - Data driven correction
- Top pair
 - Two real W's from top decays
 - Cross-section normalized at NNLO
 - QCD multijet events
 - Jets faking leptons
 - Mismeasured jets creating E_T

Search Strategy

Start with pre-selection of isolated high p_{τ} leptonic events

Try to maximize acceptance

- Many different lepton reconstruction categories, loose lepton-id
- Lower kinematic requirements
- Inclusive triggers when possible

<27

H_<242

Split analyses into subchannels

- Different signal/background to maximize discriminating power
- Sensitivity to different signal production mode
- Also gives more handles to control background level and systematic uncertainties

Multivariate techniques to maximize use of available information

- Decision trees (BDT), Neural Networks (NN), Matrix Element (ME)
- Trained for each subchannel and Higgs mass hypothesis.
- Input variables:
 - event topology, lepton kinematics, quality of leptons, jet content, Matrix Element discriminant, relation between lepton and \mathbb{Z}_{T} , relation between jets and \mathbb{Z}_{T} , b-tag of events (against top)
- Some analyses employ several MVA trained against different specific backgrounds

lrfu

CEO saclay

Use data as much as possible

Irfu

- Instrumental background need to be determined on data
 - jets faking leptons, photon faking electrons, charge mismeasurements, Missing E_τ
- Background enriched samples to tune or check modeling of specific background processes

Validate methodology using data

Irfu CEO saclay

eg at DØ:

Measure $p\overline{p} \rightarrow WW \rightarrow Iv \ Iv \ cross-section$

- Employ same analysis technique as in searches for H→WW→IvIv
 - Same subchannels
 - Same inputs to MVA
 - Train MVA to discriminate WW production
 - Similar treatment of systematic uncertainties

 $H \rightarrow WW \rightarrow l\nu l\nu$ search with 8.6 fb⁻¹ submitted to PRD [arxiv:1207.1041]

9250 DØ, 8.6 fb⁻¹, II + E_T 9200 • Data-Bkgd 9150 • Data-Bkgd 9150 • Bkgd ± 1 s.d. 100 • 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 T Final Discriminant

Measured cross-section: 11.1±0.8 pb in agreement with NNLO prediction

Higgs Hunting 2012, Orsay

Same sign di-lepton + E_r channels

Same sign signature mainly from $WH \rightarrow WWW$

- 2 isolated high p_{τ} leptons, Large missing E_{τ}
- Same charge (require high quality track)
 - unlike Drell-Yan and WW background
- Presence of jets (CDF)

CDF

~12x σ_{SM}

Higgs Hunting 2012, Orsay

Tri-lepton channels

Signature: 3 isolated hight p_T leptons,Large missing E_T

- Split into: non-Z, Z+1 jet, Z+2jet channels @CDF
- Split into: non-Z, Z+ METsig>2, Z+METsig<2 @DØ μμe

Limits derived from MVA distribution

Higgs Hunting 2012, Orsay

4 leptons @CDF

Irfu CCCC saclay

Higgs Hunting 2012, Orsay

 $H \rightarrow WW \rightarrow Ivjj$ and $VH \rightarrow VWW \rightarrow Ivjjjj$ @DØ

Challenging analyses with large W+jets background

 $H \rightarrow WW \rightarrow I_{Vjj}$ 5.4 fb⁻¹ PRL 106, 171802(2011)

- W mass constraint to reconstruct neutrino p₇
 - Full reconstruction of the kinematic
 - Enhance sensitivity for M_{H} > 160 GeV

 $H \rightarrow VWW \rightarrow I_{VJJJJ}$

- Part of the "low mass" WH \rightarrow lvbb analysis
 - 4-jet bin (0 and 1 tag) sensitive to high mass Higgs

B. Tuchming - SM High Mass Higgs at Tevatron

saclay

OS di-lepton + E_T channels

lrfu CCCC saclay

Opposite Sign Signature:

- 2 isolated high p_T leptons, opposite signs
 - Unlike W+jets and QCD background
- → Large missing E_T
 - Unlike Drell-Yan background
- Higgs is scalar at rest + V-A interaction
 - The leptons tend to be collinear
 - Small ∆φ(I,I)
 - Unlike WW background

OS di-lepton + E_T selection

Get rid of the dominant Z/γ background.

- Use kinematics, in particular *E*_T based variables that ensure *E*_T is significant and not due to mismeasured object
- DØ (ee, μμ) employs Decision Trees trained against Z/γ

DØ Preliminary $L = 9.7 \text{ fb}^{-1}$

μμ, 0 jet

anti-Z/y DT

0.2 0.4 0.6

DY-BDT 0iet

0.8

0

Typically: - O(1000) events remains at this stage for each sub-selection
- S/B is of order O(1/100)

data

Z+jets

Diboson

W+jets

Multijet

Signal × 1

(M_H = 165 GeV)

ttbar

Events/0.05

10⁶

10⁵

10

10³

10²

10

10

10⁻²

-1

-0.8 -0.6 -0.4 -0.2

B. Tuchming - SM High Mass Higgs at Tevatron

lrfu

œ

OS di-lepton + E_T selection

Get rid of the dominant Z/γ background.

 Use kinematics, in particular *E*_T based variables that ensure *E*_T is significant and not due to mismeasured object

DØ Preliminary $L = 9.7 \text{ fb}^{-1}$

anti-Z/γ DT

0.4 0.6

DY-BDT 0jet

0.8

μμ, 0 jet

DØ (ee, μμ) employs Decision Trees trained against Z/γ

Typically: - O(1000) events remains at this stage for each sub-selection
- S/B is of order O(1/100)

data

Z+jets

Diboson

W+jets

Multijet

Signal × 1

(M_H = 165 GeV)

ttbar

Events/0.05

10⁶

10⁵

10⁴

10³

10²

10

10

10⁻²

-1

-0.8

-0.6 -0.4

-0.2

0.2

lrfu

œ

Di-lepton + E_T (OS) : subchannels

lrfu $\overline{\mathbf{e}}$ saclay

 $L = 9.7 \text{ fb}^{-1}$

500

1 jet

140

160

18

180

M(II) (GeV/c²)

600

H_T (GeV)

 $L = 9.7 \text{ fb}^{-1}$

Events / 0.5

350

300

250

200

150

100

50

0

Di-lepton + E_T Subchannels

Events/0.0

Split analysis according to :

- Lepton flavor: ee, $e\mu$, $\mu\mu$ (DØ)
- Signal purity based on lepton quality (CDF)
- Low (<16 GeV) di-lepton mass (CDF)
- Enriched/Depleted WW samples thanks to a $\mathbf{\xi}$ dedicated \mathbf{W} W-BDT discriminant (DØ ee, $\mu\mu$)

Different instrumental (fake) background Different background composition Different lepton momentum resolution

typically 4% for electrons, 10% for muons at D0

Events/4 GeV Ge/ DØ Preliminary DØ Preliminary L = 9.7 fb 10⁶ = 9.7 fb Events/4 data μμ **+ ΜΕΤ** + MET Z+jets Diboson 10 10 W+jets 10² Multijet 10 ttbar 10 Signal × 1 10 (M_H = 165 GeV) 10 10⁻² 120 140 160 180 200 100 120 140 160 180 200 60 80 E_⊤ (GeV) E_T (GeV)

Higgs Hunting 2012, Orsay

rfu

saclay

OS di-lepton channels: multivariate analysis

MVA outputs are inputs for statistical analysis of data

Higgs Hunting 2012, Orsay

OS di-lepton results

95% CL exclusion								
	CDF	DØ						
Expected exclusion	[157,172] GeV	[159,170] GeV						
Actual exclusion	[155,172] GeV	165 GeV						
Sensitivity @ 125 GeV	3.6 x σ _{sm}	3.6 x $\sigma_{\rm SM}$						

lrfu

œ saclay

Systematic uncertainties

Main systematics	Signal	Bkg
Lepton id +trigger	2-5%	2-5%
Lepton/jet fakes	-	14-50%
charge mis-id		20-40%
Luminosity	5.9%	6.1%
Jet calibration	5-17%	3-30%
\mathcal{E}_{τ} modeling	-	~20%
pT(Z) pT(W) pT(WW)pT(H)	1.5%	1-5%
Cross-sections	(VBF,VH) 5-10%	6-10%
$gg \rightarrow H$ production Scale PDF	(jet dependent) 7-33% 7.6-30%	-

Uncertainties have a sizable impact

- Flat: affect overall normalization
- Shape: modify output of final discriminant
- Have to account of correlations among channels and experiments
- Impact is reduced thanks to constraints from background dominated region
- Degrade sensitivity by ~15-25%

Results from both experiments

Each experiment alone is sensitive to sizable mass range ~165 GeV

- For low masses [120-140] GeV: results from DØ show some slight excess
- A Higgs particle of 125 GeV, would create on average a ~1σ excess around [120-150] GeV

lrfu

CEO saclay

Summary/Conclusion

- CDF and DØ first achieved combined sensitivity to high mass Higgs in 2008
- Since then:
 - More data
 - More channels
 - Continuous improvements in analysis techniques
 - Still room for a few more improvements before final publication
- Each experiment is now probing @95% CL a sizable mass range of ~[155,175] GeV
- ✤ @125 GeV
 - Individual exclusion sensitivity is around 3.2 x SM
 - CDF+DØ results are not inconsistent with a Higgs of 125 GeV
 - No Large deviation relative to background-only hypothesis
 - DØ alone sees 1 to 1.5 sigma excess in the range [120-150] GeV
- Stay tuned:
 - See next talks for the contributions of low mass channels
 - See next talk for the combined CDF/DØ results
- More details:
 - CDF:http://www-cdf.fnal.gov/physics/new/hdg/Results.html
 - DØ: http://www-d0.fnal.gov/Run2Physics/WWW/results/higgs.htm

lrfu

CEO saclay

Backup slides

DØ and CDF limits

m_H	115	120	125	130	135	140	145	150	155	160	165	170	175	180	185	190	195	200
Expected:	5.81	4.37	3.20	2.57	2.09	1.81	1.54	1.31	1.10	0.79	0.72	0.91	1.07	1.32	1.68	2.05	2.43	2.80
Observed:	10.59	5.87	4.59	3.18	3.42	2.76	1.89	1.63	1.41	0.80	0.74	0.99	1.60	1.35	1.87	2.37	3.02	3.98

$\mathsf{CDF} \quad \mathsf{H} \to \mathsf{WW}$

High Mass	110	115	120	125	130	135	140	145	150	155	160	165	170	175	180	185	190	195	200
$-2\sigma/\sigma_{SM}$	5.39	2.95	1.88	1.29	0.96	0.74	0.64	0.52	0.46	0.40	0.32	0.30	0.34	0.42	0.47	0.58	0.75	0.86	1.00
$-1\sigma/\sigma_{SM}$	8.61	4.71	2.97	2.05	1.52	1.22	1.01	0.86	0.74	0.64	0.48	0.46	0.54	0.65	0.75	0.96	1.18	1.40	1.59
$\mathbf{Median}/\sigma_{\mathbf{SM}}$	13.06	7.07	4.47	3.08	2.29	1.85	1.53	1.31	1.13	0.96	0.71	0.69	0.81	0.97	1.13	1.46	1.80	2.10	2.42
$+1\sigma/\sigma_{SM}$	19.03	10.25	6.51	4.49	3.34	2.67	2.24	1.91	1.66	1.41	1.03	0.99	1.19	1.41	1.65	2.15	2.63	3.10	3.57
$+2\sigma/\sigma_{SM}$	26.57	14.32	9.21	6.28	4.62	3.75	3.17	2.69	2.32	1.97	1.43	1.39	1.65	1.95	2.31	2.99	3.71	4.30	4.99
Observed $/\sigma_{SM}$	17.28	11.52	4.96	2.98	2.81	1.85	1.84	1.22	0.94	0.83	0.50	0.40	0.84	0.99	1.26	1.87	2.56	5.10	5.33

Higgs search within 4th generation model

lrfu $\overline{\mathbf{e}}$ saclay

н

 t, u_4, d_4

gue

minin

- New heavy generation of quarks
 - ggH coupling is multiplied by 3 compared to SM
 - Production is enhanced by 9
- Search in di-lepton +MET channel can be recycled
 - Some analysis tuning required because of extended mass reach (eg $\Delta \phi(I,I)$ cut not applicable when W's are boosted)

CDF only 8.2 fb⁻¹ (summer 11) $123 < m_{\mu} < 215 \text{ GeV}$ @95%CL DØ only 8.1 fb⁻¹ (summer 11) 140 $< m_{\mu} < 240 \text{ GeV}$ @95%CL Combined result (summer 11) 124<m_H<286 GeV @95%CL

DØ OS subchannels

$D \not O H \rightarrow WW$

Irfu

Slight $[1\sigma - 1.5\sigma]$ excess at low mass

$H \rightarrow WW CDF subchannels$

B. Tuchming - SM High Mass Higgs at Tevatron

30

Di-lepton channels: new in 2012

Irfu CCCC saclay

CDF

More data, typically 20%

DØ

- More Data, typically 20%
- Opposite sign channels : ee , $\mu\mu$
 - Improved electron ID
 - split into enriched/depleted WW background region
 - O(10%) improvement
- New Tri-lepton analyses
 - split into three regions : non Z, Z+MET, Z+low MET, for $\mu\mu e$

Tevatron Experiments at Runll

lrfu

Cen

Recent LHC results

- Summer 11: LHC started to exclude a large range at high mass
- Winter 12: Remaining allowed region became narrower
 - Hints of an excess around 125 GeV
- July 4th 2012, updated results:
 - Searches exclude a large mass range up to 600 GeV
 - Only allowed region around 125 GeV
 - Observation of a Higgs-like particles @5 sigma claimed by Atlas & CMS around 125 GeV

lrfu

 $\overline{\mathbf{O}}$

$gg \rightarrow H (\mu_R, \mu_F)$ scale uncertainties

- Vary independently ggH +0jet, ggH+1jet, ggH+2jets scale uncertainties (s0, s1,s2).
- Account for migration between jet multiplicity bin.

	s0	s1	s2
0 jet	0.134	-0.230	0.0
1 jet	0.0	0.35	-0.127
2+jet	0.0	0.0	0.33

