Electroweak Physics and Higgs Boson Searches at DØ

Séminaire LAL, Orsay

23rd April 2007

Michiel Sanders

LPNHE Paris

Introduction

- Standard model:
 - * Tested extensively at LEP, Tevatron, . . .
 - * Very successful !
 - * But: where is the Higgs ?
- How to find the Higgs:
 - * Precision electroweak studies
 - * Direct search

Outline

- Tevatron & DØ
- Electroweak topics:
 - * Z boson p_{T} spectrum
 - * Z boson rapidity distribution
 - * W boson charge asymmetry
- Higgs search:
 - * WH channel
 - * Other channels, DØ combination
 - * Future

- Conclusion

Tevatron & DØ

- pp̄ collisions at $\sqrt{s}=1.96~{\rm TeV}$
- Up to now: $\int {\cal L} dt \simeq 2.8~{
 m fb}^{-1}$ delivered / experiment
- Good weeks: > 40 pb⁻¹ per week
- Results shown in this talk: up to 1 fb $^{-1}$

$\int \mathcal{L} dt$

W & Z Production at the Tevatron

- Test QCD at NNLO
- Probe PDF's
- W & Z production properties ($\rightarrow m_W$ measurement)
- Benchmark for other measurements/searches
- Luminosity measurement (\rightarrow LHC)

Hadronic decays very hard to select

Transverse Momentum of Z (\rightarrow ee) Boson

- At lowest order, Z produced at rest
- Gluon radiation gives the Z a transverse boost
- Calculable:
 - * High p_T : (N)NLO pQCD
 - * Low p_T : pQCD and soft-gluon resummation, but still non-perturbative parameterization \rightarrow RESBOS
 - * Recent calculation: p_{T} shape broadens at small x
- Goal of measurement:
 - * Verify theory predictions
 - * Fix the non-perturbative parameters

Z Experimental Signature

Electrons identified by their showershape in the calorimeter For each fb^{-1} , about 100k candidates

Experimental Challenges

- Measure selection efficiencies
 - * Use the data, tag-and-probe methods
- Understand electron energy measurement
 - * Use the Z peak itself
- Measure background contributions
 - * Use data to determine "QCD" background
 - * Use simulation to determine $Z \rightarrow \tau \tau$ etc.

Experimental Challenges

- Model everything in parameterized detector simulation
- Unfold momentum spectrum
- \Rightarrow Compare to predictions

Invariant Mass Distributions

– Good agreement

- Small background (70 < $m_{\rm inv}$ < 110 GeV)

Transverse Momentum of Z Boson

– Good agreement with RESBOS

– No strong evidence for small-x behaviour

Transverse Momentum of Z Boson

- Statistics better than in Run I
- Systematics will be better soon...

Z Transverse Momentum in Near Future

 \Rightarrow Split data in different $y (\sim x)$ bins to test broadening

Rapidity of Z (\rightarrow ee) Boson

- Not well measured yet, in particular at large |y|~(>1.5)
- Calculated at NNLO
- Sensitive to parton distribution functions in a region complementary to other measurements

Experimental Procedure

- Procedure similar to that for $p_T(Z)$ measurement
- In addition: longitudinal interaction region profile

Rapidity of Z Boson

- Statistics limited

- In future: constrain PDF's

W Production Charge Asymmetry

- Proton's momentum fraction of u-quark > d-quark
- \Rightarrow W⁺⁽⁻⁾ boosted in p(\bar{p}) direction \Rightarrow charge asymmetry
 - Asymmetry partly preserved by decay-leptons

W Charge Asymmetry

$$A = \frac{N^+(y) - N^-(y)}{N^+(y) + N^-(y)}$$

 $\Rightarrow {\rm D} \varnothing \ {\rm probes} \ (x,Q^2) \ {\rm not} \ {\rm probed} \ {\rm by, \ e.g., \ HERA}$

- Low charge mis-id rate: $0.01\%~(\mu)$
- Efficiencies charge independent

W ($\rightarrow \mu \nu$) Charge Asymmetry

- Statistics dominated (230 pb^{-1})

- Already sensitive to PDF's

Precision EW & Higgs

– $p_T(Z)$ model & PDF's important input to m_W measurement

 \ast And to future LHC physics

- $m_{\rm W}$ together with $m_{\rm top} \Rightarrow m_{\rm H}$

W Boson Mass

CDF Run II: $m_{ m W}=$ 80.413 \pm 0.048 GeV

 $\Rightarrow m_{W} = 80.398 \pm 0.025$ GeV (LEP & Tevatron combi)

Top Quark Mass

$$m_{
m top} = 170.9 \pm 1.8 \,\, {
m GeV}$$
 (Tevatron combi)

Precision EW & Higgs

 $m_{\rm H} = 76^{+33}_{-24} \text{ GeV}$ $m_{\rm H} < 144 \text{ GeV} \text{ at } 95\% \text{ CL}$

 \Rightarrow Within reach of the Tevatron!

- Dominant decay modes:
 - * $b\bar{b}$ at low $m_{\rm H}$
 - \ast WW at high $m_{\rm H}$

- Gluon fusion:
 - * Experimentally only feasible at high $m_{\rm H}$ (HightarrowWW)
- Associated production (WH, ZH)
 - $\ast\,$ "Golden channel" at low $m_{\rm H}$

WH Basic Selection

– Trigger:

- * Single-lepton or lepton + jets
- * Add topological triggers in μ channel $\rightarrow \sim 100\%$ efficiency

– W selection:

- * High p_{T} lepton (e or μ)
- "Higgs" selection:
 - \ast Two or three high $p_{\rm T}$ jets

WH Backgrounds

- Background sources:
 - * W with additional jets (including $Wb\bar{b}$)
 - * tt, single top

 - * Di-EW-boson
- \Rightarrow Need to precisely model these !
 - * Multi-jet directly from data
 - * Others from simulation

After Basic Selection

- Good agreement

- W with additional (non-b) jets dominant

b-Tagging

Exploit b-lifetime:

- Combine lifetime variables in a neural network:
 - * Vertex mass, decay length, impact parameter, . . .
- \Rightarrow High b-tagging efficiency:
 - $\ast\,$ ''Tight'': 48% at 0.5% fake rate
 - \ast "Loose": 70% at 4.5% fake rate

After b-Tagging

- Treat double-Loose tag & single-Tight tag exclusively
- \Rightarrow Good agreement, Wbb dominant

After Double-b-Tagging

WH	1.67 ± 0.32
Wbb	81.4 ± 23.1
tī	54.4 ± 14.5
W+jets (light,c)	35.8 ± 11.9
Multijet	26.0 ± 8.0
Single top	14.9 ± 3.4
WZ	7.0 ± 1.24
Total	219.6 ± 31.0
Observed	222

 \Rightarrow No significant excess. . .

In the Absence of Signal

- Combine four WH channels and set cross section limits

- * Single & double b-tag
- \ast Electron & μ channel

Future: WH Neural Network Selection

- "Cut-based" analysis not always optimal
- \Rightarrow Combine all kinematic information in a neural network
 - Train separate neural networks against major backgrounds; apply to all events

WH Neural Network Selection

Apply $Wb\overline{b}$ and top neural network to all events:

 \Rightarrow Some separation

WH Neural Network Selection

 \Rightarrow Work in progress. . .

Other Higgs Search Channels

DØ Combined Cross Section Limit

– No $m_{\rm H}$ exclusion yet, but

* At
$$m_{
m H} = 115$$
 GeV: factor \sim 8.4 (obs.), \sim 5.9 (exp.)
* At $m_{
m H} = 160$ GeV: factor \sim 3.7 (obs.), \sim 4.2 (exp.)

Future Prospects

- More $\int {\cal L} {
 m d} t$, up to \sim 8 fb $^{-1}$ by end 2009
- SMT Layer 0
- Be smarter with b-tagging
- Include more decay channels:
 - * Hadronic τ decays
 - $\ast\,$ Hadronic W decays in H ${\rightarrow}WW$
 - $* \ \mathsf{WH} \to \mathsf{WWW}$
 - * ZH single b-tag
- Reduce systematic uncertainties
- Improve di-jet mass resolution

Future Prospects

		σ -factor	σ -factor
	$\int {\cal L} {\sf d} t$ Gain	115 GeV	160 GeV
$\int \mathcal{L} d t = 1 \; fb^{-1}$	-	5.9	4.2
$\int {\cal L} { m d} t =$ 2 fb $^{-1}$	2	4.2	3.0
b-Tagging	2	3.0	3.0
Multivar. techn.	1.7	2.3	2.3
Mass resolution	1.5	1.8	2.3
New channels	1.3/1.5	1.6	1.9
Systematics	1.2	1.5	1.7

 \Rightarrow Need 4.5 fb⁻¹ ($m_{\rm H} = 115$ GeV), 6 fb⁻¹ ($m_{\rm H} = 160$ GeV)

Also add CDF. . .

Conclusions

- Standard model still going strong
- Tevatron is providing important additional tests and constraints
- Higgs not found yet, but getting close