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Charmonium production at hadron machines

• The first measurement of direct J/ψ and ψ’ production at 
CDF in ’97: striking discrepancy from theoretical expectation

• NRQCD: double expansion in terms of αs and v (velocity): an 
addition of  “colour-octet” term was proposed.

• Tremendous efforts have been made to obtain more precise 
theoretical prediction for the charmonium production at 
hadron machines (computation of the higher order corrections, 
extracting the matrix element of NRQCD, Color-singlet 
approach etc). ➡ after many debates, still the situation is 
unclear!

Bodwin, Braaten, 
Lepage, PRD51 (‘95)

CDF, PRL79 (‘97)

More investigation is needed! 



New observables to help the situation ???

• Prompt/secondary production of charmonium states such as ηc 

or hc have never been done at hadron machines although they 
could be useful for clarify some issues (using spin symmetry)!   

So far, the study has been limited to J/ψ, ψ’, χJc 

• Secondary charmonium production is experimentally cleaner 
than the prompt production. Theoretically, it is less clean 
(e.g. issues in the NLO estimate of the singlet contribution) 
but can’t we still learn something?   

Charmonium from B decays to extract the matrix elements?

<--- Universality of matrix elements!



Revisiting the NRQCD computation of 
inclusive B decaying into charmonium
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a study of J/ψ polarization effects. The only NLO calculation of charmonium production
in B decay is due to Bergström and Ernström [9], who computed the contribution of the
colour singlet 3S1 intermediate cc̄ state to J/ψ production. We repeated their calculation
and comment on it later on.

The paper is organized as follows: In Section II we introduce notation and discuss
the structure of important contributions to a given charmonium state. Section III pro-
vides some details on the calculation related to the handling of ultraviolet and infrared
divergences at intermediate stages. Section IV contains our main results. We present
expressions for the decay rates in numerical form and a comparison with existing exper-
imental data. Analytic results for the decay rates and energy distributions are collected
in two appendices for reference. Section V contains our conclusions.

II. PRELIMINARIES

The terms of interest in the ∆B = 1 effective weak Hamiltonian

Heff =
GF√

2

∑

q=s,d

{

V ∗
cbVcq

[

1

3
C[1](µ)O1(µ) + C[8](µ)O8(µ)

]

− V ∗
tbVtq

6
∑

i=3

Ci(µ)Oi(µ)

}

(2.1)

contain the ‘current-current’ operators

O1 = [c̄γµ(1 − γ5)c] [̄bγ
µ(1 − γ5)q] (2.2)

O8 = [c̄ T Aγµ(1 − γ5)c] [̄b T Aγµ(1 − γ5)q] (2.3)

and the QCD penguin operators O3−6. (See the review Ref. [10] for their precise defini-
tion.) For the decays B → charmonium + X it is convenient to choose a Fierz version
of the current-current operators such that the cc̄ pair at the weak decay vertex is either
in a colour singlet or a colour octet state. The coefficient functions are related to the
usual C± by

C[1](µ) = 2C+(µ) − C−(µ), (2.4)

C[8](µ) = C+(µ) + C−(µ). (2.5)

The NLO Wilson coefficients C±(µ) have been computed in Refs. [11,12]. With the
conventions of Ref. [12]

C±(µ) =

[

αs(MW )

αs(µ)

]γ(0)
±

/(2β0) (

1 +
αs(µ)

4π
B±

) (

1 +
αs(MW ) − αs(µ)

4π
(B± − J±)

)

(2.6)

with
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Beneke, Maltoni, 
Rothstein 

PRD59 (‘99)

It has been pointed out by several authors that the 
singlet term is too small to explain the experimental data. 



Revisiting the NRQCD computation of 
inclusive B decaying into charmonium

Beneke, Maltoni, 
Rothstein 

PRD59 (‘99)

The singlet term has a large renormalization running effect 
which makes it large negative (unphysical) at mb scale. 

NLO computation

J± =
γ(0)
± β1

2β2
0

− γ(1)
±

2β0
(2.7)

B± =
3 ∓ 1

6
(±11 + κ±) (2.8)

and the one-loop and two-loop anomalous dimensions

γ(0)
± = ± 2 (3 ∓ 1), (2.9)

γ(1)
± =

3 ∓ 1

6

(

−21 ± 4

3
nf − 2β0κ±

)

. (2.10)

The quantity κ± is scheme-dependent and depends in particular on the treatment of γ5.
In the ‘naive dimensional regularization’ (NDR) scheme, κ± = 0; in the ’t Hooft-Veltman
(HV) scheme, κ± = ∓4. In the HV scheme the current-current operators, implied by the
convention used in Refs. [10,12], are not minimally subtracted. If one computes the low
energy matrix elements of the weak Hamiltonian in the modified minimal subtraction
(MS) scheme, as we will do below, one has to apply an additional finite renormalization.
This amounts to multiplying the coefficients C±(µ) by a factor of 1 − 4αs(µ)/(3π), or,
equivalently, to an additional contribution to κ± in the HV scheme. No additional
renormalization is required in the NDR scheme. At NLO the strong coupling is given by

αs(µ) =
4π

β0 ln(µ2/Λ2
QCD)

[

1 −
β1 ln[ln(µ2/Λ2

QCD)]

β2
0 ln(µ2/Λ2

QCD)

]

(2.11)

with

β0 = 11 − 2

3
nf , β1 = 102 − 38

3
nf . (2.12)

The NLO QCD corrections involve the one-loop virtual gluon correction to b →
cc̄[n] + q and the real gluon correction b → cc̄[n] + q + g, where the cc̄ pair is projected
on one of the states in (1.2). The corresponding diagrams are shown in Figs. 1 and 2
respectively. The decay rate into a quarkonium can be written as the sum of partial
decay rates through one of the intermediate cc̄ states n. At next-to-leading order the
partial decay rates take the form

Γ[n] = Γ0

[

C2
[1,8]f [n](η) (1 + δP [n])

+
αs(µ)

4π

(

C2
[1]g1[n](η) + 2C[1]C[8]g2[n](η) + C2

[8]g3[n](η)
) ]

〈OH [n]〉, (2.13)

where

Γ0 =
G2

F |Vbc|2m3
b

216π(2mc)
, (2.14)

4

FIG. 1. One-loop virtual corrections to b → cc̄q. Wave function renormalizations are not

shown.

FIG. 2. Real gluon corrections to b → cc̄q.

and η = 4m2
c/m

2
b . The operators OH [n] are defined as in Ref. [1]. The LO term is

multiplied by C2
[1] if n is a colour singlet state and by C2

[8] if n is a colour octet state. We
also used the fact that |Vcs|2 + |Vcd|2 ≈ 1 to high accuracy. The functions f [n] and gi[n]
will be given later. The LO contribution is multiplied by a correction term δP [n] due to
the penguin operators in (2.1). Likewise, we write the quarkonium energy distribution
as

dΓ[n]

dx
= Γ0

[

C2
[1,8]f [n](η) (1 + δP [n]) δ(1 + η − x)

+
αs(µ)

4π

(

C2
[1]g1[n](η, x) + 2C[1]C[8]g2[n](η, x) + C2

[8]g3[n](η, x)
) ]

〈OH [n]〉 (2.15)

where x = 2P ·pb/m2
b . Note that to leading order in ΛQCD/mb we do not distinguish the b

quark mass from the B meson mass. To the order in the velocity expansion considered in
this paper, we can also identify the momentum of the quarkonium with the momentum
P of the cc̄ pair. (The kinematic effect of distinguishing the two is discussed in Ref. [13].)
Hence x can also be identified with 2EH/MB, where EH is the quarkonium energy in the
B meson rest frame and MB the B meson mass.
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Revisiting the NRQCD computation of 
inclusive B decaying into charmonium

Beneke, Maltoni, 
Rothstein 

PRD59 (‘99)Improved NLO result

Br(B → J/ψX) =

Br(B → ηcX) =

0.250× 10−2〈Oηc
1 (1S0)〉+ 0.342〈Oηc

8 (1S0)〉+ 0.195
[
〈Oηc

8 (3S1)〉 − 0.24/m2
c〈O

ηc
8 (1P1)〉

]
︸ ︷︷ ︸

Mηc
1,0.24(

3S(8)
1 ,1P (8)

1 )

0.0754 × 10−2〈Oψ
1 (3S1)〉 + 0.195〈Oψ

8 (3S1)〉 + 0.342
[
〈Oψ

8 (1S0)〉 + 3.1/m2
c〈O

ψ
8 (3P0)〉

]

︸ ︷︷ ︸
Mψ

1,k(1S(8)
0 ,3P (8)

0 )

Caveat: 
A large uncertainty 

(factor two?)



Revisiting the NRQCD computation of 
inclusive B decaying into charmonium

Beneke, Maltoni, 
Rothstein 

PRD59 (‘99)

Can we use this result to 
extract some information on the 

octet matrix elements?

Improved NLO result

Br(B → J/ψX) =

Br(B → ηcX) =

collisions probes Mψ
7 (1S(8)

1 , 3P (8)
J ) (assuming the validity of NRQCD factorization, which

may be controversial). Given that a different combination of matrix elements enters,
the values obtained in Ref. [25] are certainly consistent with the above central value.
In view of the uncertainties involved in charmonium production in hadron collisions, we
believe that the above upper limit on Mψ

3.1(
1S(8)

1 , 3P (8)
J ) is the most stringent one existing

at present. We note that small values of 〈Oψ
8 (1S0)〉 and 〈Oψ

8 (3P0)〉 seem to be preferred
by the non-observation of a significant colour octet contribution in the energy spectrum
of inelastic J/ψ photoproduction [26,7,27] (see, however, the discussion in Ref. [13]).
We conclude that the measured J/ψ and ψ′ branching fractions can be accounted for
with values of the NRQCD long-distance parameters consistent with previously available
values.

3. B → ηc + X

Presently, only an experimental upper bound Br (B → ηc + X) < 0.9% [2] exists on ηc

production. For the same choice of input parameters as above, we have

Br (B → ηc + X) =











−1.19
0.250
−0.210











10−2 〈Oηc

1 (1S0)〉 + 0.342〈Oηc

8 (1S0)〉 (4.13)

+ 0.195

[

〈Oηc

8 (3S1)〉 −
0.240

m2
c

〈Oηc

8 (1P1)〉
]

.

The LO term is enhanced by about 10% because of the penguin correction.
There is at present no information on the ηc colour octet matrix elements from other

ηc production processes. The colour octet matrix elements are non-zero because soft
gluon emission connects the colour octet cc̄ state to the physical charmonium state. The
soft gluon emission amplitude can be multipole expanded, supposing that the character-
istic momentum of the emitted gluons is of order mcv2, smaller than the characteristic
momentum mcv of the charm quarks in the charmonium rest frame. Up to corrections of
order v2, spin symmetry imposes relations between the ηc and J/ψ matrix elements. In
addition to the familiar spin symmetry relation 〈OJ/ψ

1 (3S1)〉 = 3 〈Oηc

1 (1S0)〉 for the colour
singlet wave function, we find

〈Oηc

8 (1S0)〉 =
1

3
〈OJ/ψ

8 (3S1)〉,

〈Oηc

8 (3S1)〉 = 〈OJ/ψ
8 (1S0)〉, (4.14)

〈Oηc

8 (1P1)〉 = 3 〈OJ/ψ
8 (3P0)〉.

Note that these relations are consistent with the renormalization group equations for
the matrix elements that follow from (3.8). Since we do not know 〈OJ/ψ

8 (1S0)〉 and

20

Spin symmetry

0.250× 10−2〈Oηc
1 (1S0)〉+ 0.342〈Oηc

8 (1S0)〉+ 0.195
[
〈Oηc

8 (3S1)〉 − 0.24/m2
c〈O

ηc
8 (1P1)〉

]
︸ ︷︷ ︸

Mηc
1,0.24(

3S(8)
1 ,1P (8)

1 )

0.0754 × 10−2〈Oψ
1 (3S1)〉 + 0.195〈Oψ

8 (3S1)〉 + 0.342
[
〈Oψ

8 (1S0)〉 + 3.1/m2
c〈O

ψ
8 (3P0)〉

]

︸ ︷︷ ︸
Mψ

1,k(1S(8)
0 ,3P (8)

0 )

exp. (1.094±0.032)x10-2

exp. < 0.9x10-2 <- update from LHCb?



Revisiting the NRQCD computation of 
inclusive B decaying into charmonium

Beneke, Scgykerm Wolf, PRD62 (‘00)

The momentum dependence 
measurement by Babar 

shows clear octet 
contributions. This can be 

also used to determine the 
octet matrix elements? 

Momentum dependence of B-> J/psi X 14
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FIG. 10: p∗ of J/ψ mesons produced directly in B decays
(points). The histogram is the sum of the color-octet compo-
nent from a recent NRQCD calculation [20] (dashed line) and
the color-singlet J/ψK(∗) component from simulation (dotted
line).
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FIG. 11: Helicity of J/ψ mesons produced in B decay with
p∗ > 1.1 GeV/c (dots) and p∗ < 1.1 GeV/c (open squares).

ψ(2S) decay is calculated by simulation and is shown in
Fig. 7.

X. J/ψ HELICITY

The helicity θH of a J/ψ → #+#− candidate is the
angle, measured in the J/ψ rest frame, between the pos-
itively charged lepton and the flight direction of the J/ψ
in the Υ (4S) center-of-mass frame. A more natural def-
inition would use the B rest frame, but it cannot be de-
termined in this analysis. Simulation indicates that the
rms spread of the difference between the two definitions
is 0.085 in cos θH .
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FIG. 12: Helicity distribution of J/ψ mesons produced in the
decay of (a) χc1, (b) χc2, and (c) ψ(2S) mesons.

A. Inclusive Helicity Distribution

We proceed as for the J/ψ p∗ distribution, with data
categorized into ranges of width 0.1 in cosθH for two
different momentum ranges, which we choose as p∗ <
1.1 GeV/c and 1.1 < p∗ < 2.0 GeV/c. We fit the on- and
off-resonance mass distributions to obtain yields in each
bin and perform a continuum subtraction. We correct
using the reconstruction efficiency obtained from simula-
tion for that range, although we observe little dependence
of efficiency on helicity. We then apply separate normal-
ization factors to the e+e− and µ+µ− data such that the
total branching fraction (summed over the two p∗ ranges)
agrees with the value obtained earlier for that mode. The
distributions from e+e− and µ+µ− are consistent and are
averaged to obtain the helicity distributions for each of
the two p∗ ranges (Fig. 11).

We fit each distribution with a function 1 +α · cos2 θH

to obtain the polarization α, where α = 0 indicates the
sample is unpolarized, α = 1 transversely polarized, and
α = −1 longitudinally polarized. The high p∗ region,
which includes the two-body B decays, is more highly
polarized, α = −0.592± 0.032, than the lower p∗ region,
α = −0.196± 0.044.

We assign a systematic error of 0.008 to these polariza-
tions by instead considering the reconstruction efficiency
to be independent of helicity.

B. Direct J/ψ Helicity

We determine the helicity distributions of J/ψ mesons
produced in the decay of χc1, χc2, and ψ(2S) in the same
way we calculate the p∗ feeddown. Because of the limited
statistics of these samples, we combine the two momen-
tum regions used in the inclusive analysis. The resulting
feeddown helicity distributions are shown together with
the polarization fits in Fig. 12. We subtract these from
the sum of the two distributions in Fig. 11 to obtain the

Babar Coll.
PRD67 (‘03)

Octet contribution

Singlet contribution

excess!



Prediction of Br(B-> J/psi X) with the 
fitted matrix elements

 

Beneke et al 1.16x 1.06x 2.0-2.7x10-2

Ma et al 1.16x small? ~M0kpsi small? 7.4 x10-2

Chao et al 1.16x 0.30±0.12 8.9±0.98 0.56±0.21 9.8x10-2

Kniehl et al 1.32x 0.17±0.05 3.04±0.35 -0.91±0.16 1.6x10-2

〈Oψ
1 (3S1)〉 〈Oψ

8 (3S1)〉 〈Oψ
8 (1S0)〉 〈Oψ

8 (3P0)〉

0

10.000

20.000

30.000

40.000

Beneke et al Kniehl et al Chao et al Experiment

O1(3S1)
O8(3S1)
O8(1S0)+O8(3P0)
Exp.

Mψ
0,k

x10-2 x10-2 x10-2

1x10-2    

2x10-2    

3x10-2    

4x10-2    



Prediction of Br(B-> etac X) with the 
fitted matrix elements

Beneke et al 0.39x 0.35x

Ma et al 0.39x small? ~M0kpsi/3 small??? 2.5 x10-2

Chao et al 0.39x 0.10±0.04 3.0±0.32 1.68±0.63 2.8x10-2

Kniehl et al 0.44x 0.06±0.02 1.01±0.12 -2.73±0.48 1.3x10-2

〈Oψ
1 (3S1)〉 〈Oψ

8 (3S1)〉 〈Oψ
8 (1S0)〉 〈Oψ

8 (3P0)〉 Mψ
1,k

0
88,889

177,778
266,667
355,556
444,444
533,333
622,222
711,111
800,000

Beneke et al Kniehl et al Chao et al Experiment

O1(3S1)
O8(3S1)
O8(1S0)+O8(3P0)
Exp.

collisions probes Mψ
7 (1S(8)

1 , 3P (8)
J ) (assuming the validity of NRQCD factorization, which

may be controversial). Given that a different combination of matrix elements enters,
the values obtained in Ref. [25] are certainly consistent with the above central value.
In view of the uncertainties involved in charmonium production in hadron collisions, we
believe that the above upper limit on Mψ

3.1(
1S(8)

1 , 3P (8)
J ) is the most stringent one existing

at present. We note that small values of 〈Oψ
8 (1S0)〉 and 〈Oψ

8 (3P0)〉 seem to be preferred
by the non-observation of a significant colour octet contribution in the energy spectrum
of inelastic J/ψ photoproduction [26,7,27] (see, however, the discussion in Ref. [13]).
We conclude that the measured J/ψ and ψ′ branching fractions can be accounted for
with values of the NRQCD long-distance parameters consistent with previously available
values.

3. B → ηc + X

Presently, only an experimental upper bound Br (B → ηc + X) < 0.9% [2] exists on ηc

production. For the same choice of input parameters as above, we have
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8 (3S1)〉 −
0.240

m2
c
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8 (1P1)〉
]

.

The LO term is enhanced by about 10% because of the penguin correction.
There is at present no information on the ηc colour octet matrix elements from other

ηc production processes. The colour octet matrix elements are non-zero because soft
gluon emission connects the colour octet cc̄ state to the physical charmonium state. The
soft gluon emission amplitude can be multipole expanded, supposing that the character-
istic momentum of the emitted gluons is of order mcv2, smaller than the characteristic
momentum mcv of the charm quarks in the charmonium rest frame. Up to corrections of
order v2, spin symmetry imposes relations between the ηc and J/ψ matrix elements. In
addition to the familiar spin symmetry relation 〈OJ/ψ

1 (3S1)〉 = 3 〈Oηc

1 (1S0)〉 for the colour
singlet wave function, we find

〈Oηc

8 (1S0)〉 =
1

3
〈OJ/ψ

8 (3S1)〉,

〈Oηc

8 (3S1)〉 = 〈OJ/ψ
8 (1S0)〉, (4.14)

〈Oηc

8 (1P1)〉 = 3 〈OJ/ψ
8 (3P0)〉.

Note that these relations are consistent with the renormalization group equations for
the matrix elements that follow from (3.8). Since we do not know 〈OJ/ψ

8 (1S0)〉 and
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Current upper limitAssuming, O8(1S0) 
for psi and O8(3S1) 
for etac is small... 

Assuming Spin symmetry...

Caveat: Proportion of the 
uncertain singlet terms are large...


