

Searches for the SM Higgs boson in the WW decay channel with the CMS experiment

Dave Evans on behalf of the CMS collaboration

Higgs Hunting 2012, July 18, Orsay - France

H→WW Decay Channel

 $H \rightarrow WW$ has the highest production rate in most of the search range

* Expected in 2011 + 2012 datasets - See slide 33

Higgs Boson Production

Experimental Apparatus - Large Hadron Collider

- Analysed datasets of ~ 4.9 fb⁻¹ (5.1 fb⁻¹) in 2011 (2012)
 - Peak luminosity above 5×10³³ s⁻¹cm²
 - Average between 10-30 interactions per bunch crossing in Run2012

Experimental Apparatus - CMS Detector

Neutrinos are observed as "MET":

Negative vector sum of the transverse momentum of reconstructed particle candidates

$H \rightarrow WW \rightarrow I \nu I \nu A nalysis$

- Higgs boson signal
 - Two isolated leptons (e or μ) and MET
- Main reducible backgrounds
 - $Z \rightarrow II + (jets \rightarrow fake MET)$
 - $W \rightarrow Iv + (jets \rightarrow fake \ lepton)$
 - tW and ttbar production
- Main irreducible backgrounds
 - Standard model diboson decays to two leptons and MET

Events passing selection cuts (2011 dataset)

$H \rightarrow WW \rightarrow |v|v$: Separating Reducible Backgrounds

$H \rightarrow WW \rightarrow I \nu I \nu A nalysis$

- Initial preselection common to all Higgs boson mass hypotheses
 - Signal is expected to be small at preselection level
 - Can use preselection to validate analysis procedures
- Reduce top-quark decay background
 - Apply top-veto based on jet b-tagging and soft muon tagging
- Reduce WZ background
 - Reject events with a third lepton passing identification requirements
- Require lepton identification and isolation to reject mis-identified jets
- Final analysis optimised for each Higgs boson mass hypothesis
 - 8 TeV analysis (2012): Cut based 0, 1-jet and VBF analyses
 - 7 TeV analysis (2011): Multivariate analysis for 0, 1-jet events and cut based VBF analysis

$H \rightarrow WW \rightarrow I v I v$ Preselection and Jet Categorisation

- After preselection, categorise events by number of jets with $p_T > 30$ GeV
- Improve sensitivity by separating top quark background from signal
 - Zero jet category (most sensitive) dominated by irreducible background
 - Largest backgrounds in one and two-jet categories are top and non-resonant WW

$H \rightarrow WW \rightarrow IvIv:W+Jets$ and Top Backgrounds

- W+jets estimated from dilepton control region enriched in misidentified leptons
 - Require one lepton to pass the analysis selection, and the other to fail it but pass a loose selection
 - Weight these events by the probability (FR) for a misidentified jet that passes the loose selection to also pass the analysis selection
 - FR is measured in a dijet enriched control sample recorded using loose single lepton triggers
- Top background estimated from control region with inverted top veto
 - Background surviving the veto estimated by weighting events by the per event tagging efficiency
 - The per jet tagging efficiency for high and low p_T jets is measured in a separate control sample

$H \rightarrow WW \rightarrow IvIv$: Drell-Yan Background

• Reduce Drell-Yan background by applying a MET selection and Z mass veto

Measure Drell-Yan yield within the Z mass window

- Subtract WW and Top decays by using eµ/µe events (non-peaking background)
- Subtract resonant WZ and ZZ by using simulation (peaking background)
- Extrapolate to get the residual yield in the signal region using the expected ratio "Rout/in"

$H \rightarrow WW \rightarrow IvIv$: Separating Irreducible Background

- Dominant irreducible background is non-resonant WW decay
- Conservation of spin angular momentum and the weak interaction on left (right) handed particles (anti-particles) leads to a correlation between the directions of the observable leptons
 - Expect small dilepton $\Delta \phi$ and invariant mass if standard model Higgs boson

$H \rightarrow WW \rightarrow IvIv$: Estimating WW Background

Preselection (0-jet)

- Measure a simulation-to-data scale factor for the WW background in a high mass control region
 - Method applied for Higgs boson mass hypotheses up to 200 GeV
 - For larger mass hypotheses, control region has large signal contamination so use simulation predictions directly

- Extrapolate to find the yield in the signal region using simulation
 - Scale factor measured before applying m_T and $\Delta \Phi(II)$ cuts
 - Scale factor is applied to simulation prediction in signal region after all cuts
 - Systematic uncertainty including CR statistics ~ 10-20% depending on jet category

$H \rightarrow WW \rightarrow IvIv$: Signal Selection

- Analysis for 0, 1-jet events
 - 8 TeV (2012) analysis:
 - $p_T^{max}(I), p_T^{min}(I), M(II), \Delta \varphi(II), p_T(II), m_T$
 - 7 TeV (2011) analysis:
 - Train a boosted decision tree (BDT) for each Higgs boson mass hypothesis against non-resonant WW background
 - To train BDT, use cut based analysis variables plus $\Delta R(II)$, and $\Delta \phi(II, MET)$ and $\Delta \phi(II, jet)$ in 1-jet events
- VBF analysis for 2-jet events
 - M(jet, jet) > 450 GeV
 - $\Delta \eta$ (jet, jet) > 3.5 for p_T > 30 GeV tagged jets
 - No p_T > 30 GeV jet between the tagged jets

$H \rightarrow WW \rightarrow IvIv$: Results in 8 TeV Dataset

$H \rightarrow WW \rightarrow I_VI_V$: Results in 7+8 TeV Datasets

$H \rightarrow WW \rightarrow IvIv:$ Low Mass Region Interpretation

- Perform pseudo-experiments for signal (m_H = 125 GeV) + background
 - Draw a yield for signal and each background from a Poisson distribution
 - Record mean and standard deviation of observed limit for each mass hypothesis
- Expect to observe a broad excess up to around $m_H = 160 \text{ GeV}$

$H \rightarrow WW \rightarrow IvIv$: Measured Properties

- Results in WW sub channels are compatible within uncertainties
 - See talk on Friday on the combination of CMS results by M. Chen
- The ratio of the signal strength in the WW and ZZ channels is measured to be R_{WZ} = 0.9^{+1.1}-0.6
 - See talk by S. Baffioni tomorrow afternoon for more details on ZZ

$H \rightarrow WW \rightarrow Ivqq$ Analysis

• Selection differences from IVIV analysis

- One electron (muon) with p_T > 35 (25) GeV and MET > 25 (30) GeV (leptonic W decay - trigger)
- Two jets with 65 < M(jj) < 95 (hadronic W decay)
- Analysis is sensitive to if both W decays are on shell: best sensitivity ~ 350 GeV
- Main background:W+jets
 - Suppressed using angular likelihood discriminant for each mass hypothesis
- Signal extraction
 - Kinematic fit allows reconstruction of Higgs boson mass
 - Search for mass peak against continuum background from W+jets events

H→WW Conclusion

- The standard model Higgs boson is excluded in the mass range [129, 520] by the IVIV channel and [240, 450] GeV by the IVqq channel at 95% CL
 - Thus the range [122, 129] GeV cannot be excluded
 - We observe an excess of events compared to the background in the |V|V channel
- The excess is roughly two sigma above the background predictions
 - The excess is compatible with a Higgs boson of mass 125 GeV
 - The signal strength of the excess is compatible with a standard model Higgs boson
 - The signal strength observed in the WW and ZZ channels are consistent
- Next steps in $H \rightarrow WW \rightarrow I \vee I \vee I \vee$ analysis with full year dataset
 - Test properties of the excess measure the cross section and spin

Bibliography

- CMS Public Higgs Results
 - <u>https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsHIG</u>
- Combined 2011 and 2012 Higgs analysis
 - H→WW→lvlv: <u>https://twiki.cern.ch/twiki/bin/view/CMSPublic/Hig12017TWiki</u>
 - H→WW→lvqq: <u>https://twiki.cern.ch/twiki/bin/view/CMSPublic/Hig12021TWiki</u>
 - Combinations: <u>https://twiki.cern.ch/twiki/bin/view/CMSPublic/Hig12020TWiki</u>
- Other measurements
 - WW cross section: <u>https://twiki.cern.ch/twiki/bin/view/CMSPublic/</u> <u>PhysicsResultsSMP12013</u>
 - WH→WW→lvlvlv (7 TeV): <u>https://twiki.cern.ch/twiki/bin/view/CMSPublic/</u> <u>Hig11034TWiki</u>

Pileup and Jet Veto

MET Definition for $H \rightarrow WW \rightarrow IvIv$ Selection

- If the momentum of a lepton from Z decay is mis-measured
 - Invariant mass is also mis-measured
 - Event passes Z veto
 - Instrumental MET is generated
 - Event passes MET selection
- To reduce instrumental MET
 - Define a "Projected MET"
 - The MET component perpendicular to the lepton with the smallest $\Delta \Phi(MET, I)$
 - Projected MET also reduces background from DY→ττ

MET Definition for $H \rightarrow WW \rightarrow IvIv$ Selection

- Multiple proton-proton interactions per bunch crossing can produce instrumental MET
- Select events by taking the minimum of two different estimators of MET
 - Projected MET
 - Projected Track MET
- Track MET definition
 - Negative vector sum of tracks
 - $|Z_{track} Z_{PV}| < 0.1 \text{ cm}$
- The two estimators are more correlated for real MET than instrumental MET

$H \rightarrow WW \rightarrow I v I v Preselection$

т _н [GeV]	ee/µµ	eμ	
pT (max) [GeV]	20	20	
pT (min) [GeV]	10	10	
Third lepton veto	Applied	Applied	
Opposite-sign	Applied	Applied	
MII [GeV]	> 12 and not [76, 106]	> 12	
MET [GeV]	45 (Drell-Yan MVA for Higgs mass < 140 GeV)	20	
$\Delta \Phi(II, jet)$ [dg.]	< 165		
Top Veto	Applied	Applied	
рт(II) [GeV]	> 45	> 45	

$H \rightarrow WW \rightarrow I v I v Preselection Yields$

2012 Data

Table 2: Observed number of events and background estimates for an integrated luminosity of 5.1 fb^{-1} after applying the W⁺W⁻ selection requirements. Only statistical uncertainties on each estimate are reported.

	data	tot bkg.	WW	tt +tW
0-jet bin	1594	1501 ± 21	1046.1 ± 7.2	164.2 ± 5.4
1-jet bin	1186	1162 ± 27	381.0 ± 4.0	527.3 ± 8.4
2-jet bin	1295	1412 ± 24	177.0 ± 2.8	886.5 ± 11.1
	W+jets	WZ+ZZ	Z/γ^*	W+ $\gamma^{(*)}$
0-jet bin	158.2 ± 7.1	32.6 ± 0.6	73 ± 17	27.1 ± 3.9
1-jet bin	122.6 ± 6.7	30.3 ± 0.6	77 ± 24	23.7 ± 5.2
2-jet bin	94.9 ± 6.4	20.8 ± 0.5	227 ± 20	5.6 ± 2.1

WW Cross Section Measurement

- Measure WW cross section in H→WW→IVIV preselection
 - Increase trailing lepton pT cut to 20 GeV to reduce W+jets background and potential Higgs boson signal contamination
 - <u>https://twiki.cern.ch/twiki/bin/view/</u> <u>CMSPublic/</u> <u>PhysicsResultsSMP12013</u>
- Results
 - σ_{WW} = 69.9 ± 2.8 (stat.) ± 5.6 (syst.) ± 3.1 (lumi.) pb.
 - σ_{ww} (Theory) = 57.3 ^{+2.4}-1.6 pb

$H \rightarrow WW \rightarrow IvIv$ Cut Based Analysis (8 TeV)

- Select signal like events by exploiting kinematic correlations
 - Low dilepton invariant mass and delta phi
 - Transverse mass endpoint at Higgs boson mass

m _Н [GeV]	p⊤(max) [GeV]	рт(min) [GeV]	M(ll) [GeV]	Δφ(II) [dg.]	m⊤ [GeV]	рт(ll) [GeV]
	>	>	<	<	[,]	>
120	20	10	40	115	[80, 120]	45
130	25	10	45	90	[80, 125]	"
160	30	25	50	60	[90, 160]	"
200	40	25	90	100	[120, 200]	"

$H \rightarrow WW \rightarrow IvIv$ Selection Yields (0-Jet)

2012 Data

Table 3: Observed number of events, background estimates and signal predictions for an integrated luminosity of 5.1 fb⁻¹ after applying the H \rightarrow W⁺W⁻ cut-based selection requirements. The combined statistical, experimental, and theoretical systematic uncertainties are reported. The Z/ $\gamma^* \rightarrow \ell^+ \ell^-$ process includes the dimuon, dielectron and ditau final state.

m _H	$H \rightarrow W^+W^-$		$WZ + ZZ + Z/\gamma^* \rightarrow \ell^+ \ell^-$	Тор	W + jets	$W\gamma^{(*)}$	all bkg.	data
0-jet category $e\mu$ final state								
125	23.9 ± 5.2	87.6 ± 9.5	2.2 ± 0.2	9.3 ± 2.7	19.1 ± 7.2	6.0 ± 2.3	124.2 ± 12.4	158
130	35.3 ± 7.6	96.8 ± 10.5	2.5 ± 0.3	10.1 ± 2.8	20.7 ± 7.8	6.3 ± 2.4	136.3 ± 13.6	169
160	98.3 ± 21.2	53.6 ± 5.9	1.2 ± 0.1	6.3 ± 1.7	2.5 ± 1.3	0.2 ± 0.1	63.9 ± 6.3	79
400	16.6 ± 4.8	50.5 ± 5.8	1.5 ± 0.2	26.1 ± 5.7	4.5 ± 2.0	0.7 ± 0.5	83.3 ± 8.4	92
0-jet category $ee/\mu\mu$ final state								
125	14.9 ± 3.3	60.4 ± 6.7	37.7 ± 12.5	1.9 ± 0.5	10.8 ± 4.3	4.6 ± 2.5	115.5 ± 15.0	123
130	23.5 ± 5.1	67.4 ± 7.5	41.3 ± 15.9	2.3 ± 0.6	11.0 ± 4.3	4.8 ± 2.5	126.8 ± 18.3	134
160	86.0 ± 18.7	44.5 ± 4.9	11.3 ± 13.4	3.8 ± 0.9	1.3 ± 1.1	0.4 ± 0.3	61.4 ± 14.4	92
400	12.3 ± 3.6	37.1 ± 4.3	5.7 ± 1.3	20.0 ± 4.7	3.4 ± 1.9	13.6 ± 4.8	79.9 ± 8.3	55

$H \rightarrow WW \rightarrow |v|v$ Selection Yields (I-Jet)

2012 Data

Table 3: Observed number of events, background estimates and signal predictions for an integrated luminosity of 5.1 fb⁻¹ after applying the H \rightarrow W⁺W⁻ cut-based selection requirements. The combined statistical, experimental, and theoretical systematic uncertainties are reported. The Z/ $\gamma^* \rightarrow \ell^+ \ell^-$ process includes the dimuon, dielectron and ditau final state.

m _H	$H \rightarrow W^+W^-$		$WZ + ZZ \\ + Z/\gamma^* \rightarrow \ell^+ \ell^-$	Тор	W + jets	$W\gamma^{(*)}$	all bkg.	data	
	1-jet category $e\mu$ final state								
125	10.3 ± 3.0	19.5 ± 3.7	2.4 ± 0.3	22.3 ± 2.0	11.7 ± 4.6	5.9 ± 3.2	61.7 ± 7.0	54	
130	15.7 ± 4.7	22.0 ± 4.1	2.6 ± 0.3	25.1 ± 2.2	12.8 ± 5.1	6.0 ± 3.2	68.5 ± 7.6	64	
160	52.6 ± 14.9	20.1 ± 4.0	1.6 ± 0.2	21.5 ± 1.8	5.0 ± 2.3	0.9 ± 0.5	49.2 ± 5.0	62	
400	11.4 ± 3.3	39.1 ± 6.3	2.1 ± 0.3	56.6 ± 3.7	7.1 ± 3.1	0.6 ± 0.6	105.5 ± 8.0	96	
	1-jet category $ee/\mu\mu$ final state								
125	4.4 ± 1.3	9.7 ± 1.9	8.7 ± 4.9	9.5 ± 1.1	3.9 ± 1.7	1.3 ± 1.2	33.1 ± 5.7	43	
130	7.1 ± 2.2	11.2 ± 2.2	9.1 ± 5.4	10.7 ± 1.2	3.7 ± 1.7	1.3 ± 1.2	36.0 ± 6.3	53	
160	37.9 ± 10.9	13.8 ± 2.8	28.4 ± 10.7	16.2 ± 1.6	3.8 ± 2.1	0.0 ± 0.0	62.3 ± 11.4	65	
400	7.4 ± 2.2	19.6 ± 3.2	7.9 ± 2.4	33.4 ± 2.4	1.6 ± 1.3	4.4 ± 1.8	66.8 ± 5.1	67	

$H \rightarrow WW \rightarrow I \nu I \nu V$ Selection Yields (VBF)

2012 Data

Table 3: Observed number of events, background estimates and signal predictions for an integrated luminosity of 5.1 fb⁻¹ after applying the H \rightarrow W⁺W⁻ cut-based selection requirements. The combined statistical, experimental, and theoretical systematic uncertainties are reported. The Z/ $\gamma^* \rightarrow \ell^+ \ell^-$ process includes the dimuon, dielectron and ditau final state.

m _H	$H \rightarrow W^+W^-$	$pp \rightarrow W^+W^-$	$WZ + ZZ + Z/\gamma^* \rightarrow \ell^+ \ell^-$	Тор	W + jets	$W\gamma^{(*)}$	all bkg.	data	
	2-jet category $e\mu$ final state								
125	1.5 ± 0.2	0.4 ± 0.1	0.1 ± 0.0	3.4 ± 1.9	0.3 ± 0.3	0.0 ± 0.0	4.1 ± 1.9	6	
130	2.5 ± 0.4	0.5 ± 0.2	0.1 ± 0.0	3.0 ± 1.8	0.3 ± 0.3	0.0 ± 0.0	3.9 ± 1.9	6	
160	9.9 ± 1.3	0.8 ± 0.2	0.1 ± 0.0	4.2 ± 2.2	0.6 ± 0.4	0.0 ± 0.0	5.6 ± 2.2	11	
400	2.3 ± 0.4	1.9 ± 0.8	0.2 ± 0.0	9.1 ± 2.7	0.5 ± 0.4	0.0 ± 0.0	11.7 ± 2.9	22	
	-	·	2-jet catego	ry ee/μµ fina	l state				
125	0.8 ± 0.1	0.3 ± 0.1	3.1 ± 1.8	2.0 ± 1.2	0.0 ± 0.0	0.0 ± 0.0	5.4 ± 2.2	7	
130	1.3 ± 0.2	0.4 ± 0.2	3.8 ± 2.2	2.0 ± 1.2	0.0 ± 0.0	0.0 ± 0.0	6.2 ± 2.5	7	
160	6.0 ± 0.8	0.7 ± 0.3	4.7 ± 2.7	2.4 ± 1.2	0.2 ± 0.4	0.0 ± 0.0	8.0 ± 3.0	9	
400	1.6 ± 0.2	1.5 ± 0.7	6.6 ± 2.8	4.9 ± 1.9	0.7 ± 0.7	0.0 ± 0.0	13.8 ± 3.5	15	

Expected Exclusion in 2011 + 2012 Datasets

Compare Expected and Observed p-Value for Excess

The median expected p-value (left) for observing an excess at mass mH in assumption that the SM Higgs boson with this mass exists and the observed p-value (right)

Drell-Yan Background using "Rout/in" Method

Top Quark Background by Measuring Veto Efficiency

$$N_{\mathbb{W}}^{\mathsf{t} \circ \mathsf{p}} = (N_{\mathsf{t} \circ \mathsf{p}}^{\mathsf{d}} - \mathcal{N}_{\mathsf{d} \circ \mathsf{g}}^{\mathsf{d}} - \mathcal{N}_{\mathsf{t} \circ \mathsf{p}}^{\mathsf{d}}) \frac{1 - \epsilon_{\mathsf{t} \circ \mathsf{p}}^{\mathsf{d}}}{\epsilon_{\mathsf{t} \circ \mathsf{p}}^{\mathsf{d}}}$$

- General Principle
 - Reduce top quark decay background by rejecting
 - Events with b-tagged jets
 - Events with soft muons from leptonic b-decay
 - Estimate residual background by measuring event tagging efficiency
- Measure per jet tagging efficiency in top decay enriched control sample
 - Require exactly one b-tag with p_T > 30 GeV
 - Exclude this tag and measure the efficiency to find a second b-tag
- Determine event tagging efficiency according to number of jets available

Expected Sensitivities

Standard Model Signal Strength (7+8 TeV)

- The best fit signal strength is 0.80 ± 0.22 from all channels
 - https://twiki.cern.ch/twiki/bin/ view/CMSPublic/ Hig12020TWiki

$WH \rightarrow WW \rightarrow |v|v|v$

- Associated production of WH leading to trilepton final state
 - <u>https://twiki.cern.ch/twiki/bin/view/CMSPublic/Hig11034TWiki</u>

