Theory of quarkonium electromagnetic transitions

Antonio Vairo

Technische Universität München

Radiative transitions: basics

Two dominant single-photon-transition processes:

- (1) magnetic dipole transitions (M1)
- (2) electric dipole transitions (E1)

Radiative transitions: basics

Two dominant single-photon-transition processes:

- (1) magnetic dipole transitions (M1)
- (2) electric dipole transitions (E1)

(1) M1 transitions in the non-relativistic limit:

$$\Gamma_{n^{3}S_{1} \to n^{\prime 1}S_{0}\gamma}^{\mathrm{M1}} = \frac{4}{3} \alpha e_{Q}^{2} \frac{k_{\gamma}^{3}}{m^{2}} \left| \int_{0}^{\infty} dr \, r^{2} \, R_{n^{\prime}0}(r) \, R_{n0}(r) \, j_{0}\left(\frac{k_{\gamma}r}{2}\right) \right|^{2}$$

If
$$k_{\gamma} \langle r \rangle \ll 1$$
 $j_0(k_{\gamma} r/2) = 1 - (k_{\gamma} r)^2/24 + \dots$

- n = n' allowed transitions
- $n \neq n'$ hindered transitions

Radiative transitions: basics

Two dominant single-photon-transition processes:

- (1) magnetic dipole transitions (M1)
- (2) electric dipole transitions (E1)

(2) E1 transitions in the non-relativistic limit:

$$\Gamma_{n^{2S+1}L_{J} \to n'^{2S+1}L'_{J'}\gamma}^{\text{E1}} = \frac{4}{3} \alpha e_{Q}^{2} k_{\gamma}^{3} \left[I_{3}(nL \to n'L') \right]^{2} (2J'+1) \max_{\{L,L'\}} \left\{ \begin{array}{cc} J & 1 & J' \\ L' & S & L \end{array} \right\}^{2}$$

where

$$I_N(nL \to n'L') = \int_0^\infty dr \, r^N \, R_{n'L'}(r) \, R_{nL}(r)$$

Note that, for equal energies and masses, M1 transitions are suppressed by a factor $1/(m\langle r \rangle)^2 \sim v^2$ with respect to E1 transitions, which are much more common.

$$\Gamma_{\chi_c(1P)\to J/\psi\gamma}/\Gamma_{\chi_b(3P)\to\Upsilon(3S)\gamma}$$

$$\frac{\Gamma_{\chi_c(1P)\to J/\psi\,\gamma}}{\Gamma_{\chi_b(3P)\to\Upsilon(3S)\,\gamma}} \approx \frac{e_c^2 \ k_{\gamma}^{(c)\,3} \ \langle r^2 \rangle^{(c)}}{e_b^2 \ k_{\gamma}^{(b)\,3} \ \langle r^2 \rangle^{(b)}} \approx 33^{+16}_{-9}$$

assuming $\langle r^2 \rangle^{(b)} \approx (1.5 \pm 0.5) \times \langle r^2 \rangle^{(c)}$, $k_{\gamma}^{(c)} \approx 402$ MeV and $k_{\gamma}^{(b)} \approx 174$ MeV.

* from $M_{\chi_c(1P)} \approx h_c(1P) \approx 3525$ MeV, $M_{J/\psi} \approx 3097$ MeV, $M_{\chi_b(3P)} \approx 10530$ MeV and $M_{\Upsilon(3S)} \approx 10355$ MeV.

Relativistic corrections

• Relativistic corrections may be sizeable: about 30% for charmonium ($v_c^2 \approx 0.3$) and 10% for bottomonium ($v_b^2 \approx 0.1$).

 For quarkonium radiative transitions, essentially one model/calculation has been used for over twenty years to account for relativistic corrections, based upon:

relativistic equation with scalar and vector potentials;

non-relativistic reduction;

a somewhat imposed relativistic invariance to calculate recoil corrections.

• Grotch Owen Sebastian PR D30 (1984) 1924

Relativistic corrections and EFTs

Nowadays, however, effective field theories (EFT) for quarkonium allow

- to derive expressions for radiative transitions directly from QCD;
- with a well specified range of applicability;
- to determine a reliable error associated with the theoretical determinations;
- to improve the theoretical determinations in a systematic way.

• Brambilla Pineda Soto Vairo RMP 77 (2005) 1423

Scales

 $mv \gg \Lambda_{\text{QCD}}$ for weakly-coupled quarkonia $(J/\psi, \eta_c, \Upsilon(1S), \eta_b, ...);$ $mv \sim \Lambda_{\text{QCD}}$ for strongly-coupled quarkonia (excited states);

 $k_{\gamma} \sim mv^2$ for hindered M1 transitions, most E1 transitions; $\Rightarrow k_{\gamma} r \ll 1$ $k_{\gamma} \sim mv^4$ for allowed M1 transitions.

Degrees of freedom

• Degrees of freedom at scales lower than mv:

 $Q-\bar{Q}$ states, with energy ~ Λ_{QCD} , mv^2 and momentum $\leq mv$ \Rightarrow (*i*) singlet S (*ii*) octet O [if $mv \gg \Lambda_{QCD}$] Gluons with energy and momentum ~ Λ_{QCD} , mv^2 [if $mv \gg \Lambda_{QCD}$] Photons of energy and momentum lower than mv.

• Power counting:

```
p \sim \frac{1}{r} \sim mv;
all gauge fields are multipole expanded: A(R, r, t) = A(R, t) + \mathbf{r} \cdot \nabla A(R, t) + \dots
and scale like (\Lambda_{\text{QCD}} \text{ or } mv^2)^{\text{dimension}}.
```

Lagrangian

$$\mathcal{L}_{\text{pNRQCD}} = -\frac{1}{4} F_{\mu\nu}^{a} F^{\mu\nu a} - \frac{1}{4} F_{\mu\nu}^{\text{em}} F^{\mu\nu \text{em}} + \int d^{3}r \operatorname{Tr} \left\{ \mathrm{S}^{\dagger} \left(i\partial_{0} - \frac{\mathbf{p}^{2}}{m} - V_{s} \right) \mathrm{S} + \mathrm{O}^{\dagger} \left(iD_{0} - \frac{\mathbf{p}^{2}}{m} - V_{o} \right) \mathrm{O} \right\}$$

$$+ \operatorname{Tr} \left\{ \mathrm{O}^{\dagger} \mathbf{r} \cdot g \mathbf{E} \mathrm{S} + \mathrm{S}^{\dagger} \mathbf{r} \cdot g \mathbf{E} \mathrm{O} \right\} + \frac{1}{2} \operatorname{Tr} \left\{ \mathrm{O}^{\dagger} \mathbf{r} \cdot g \mathbf{E} \mathrm{O} + \mathrm{O}^{\dagger} \mathrm{Or} \cdot g \mathbf{E} \right\} \quad [\text{if } mv \gg \Lambda_{\text{QCD}}] + \cdots + \mathcal{L}_{\gamma}$$

$$\text{NLO in } r$$

$$\mathcal{L}_{\gamma} = \mathcal{L}_{\gamma}^{\mathrm{M1}} + \mathcal{L}_{\gamma}^{\mathrm{E1}} + \dots$$

$$\mathcal{L}_{\gamma}^{\mathrm{M1}} = \operatorname{Tr} \left\{ \frac{1}{2m} V_{1}^{\mathrm{M1}} \left\{ \mathbf{S}^{\dagger}, \boldsymbol{\sigma} \cdot ee_{Q} \mathbf{B}^{\mathrm{em}} \right\} \mathbf{S} \right. \\ \left. + \frac{1}{2m} V_{1}^{\mathrm{M1}} \left\{ \mathbf{O}^{\dagger}, \boldsymbol{\sigma} \cdot ee_{Q} \mathbf{B}^{\mathrm{em}} \right\} \mathbf{O} \quad \left[\text{if } mv \gg \Lambda_{\mathrm{QCD}} \right] \right. \\ \left. + \frac{1}{4m^{2}} \frac{V_{2}^{\mathrm{M1}}}{r} \left\{ \mathbf{S}^{\dagger}, \boldsymbol{\sigma} \cdot \left[\hat{\mathbf{r}} \times \left(\hat{\mathbf{r}} \times ee_{Q} \mathbf{B}^{\mathrm{em}} \right) \right] \right\} \mathbf{S} \right. \\ \left. + \frac{1}{4m^{2}} \frac{V_{3}^{\mathrm{M1}}}{r} \left\{ \mathbf{S}^{\dagger}, \boldsymbol{\sigma} \cdot ee_{Q} \mathbf{B}^{\mathrm{em}} \right\} \mathbf{S} \right. \\ \left. + \frac{1}{4m^{3}} V_{4}^{\mathrm{M1}} \left\{ \mathbf{S}^{\dagger}, \boldsymbol{\sigma} \cdot ee_{Q} \mathbf{B}^{\mathrm{em}} \right\} \mathbf{\nabla}_{r}^{2} \mathbf{S} + \cdots \right\}$$

• Brambilla Jia Vairo PR D73 (2006) 054005

• Brambilla Jia Vairo PR D73 (2006) 054005

$$\begin{aligned} \mathcal{L}_{\gamma}^{\text{E1}} &= \operatorname{Tr} \left\{ V_{1}^{\text{E1}} \, \mathrm{S}^{\dagger} \mathbf{r} \cdot ee_{Q} \mathbf{E}^{\text{em}} \mathrm{S} \\ &+ V_{1}^{\text{E1}} \, \mathrm{O}^{\dagger} \mathbf{r} \cdot ee_{Q} \mathbf{E}^{\text{em}} \mathrm{O} \quad [\text{if } mv \gg \Lambda_{\text{QCD}}] \\ &+ \frac{1}{24} \, V_{2}^{\text{E1}} \, \mathrm{S}^{\dagger} \mathbf{r} \cdot [(\mathbf{r} \cdot \boldsymbol{\nabla})^{2} ee_{Q} \mathbf{E}^{\text{em}}] \mathrm{S} \\ &+ \frac{i}{4m} \, V_{3}^{\text{E1}} \, \mathrm{S}^{\dagger} \{ \boldsymbol{\nabla} \cdot, \mathbf{r} \times ee_{Q} \mathbf{B}^{\text{em}} \} \mathrm{S} \\ &+ \frac{i}{12m} \, V_{4}^{\text{E1}} \, \mathrm{S}^{\dagger} \{ \boldsymbol{\nabla} r \cdot, \mathbf{r} \times [(\mathbf{r} \cdot \boldsymbol{\nabla}) ee_{Q} \mathbf{B}^{\text{em}}] \} \mathrm{S} \\ &+ \frac{1}{4m} \, V_{5}^{\text{E1}} \, [\mathrm{S}^{\dagger}, \boldsymbol{\sigma}] \cdot [(\mathbf{r} \cdot \boldsymbol{\nabla}) ee_{Q} \mathbf{B}^{\text{em}}] \mathrm{S} \\ &- \frac{i}{4m^{2}} \, V_{6}^{\text{E1}} \, [\mathrm{S}^{\dagger}, \boldsymbol{\sigma}] \cdot (ee_{Q} \mathbf{E}^{\text{em}} \times \boldsymbol{\nabla}_{r}) \mathrm{S} + \cdots \right \end{aligned}$$

Matching

The matching consists in the calculation of the coefficients V. They get contributions from

• hard modes ($\sim m$):

$$\bar{\psi}(i\not\!\!D - m)\psi \to \psi^{\dagger}\left(iD_{0} + \frac{\mathbf{D}^{2}}{2m} + \frac{c_{F}^{\mathrm{em}}}{2m}\boldsymbol{\sigma} \cdot ee_{Q}\mathbf{B}^{\mathrm{em}} + \cdots\right)\psi$$

From HQET:

$$c_F^{\rm em} \equiv 1 + \kappa^{\rm em} = 1 + 2\frac{\alpha_{\rm s}}{3\pi} + \dots$$

is the quark magnetic moment.

• Grozin Marquard Piclum Steinhauser NP B789 (2008) 277 (3 loops)

• soft modes (
$$\sim mv$$
).

M1 operator at $\mathcal{O}(1)$

$$V_1^{\mathrm{M1}}\left\{S^{\dagger}, \frac{\boldsymbol{\sigma} \cdot e\mathbf{B}^{\mathrm{em}}}{2m}\right\}S$$

$$V_1^{\mathrm{M1}} = \left(\mathsf{hard}\right) \times \left(\mathsf{soft}\right)$$

•
$$\left(\text{hard} \right) = c_F^{\text{em}} = 1 + \frac{2\alpha_s(m)}{3\pi} + \cdots$$

• Since $\boldsymbol{\sigma} \cdot e\mathbf{B}^{em}(\mathbf{R})$ behaves like the identity operator to all orders V_1^{M1} does not get soft contributions.

Diagrammatic factorization of the magnetic dipole coupling in the $SU(3)_f$ limit.

• The argument is similar to the factorization of the QCD corrections in $b \to u e^- \bar{\nu}_e$, which leads to $\mathcal{L}_{eff} = -4G_F/\sqrt{2} V_{ub} \bar{e}_L \gamma_\mu \nu_L \bar{u}_L \gamma^\mu b_L$ to all orders in α_s .

M1 operator at $\mathcal{O}(1)$

$$V_1^{\mathrm{M1}}\left\{S^{\dagger}, \frac{\boldsymbol{\sigma} \cdot e\mathbf{B}^{\mathrm{em}}}{2m}\right\}S$$

•
$$V_1^{M1} = 1 + \frac{2\alpha_s(m)}{3\pi} + \cdots$$

• No large quarkonium anomalous magnetic moment!

• Dudek Edwards Richards PR D73 (2006) 074507 (lattice)

M1 operators at $\mathcal{O}(v^2)$

$$\frac{1}{4m^2} \frac{V_2^{\text{M1}}}{r} \left\{ S^{\dagger}, \boldsymbol{\sigma} \cdot \left[\hat{\mathbf{r}} \times \left(\hat{\mathbf{r}} \times ee_Q \mathbf{B}^{\text{em}} \right) \right] \right\} S \text{ and } \frac{1}{4m^2} \frac{V_3^{\text{M1}}}{r} \left\{ S^{\dagger}, \boldsymbol{\sigma} \cdot ee_Q \mathbf{B}^{\text{em}} \right\} S$$

• to all orders
$$\left(\mathsf{hard} \right) = 2c_F - c_s = 1$$
; $\left(\mathsf{soft} \right) = r^2 V_s'/2$

• Brambilla Gromes Vairo PL B576 (2003) 314 (Poincaré invariance) Luke Manohar PL B286 (1992) 348 (reparameterization invariance)

- $V_2^{\text{M1}} = r^2 V_s'/2$ and $V_3^{\text{M1}} = 0$
- No scalar interaction!

M1 operators at $\mathcal{O}(v^2)$

$$V_4^{\mathrm{M1}}\left\{S^{\dagger}, \frac{\boldsymbol{\sigma} \cdot e\mathbf{B}^{em}}{4m^3}\right\} \boldsymbol{\nabla}_r^2 S$$

$$V_4^{\mathrm{M1}} = \left(\mathsf{hard}\right) \times \left(\mathsf{soft}\right)$$

- (hard) = 1
 Manohar PR D56 (1997) 230 (reparameterization invariance)
- (soft) = 1 to all orders
 Brambilla Pietrulewicz Vairo PRD 85 (2012) 094005

•
$$V_4^{M1} = 1$$

$\mathcal{O}(v^2)$ corrections to weakly-coupled quarkonia

- If $mv^2 \sim \Lambda_{\rm QCD}$ the above graphs are potentially of order $\Lambda_{\rm QCD}^2/(mv)^2 \sim v^2$.
- The contribution vanishes, for $\sigma \cdot e \mathbf{B}^{em}(\mathbf{R})$ behaves like the identity operator.
- There are no non-perturbative contributions at $\mathcal{O}(v^2)$!
- This is not the case for strongly-coupled quarkonia:

non-perturbative corrections affect the operator $\frac{1}{m^3} \frac{V_5^{M1}}{r^2} \left\{ S^{\dagger}, \boldsymbol{\sigma} \cdot ee_Q \mathbf{B}^{em} \right\} S.$

$$J/\psi \to \eta_c \gamma$$

$$\Gamma_{J/\psi\to\eta_c\gamma} = \int \frac{d^3k}{(2\pi)^3} (2\pi)\delta(E_p^{J/\psi} - k - E_k^{\eta_c}) \left| \langle \gamma(k)\eta_c | \mathcal{L}_{\gamma} | J/\psi \rangle \right|^2$$

$$J/\psi \to \eta_c \gamma$$

Up to order v^2 the transition $J/\psi \rightarrow \eta_c \gamma$ is completely accessible by perturbation theory.

$$\Gamma_{J/\psi \to \eta_c \gamma} = \frac{16}{3} \alpha e_c^2 \frac{k_\gamma^3}{M_{J/\psi}^2} \left[1 + 4 \frac{\alpha_s (M_{J/\psi}/2)}{3\pi} - \frac{32}{27} \alpha_s (p_{J/\psi})^2 \right]$$

The normalization scale for the α_s inherited from κ^{em} is the charm mass $(\alpha_s(M_{J/\psi}/2) \approx 0.35 \sim v^2)$, and for the α_s , which comes from the Coulomb potential, is the typical momentum transfer $p_{J/\psi} \approx 2m\alpha_s(p_{J/\psi})/3 \approx 0.8 \text{ GeV} \sim mv$.

$$\Gamma_{J/\psi \to \eta_c \gamma} = (1.5 \pm 1.0) \text{ keV}$$

to be compared with the non-relativistic result ≈ 2.83 keV.

$J/\psi \rightarrow \eta_c \gamma$ (experimental status)

• Only one direct experimental measurement existed for long time:

$$\Gamma_{J/\psi \to \eta_c \gamma} = (1.14 \pm 0.23) \text{ keV}$$

• Crystal Ball coll. PR D34 (1986) 711

• The situation changed in the last few years:

$$\Gamma_{J/\psi \to \eta_c \gamma} = (1.85 \pm 0.08 \pm 0.28) \text{ keV}$$

• CLEO coll. PRL 102 (2009) 011801

$$\Gamma_{J/\psi \to \eta_c \gamma} = (2.17 \pm 0.14 \pm 0.37) \text{ keV} \qquad \text{(preliminary?)}$$

• KEDR coll. Chin. Phys. C34 (2010) 831

$\Gamma_{J/\psi \to \eta_c \gamma}$ as a probe of the J/ψ potential

$$\Gamma_{J/\psi \to \eta_c \gamma} = \frac{16}{3} \alpha e_c^2 \frac{k_{\gamma}^3}{M_{J/\Psi}^2} \left(1 + \frac{4}{3} \frac{\alpha_s (M_{J/\Psi}/2)}{\pi} - \frac{2}{3} \frac{\langle 1|rV_s'|1\rangle}{M_{J/\Psi}} + 2\frac{\langle 1|V_s|1\rangle}{M_{J/\Psi}} \right)$$

• If
$$V_s = -\frac{4}{3} \frac{\alpha_s(\mu)}{r}$$
: $-\frac{2}{3} \frac{\langle 1|rV_s'|1\rangle}{M_{J/\Psi}} + 2\frac{\langle 1|V_s|1\rangle}{M_{J/\Psi}} = -\frac{32}{27} \alpha_s(\mu)^2 < 0$
• If $V_s = \sigma r$: $-\frac{2}{3} \frac{\langle 1|rV_s'|1\rangle}{M_{J/\Psi}} + 2\frac{\langle 1|V_s|1\rangle}{M_{J/\Psi}} = \frac{4}{3} \frac{\sigma}{M_{J/\Psi}} \langle 1|r|1\rangle > 0$

A scalar interaction would add a negative contribution: $-2\langle 1|V^{
m scalar}|1
angle/M_{J/\Psi}$.

$\Gamma_{\Upsilon(1S)\to\eta_b\gamma}$

$$\Gamma_{\Upsilon(1S)\to\eta_b\gamma} = (k_\gamma/71 \text{ MeV})^3 (15.1 \pm 1.5) \text{ eV}$$

M1 hindered transitions

One new operator contributes:

$$-\frac{1}{16m^2} c_S^{\text{em}} \left[\mathbf{S}^{\dagger}, \boldsymbol{\sigma} \cdot \left[-i\boldsymbol{\nabla}_r \times, \mathbf{r}^i (\boldsymbol{\nabla}^i e e_Q \mathbf{E}^{\text{em}}) \right] \right] \mathbf{S}^{\dagger}$$

- Two new wave-function corrections contribute:
 - (1) induced by the spin-spin potential;

(2) recoil correction induced by the spin-orbit potential; Due to the recoil, the final state develops a nonzero P-wave component suppressed by a factor $v k_{\gamma}/m$ (through the spin-orbit operator $-\frac{1}{4m^2} \frac{V_S^{(0)}}{2} \operatorname{Tr} \left\{ \{ S^{\dagger}, \boldsymbol{\sigma} \} \cdot [\hat{\mathbf{r}} \times (-i\boldsymbol{\nabla})] S \right\}$), which, in a $n^3 S_1 \rightarrow n'^1 S_0 \gamma$ transition, can be reached from the initial 3S_1 state through a 1/venhanced E1 transition. $\Gamma_{\Upsilon(2S)\to\eta_b\gamma}, \Gamma_{h_b(1P)\to\chi_{b0,1}(1P)\gamma} \text{ and } \Gamma_{\chi_{b2}(1P)\to h_b(1P)\gamma}$

$$\begin{split} &\Gamma_{h_b(1P) \rightarrow \chi_{b0}(1P) \, \gamma} = 1.0 \pm 0.2 \; \mathrm{eV} \\ &\Gamma_{h_b(1P) \rightarrow \chi_{b1}(1P) \, \gamma} = 17 \pm 4 \; \mathrm{meV} \\ &\Gamma_{\chi_{b2}(1P) \rightarrow h_b(1P) \, \gamma} = 90 \pm 20 \; \mathrm{meV} \end{split}$$

$$\Gamma_{\Upsilon(2S)\to\eta_b\gamma} = (k_{\gamma}/614 \text{ MeV})^3 (830 \pm 500) \text{ eV}$$

• The BR for $\Upsilon(2S) \rightarrow \eta_b \gamma$ is an order of magnitude above the CLEO upper limit!

Improved determination of M1 transitions

- Exact incorporation of the static potential.
- Renormalon cancellation.
- Accuracy at order $k_{\gamma}^3/m^2 \times \mathcal{O}(\alpha_s^2, v^2)$ [allowed] and $k_{\gamma}^3/m^2 \times \mathcal{O}(v^4)$ [hindered].

 $\Gamma_{J/\psi \to \eta_c \gamma} = 2.12 \pm 0.40 \text{ keV}$ $\Gamma_{\Upsilon(1S) \to \eta_b \gamma} = 15.18 \pm 0.51 \text{ eV}$

$$\begin{split} &\Gamma_{h_b(1P) \to \chi_{b0}(1P) \gamma} = 0.962 \pm 0.035 \text{ eV} \\ &\Gamma_{h_b(1P) \to \chi_{b1}(1P) \gamma} = 8.99 \pm 0.55 \text{ meV} \\ &\Gamma_{\chi_{b2}(1P) \to h_b(1P) \gamma} = 118 \pm 6 \text{ meV} \end{split}$$

$$\Gamma_{\Upsilon(2S)\to\eta_b\gamma} = 6^{+26}_{-06} \,\mathrm{eV}.$$

o Pineda Segovia arXiv:1302.3528

$J/\psi \rightarrow \eta_c \gamma$ (experimental & theoretical status)

o Pineda Segovia arXiv:1302.3528

 $\Upsilon(2S) \to \eta_b \gamma$

- CLEO's upper limit is problematic for many models but is consistent with $\Gamma_{\Upsilon(2S)\to\eta_b\gamma} = 6^{+26}_{-06}$ eV, i.e. $BR_{\Upsilon(2S)\to\eta_b\gamma} = 0.2^{+0.9}_{-0.2} \times 10^{-3}$, $k_{\gamma} = 612$ MeV.
- Also consistent with $BR_{\Upsilon(2S) \to \eta_b \gamma} = 0.39 \pm 0.11^{+1.1}_{-0.9} \times 10^{-3}$ measured by BABAR. • BABAR PRL 103 (2009) 161801

E1 transitions

E1 transitions always involve excited states. These are likely strongly coupled.

• Operators contributing at relative order v^2 to E1 transitions are not affected by non-perturbative soft corrections.

$$V_1^{\text{E1}} = V_2^{\text{E1}} = V_3^{\text{E1}} = V_4^{\text{E1}} = 1$$

$$V_5^{\text{E1}} = c_F^{\text{em}} = 1 + \frac{2\alpha_s(m)}{3\pi} + \cdots, \qquad V_6^{\text{E1}} = 2c_F^{\text{em}} - 1 = 1 + \frac{4\alpha_s(m)}{3\pi} + \cdots$$

• Brambilla Pietrulewicz Vairo PRD 85 (2012) 094005

E1 transitions

E1 transitions always involve excited states. These are likely strongly coupled.

- However, non-perturbative corrections affect the quarkonium wave-functions: at large distances the quarkonium potentials are non-perturbative.
- For weakly-coupled quarkonia, non-perturbative corrections to the quarkonium wave-functions also involve octet fields and are of relative order v^2 : unlike M1 dipoles, E1 dipoles do not commute with the octet Hamiltonian.

E1 transitions

$$\begin{split} \Gamma_{n^{3}P_{J} \to n'^{3}S_{1}\gamma} &= \Gamma_{n^{3}P_{J} \to n'^{3}S_{1}\gamma}^{\text{E1}} \left[1 + R_{nn'}^{S=1}(J) - \frac{k_{\gamma}^{2}}{60} \frac{I_{5}(n1 \to n'0)}{I_{3}(n1 \to n'0)} \right. \\ &\left. - \frac{k_{\gamma}}{6m} + \kappa^{\text{em}} \frac{k_{\gamma}}{2m} \left(\frac{J(J+1)}{2} - 2 \right) \right] \\ \Gamma_{n^{1}P_{1} \to n'^{1}S_{0}\gamma} &= \Gamma_{n^{1}P_{1} \to n'^{1}S_{0}\gamma}^{\text{E1}} \left[1 + R_{nn'}^{S=0} - \frac{k_{\gamma}}{6m} - \frac{k_{\gamma}^{2}}{60} \frac{I_{5}(n1 \to n'0)}{I_{3}(n1 \to n'0)} \right] \\ \Gamma_{n^{3}S_{1} \to n'^{3}P_{J}\gamma} &= \frac{2J+1}{3} \Gamma_{n^{3}S_{1} \to n'^{3}P_{J}\gamma}^{\text{E1}} \left[1 + R_{nn'}^{S=1}(J) - \frac{k_{\gamma}^{2}}{60} \frac{I_{5}(n'1 \to n0)}{I_{3}(n'1 \to n0)} \right. \\ &\left. + \frac{k_{\gamma}}{6m} - \kappa^{\text{em}} \frac{k_{\gamma}}{2m} \left(\frac{J(J+1)}{2} - 2 \right) \right] \end{split}$$

where $R_{nn'}^{S=1}(J)$ and $R_{nn'}^{S=0}$ are the (non-perturbative) initial and final state corrections.

• Brambilla Pietrulewicz Vairo PRD 85 (2012) 094005

Conclusions

EFTs provide a description of quarkonium electromagnetic transitions in terms of systematic expansions in α_s and v. This description shows that:

- There is no scalar interaction.
- The quarkonium anomalous magnetic moment is small and positive: $\kappa^{\rm em} = 2\alpha_{\rm s}/(3\pi) + \dots$
- M1 transitions involving the lowest quarkonium states may be described at relative order v^2 entirely by perturbation theory.
- Theory expectations are consistent with data.
- E1 transitions require the calculation of non-perturbative corrections to the quarkonium wave-functions. These can be calculated from the quarkonium potentials evaluated on the lattice, which are mostly known.

Line Shape

$J/\psi \rightarrow X \gamma \text{ for } 0 \text{ MeV} \leq E_{\gamma} \lesssim 500 \text{ MeV}$

Scales:

- $\langle p
 angle \sim 1/\langle r
 angle \sim m_c v \sim$ 700 MeV 1 GeV $\gg \Lambda_{
 m QCD}$
- $E_{J/\psi} \equiv M_{J/\psi} 2m_c \sim m_c v^2 \sim$ 400 MeV 600 MeV $\ll 1/\langle r \rangle$
- 0 MeV $\leq E_{\gamma} \leq$ 400 MeV 500 MeV $\ll 1/\langle r \rangle$

It follows that the system is

(i) non-relativistic,

- (ii) weakly-coupled at the scale $1/\langle r \rangle$: $v \sim lpha_{
 m s}$,
- (iii) that we may mutipole expand in the external photon energy.

$J/\psi \rightarrow X \gamma \text{ for } 0 \text{ MeV} \leq E_{\gamma} \lesssim 500 \text{ MeV}$

Three main processes contribute to $J/\psi \to X \gamma$ for 0 MeV $\leq E_{\gamma} \leq$ 500 MeV:

• $J/\psi \rightarrow \eta_c \gamma \rightarrow X \gamma$ [magnetic dipole interactions]

• $J/\psi \rightarrow \chi_{c0,2}(1P) \gamma \rightarrow X \gamma$ [electric dipole interactions]

fragmentation and other background processes, included in the background functions.

The orthopositronium decay spectrum

The situation is analogous to the photon spectrum in orthopositronium $\rightarrow 3\gamma$

Manohar Ruiz-Femenia PRD 69 (2004) 053003
 Ruiz-Femenia NPB 788 (2008) 21, PoS EFT09 (2009) 005

• For
$$\Gamma_{\eta_c} \to 0$$
 one recovers $\Gamma(J/\psi \to \eta_c \gamma) = \frac{64}{27} \alpha \frac{E_{\gamma}^3}{M_{J/\psi}^2}$

• The non-relativistic Breit–Wigner distribution goes like:

$$\frac{E_{\gamma}^2}{(M_{J/\psi} - M_{\eta_c} - E_{\gamma})^2 + \Gamma_{\eta_c}^2/4} = \begin{cases} 1 & \text{for } E_{\gamma} \gg m_c \alpha_{\rm s}^4 \sim M_{J/\psi} - M_{\eta_c} \\ \frac{E_{\gamma}^2}{(M_{J/\psi} - M_{\eta_c})^2} & \text{for } E_{\gamma} \ll m_c \alpha_{\rm s}^4 \sim M_{J/\psi} - M_{\eta_c} \end{cases}$$

• $|a(E_{\gamma})|^2 = \begin{cases} 1 & \text{for } E_{\gamma} \gg m_c \alpha_{\rm s}^2 \sim E_{J/\psi} \\ E_{\gamma}^2/(2E_{J/\psi})^2 & \text{for } E_{\gamma} \ll m_c \alpha_{\rm s}^2 \sim E_{J/\psi} \end{cases}$

- The two contributions are of equal order for $m_c \alpha_s \gg E_\gamma \gg m_c \alpha_s^2 \sim -E_{J/\psi};$
- the magnetic contribution dominates for $-E_{J/\psi} \sim m_c \alpha_s^2 \gg E_{\gamma} \gg m_c \alpha_s^4 \sim M_{J/\psi} - M_{\eta_c};$
- it also dominates by a factor $E_{J/\psi}^2/(M_{J/\psi} M_{\eta_c})^2 \sim 1/\alpha_s^4$ for $E_\gamma \ll m_c \alpha_s^4 \sim M_{J/\psi} M_{\eta_c}$.

Fit to the CLEO data

• Besides M_{η_c} and Γ_{η_c} the fitting parameters are the overall normalization, the signal normalization, and the (three) background parameters.

• Brambilla Roig Vairo AIP Conf.Proc. 1343 (2011) 418