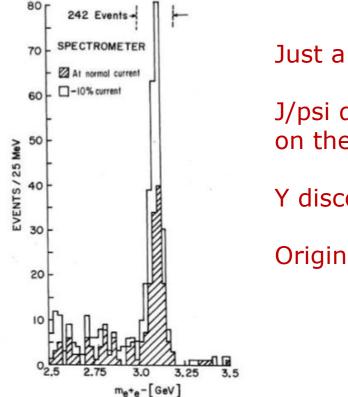


Bottomonia at hadron colliders

Vato Kartvelishvili Lancaster University, UK

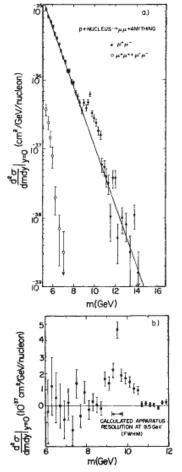
Charmonium Workshop, LAL, Orsay, 6 March 2013


First observation of Y

- Y studies at the Tevatron
- Dimuons in LHC experiments
- Cross sections from CMS, LHCb and ATLAS
- Bottomonium spectroscopy
- Y polarisation measurements, old and new

LANCASTER UNIVERSITY

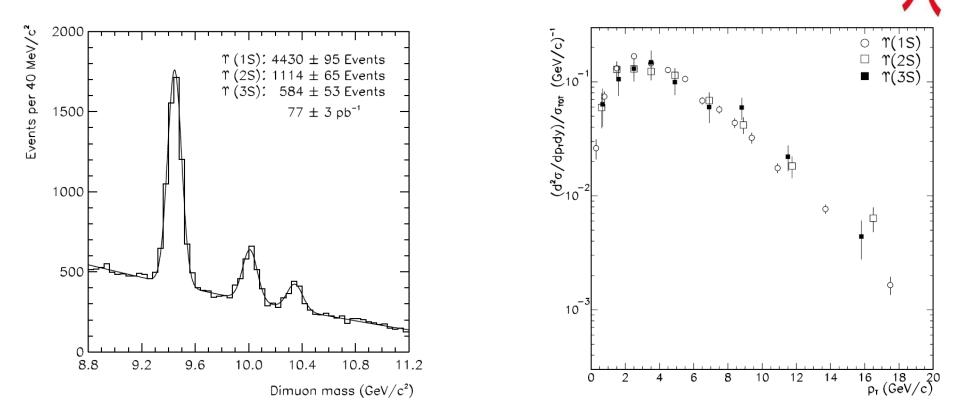
"High mass" dimuons in the 1970's



Just a quick reminder:

J/psi discovery (hadronic side) on the left

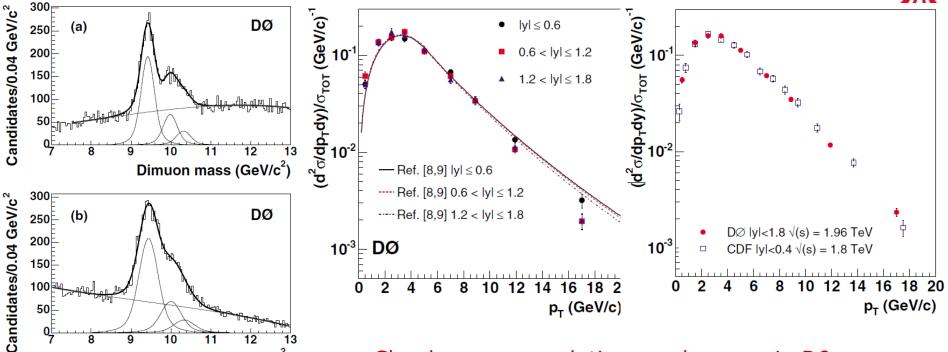
Y discovery on the right


Original picture formats are kept

VIEW LETTERS

FIG. 3. (a) Measured dimuon production cross sections as a function of the invariant mass of the muon pair. The solid line is the continuum fit outlined in the text. The equal-sign-dimuon cross section is also shown. (b) The same cross sections as in (a) with the smooth exponential continuum fit subtracted in order to reveal the 9-10-GeV region in more detail.

CDF results on Y production



CDF detector:

good mass resolution, all three peaks resolved well pT reach up to 18 GeV, but only at central rapidities Hard to see any trend, but maybe 1S falls with pT steeper than the others?

D0 results on Y production

Cross Section Ratio DØ 10 12 14 16 18 20 p_T (GeV/c)

10

11

Dimuon mass (GeV/c²)

12

Clearly, mass resolution much worse in D0 Still good enough to separate the three peaks Good agreement with CDF at central y Three rapidity intervals studied pT dependence slightly steeper at high rapidity

Ref.[8,9] is Berger et al: PRD 71 (2005) 034007 (large log resumm. at small pT, fixed LO at large pT)

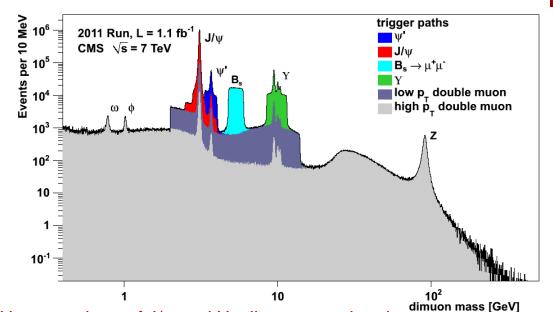
More theory comparisons

More familiar model, describing Tevatron data:

P. Artoisenet et al, PRL 101 (2008) 152001

Evolution from LO to NNLO* can be clearly traced

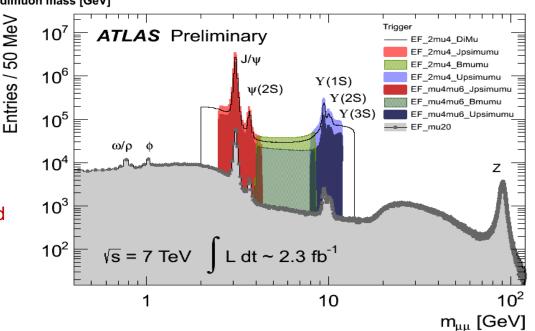
Still lacks chi_b feeddown


Other talks in this session can help compare – and understand – various models

Page 6

ANCAST

Recent times: high mass dimuons at LHC



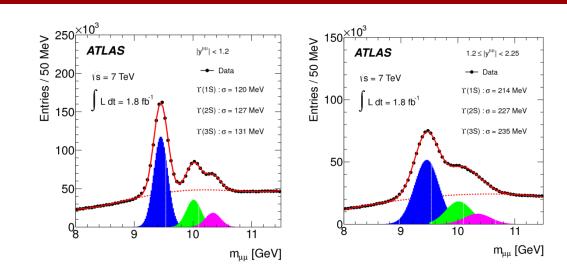
Quite some progress since the dicoveries in 1974 and 1977

Can see the features of triggers used by ATLAS, CMS

Bandwidth limitations are a major concern:

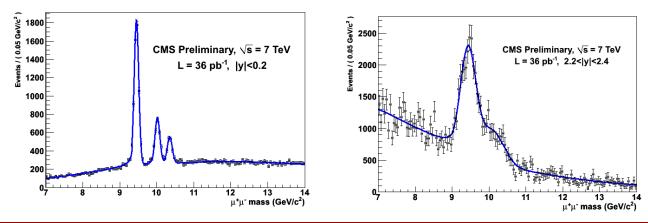
Need to prescale low-pT triggers

Huge numbers of J/ψ and Upsilon accumulated


Proven (at least in ATLAS) to be useful at any luminosity for checking data quality, measuring efficiencies etc.

Should keep Onia/HF physics alive for the foreseeable future

Many "basic" analyses already systematics-limited


Much more sophisticated analyses may become possible

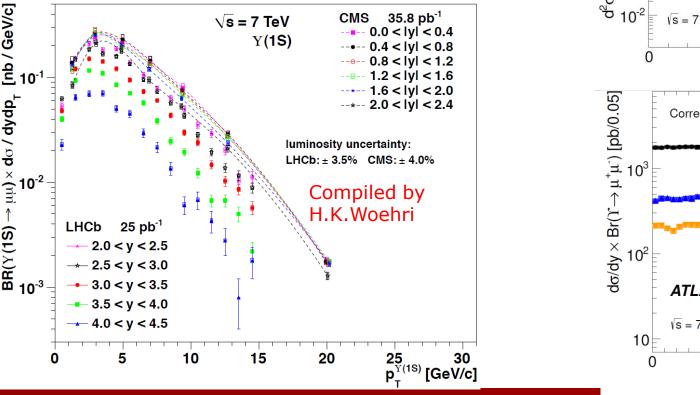
Dimuon mass resolution at LHC experiments

LHCb clearly a champion here

All three experiments are good enough to separate the three peaks

14000 LHCb Preliminary √s = 8 TeV $M(1S) = 9465.3 \pm 0.3 \text{ MeV/c}^2$ Candidates / (25 MeV/c 12000 σ (1S) = 43.0 MeV/c² N_{signal} (1S) = 53712 ± 283 $L = 57 \text{ pb}^{-1}$ 10000 N_{signal} (2S) = 13251 ± 174 N_{signal} (3S) = 6489 ± 138 8000 6000 4000 2000 9000 10000 11000 $M(\mu^{-}\mu^{+})$ (MeV/c²)

LANCASTER UNIVERSITY


Production of Y(1S), Y(2S), Y(3S): pT dependence

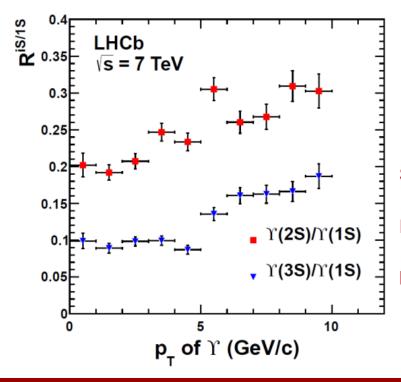
ATLAS: appeared in PRD yesterday

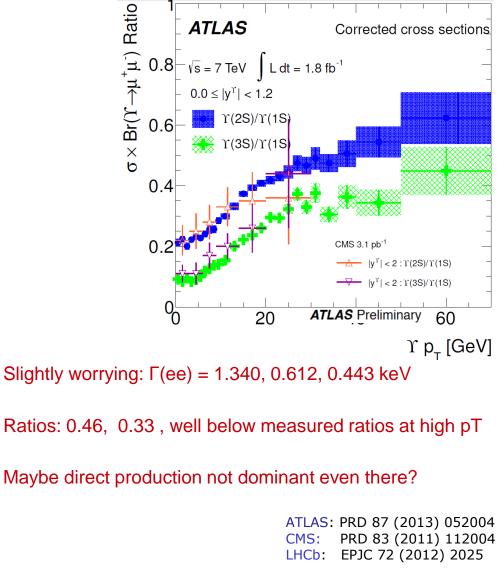
Differential cross section of Y(1,2,3S) in pT and y with 1.8 fb⁻¹

Extended p_T range, finer pT binning, two rapidity ranges (fiducial cross section also provided)

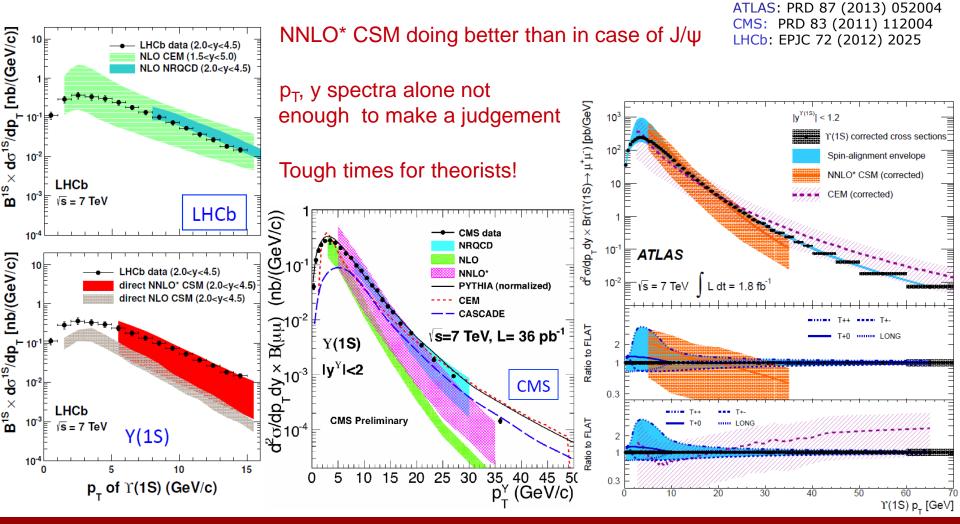
Agrees well with existing data from CMS and LHCb, Wide space covered overall p_T : 0 to 70 GeV, |y| : < 4.5

Page 9


Production of Y(1S), Y(2S), Y(3S): ratios

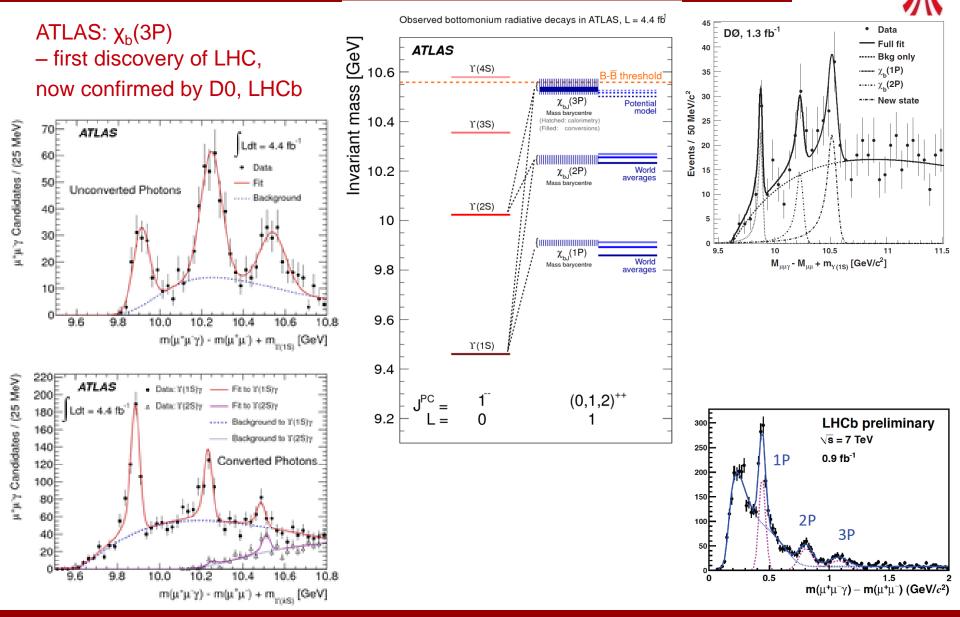

Intriguing: p_T dependence of ratios

Y(2S)/Y(1S), Y(3S)/Y(1S)


confirms existence of multiple mechanisms,

hints on their p_T evolution

All the usual models – CSM, COM, CEM, etc -- do a reasonable job, but neither can reproduce the full range



V Kartvelishvili (Lancaster) – Y at hadron colliders :: Charmonium workshop :: LAL 06.03.13 ::

Page 11

LANCASTER UNIVERSITY

Radiative transitions in Y system

LANCASTER UNIVERSITY

Y production: fraction of feeddown

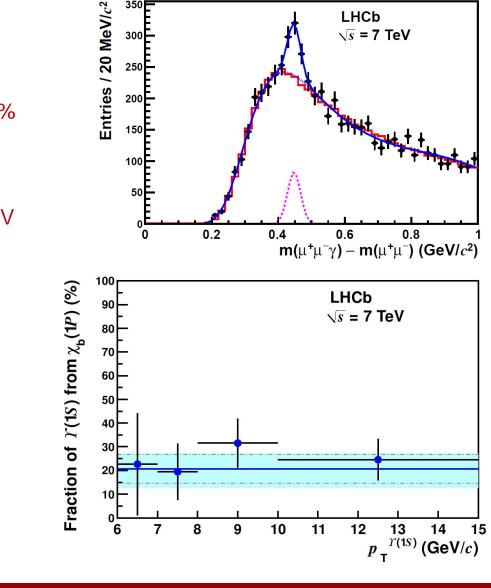
Feeddown pattern in Y much more complicated.

LHCb singled out $\chi_{b}(1P)$ contribution to Y(1S)

LHCb: $(20.7 \pm 5.7(\text{stat}) \pm 2.1(\text{syst}) + 2.7_{-5.4}(\text{pol}))\%$ at forward rapidity and pT range shown above, with no significant pT dependence

In agreement with CDF measurements at 1.8 TeV CDF: $(27.1 \pm 6.9 \pm 4.4)\%$ at central rapidity

Υ(1S) in


CDF data

Y(2S) +Y(3S) $\chi_{b1}(2P)$ $\chi_{b1}(1P) + \chi_{b2}$ $+\chi_{h2}(2P)$

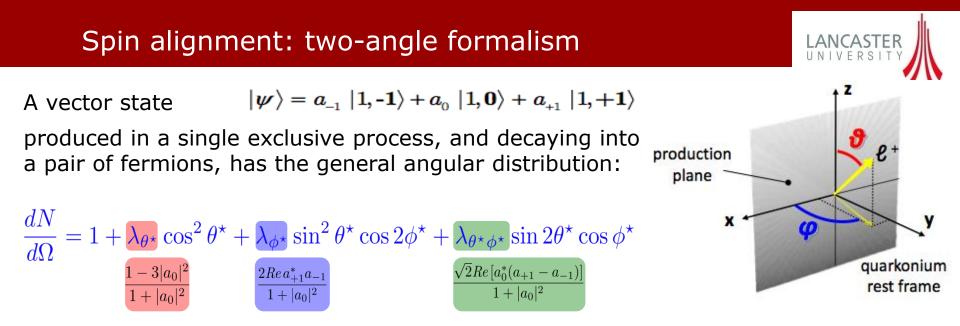
directly produced

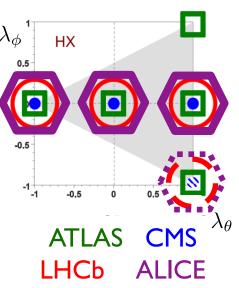
Diagram from P. Faccioli

LHCb: arXiv:1209.0282 CDF: PRL 84 (2000) 2094

350

300

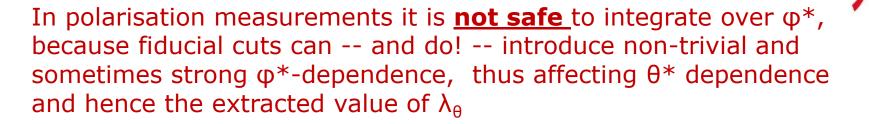

LANCASTER UNIVERSI

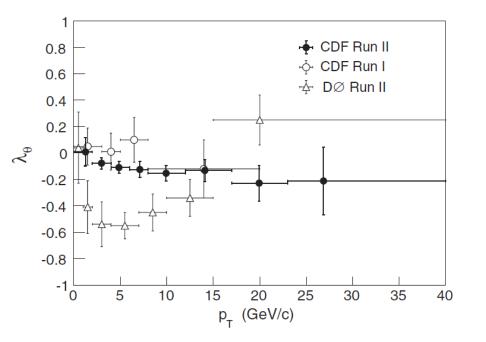

LHCb $\sqrt{s} = 7 \text{ TeV}$

Developments in spectroscopy (from PDG)

27. 1.1.221175 - 59		1000 100000 100000	DC			123-1220-2	Internet And
State	$m \; (MeV)$	Γ (MeV)	J^{PC}	Process (mode)	Experiment $(\#\sigma)$	Year	Status
$h_c(1P)$	3525.41 ± 0.16	<1	1+-	$\psi(2S) \to \pi^0 (\gamma \eta_c(1S))$ $\psi(2S) \to \pi^0 (\gamma)$ $p\bar{p} \to (\gamma \eta_c) \to (\gamma \gamma \gamma)$ $\psi(2S) \to \pi^0 ()$	CLEO [8–10] (13.2) CLEO [8–10] (10), BES [11] (19) E835 [12] (3.1) BESIII [11] (9.5)	2004	OK
$\eta_c(2S)$	3638.9 ± 1.3	10 ± 4	0-+	$\begin{split} & B \to K \left(K^0_S K^- \pi^+ \right) \\ & e^+ e^- \to e^+ e^- \left(K^0_S K^- \pi^+ \right) \\ & e^+ e^- \to J/\psi \left(\ldots \right) \end{split}$	$\begin{array}{c} \mbox{Belle} \ [13, 14] \ (6.0) \\ \mbox{BABAR} \ [15, 16] \ (7.8), \\ \mbox{CLEO} \ [17] \ (6.5), \mbox{Belle} \ [18] \ (6) \\ \mbox{BABAR} \ [19] \ (np), \mbox{Belle} \ [20] \ (8.1) \end{array}$	2002	OK
$\chi_{c2}(2P)$	3927.2 ± 2.6	24 ± 6	2^{++}	$e^+e^- \rightarrow e^+e^-(D\bar{D})$	Belle [21] (5.3), BABAR [22, 23] (5.8)	2005	OK
B_c^+	6277 ± 6	0 — 1	0^{-}	$\bar{p}p \to (\pi^+ J/\psi)$	CDF [24, 25] (8.0), DØ [26] (5.2)	2007	OK
$\eta_b(1S)$	9395.8 ± 3.0	$12.4^{+12.7}_{-5.7}$	0-+	$\begin{split} &\Upsilon(3S)\to\gamma()\\ &\Upsilon(2S)\to\gamma()\\ &\Upsilon(5S)\to\pi^+\pi^-\gamma() \end{split}$	BABAR [27] (10), CLEO [28] (4.0) BABAR [29] (3.0) Belle [30] (14)	2008	OK
$h_b(1P)$	9898.6 ± 1.4	?	1+-	$\Upsilon(5S) \to \pi^+ \pi^- ()$ $\Upsilon(3S) \to \pi^0 ()$	Belle [30, 31] (5.5) BABAR [32] (3.0)	2011	NC!
$\Upsilon(1^3D_2)$	10163.7 ± 1.4	?	2	$\begin{split} &\Upsilon(3S)\to\gamma\gamma\left(\gamma\gamma\Upsilon(1S)\right)\\ &\Upsilon(3S)\to\gamma\gamma\left(\pi^{+}\pi^{-}\Upsilon(1S)\right)\\ &\Upsilon(5S)\to\pi^{+}\pi^{-}\left(\ldots\right) \end{split}$	CLEO [33] (10.2) BABAR [34] (5.8) Belle [31] (2.4)	2004	OK
$h_b(2P)$	$10259.8^{+1.5}_{-1.2}$?	1+-	$\Upsilon(5S) \to \pi^+ \pi^- ()$	Belle [31] (11.2)	2011	NC!
$\chi_{bJ}(3P)$	10530 ± 10	?	?	$pp \rightarrow (\gamma \mu^+ \mu^-)$	ATLAS [35] (>6)	2011	NC!

LANCASTER




In cross section measurements, detector acceptance depends on polarisation, and if the polarisation is unknown, the acceptance-corrected cross section varies with the polarisation hypothesis used

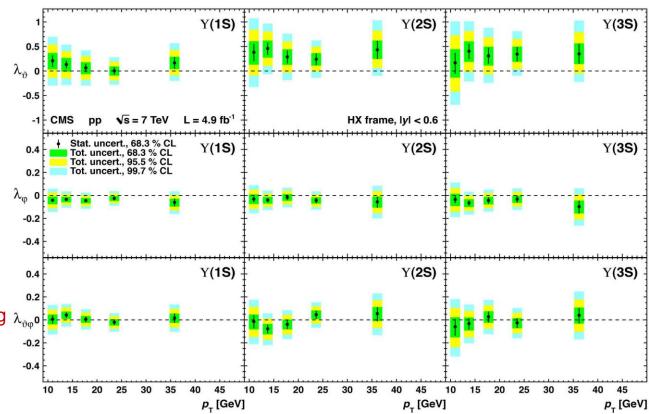
Different experiments use slightly different range of hypotheses

In the two-angle treatment, a move from helicity frame to e.g. Collins-Soper frame is accoplished by a simple rotation

Polarisation measurements: need for 2 angles

Clear contradictions between CDF Run I, CDF Run II and D0 Run II measurements of Y polarisation is a clear illustration:

IANCASTE


Only CDF Run II result here uses 2-angle analysis

General angular dependence of decay muons in Y rest frame:

 $1 + \lambda_{\theta^{\star}} \cos^2 \theta^{\star} + \lambda_{\phi^{\star}} \sin^2 \theta^{\star} \cos 2\phi^{\star} + \lambda_{\theta^{\star}\phi^{\star}} \sin 2\theta^{\star} \cos \phi^{\star}$

Helicity frame: z axis along the Y momentum in the lab frame

CMS have made a full 2-angle measurement of the polarisation of all three Y states, in two rapidity bins, and three different frames, as a function of Y transverse momentum

Only helicity frame results are shown here, results in others are similar: spin alignment for Y(1S) is not strong, if any at all

CMS: PRL 110 (2013) 081802

V Kartvelishvili (Lancaster) – Y at hadron colliders :: Charmonium workshop :: LAL 06.03.13 ::

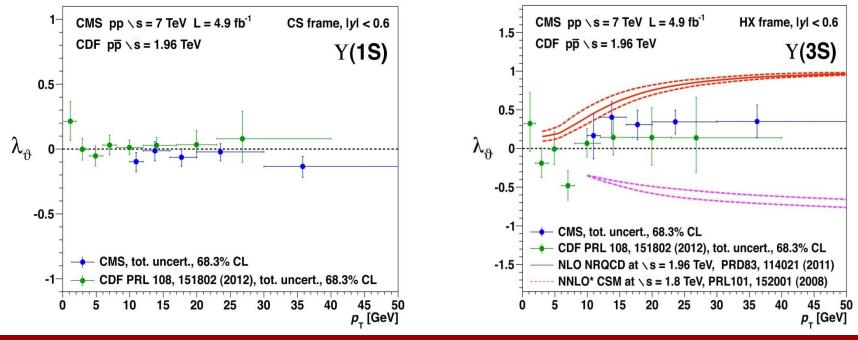
Page 17

LANCASTE

quarkonium rest frame

production plane

Y polarisation vs energy, and theory comparison


CMS results in good agreement with recent results from CDF

Theoretical predictions are notoriously difficult to make, partly due to feeddown

Model curves below made under assumption that Y(3S) is direct, however after the observation of $\chi_b(3P)$ we know that's not true!

LANCASTE

In any case, measured polarisation levels are not as large as those predicted by the theoretical models shown

LHC: quarkonium factory?

 Production properties of the three families of Y states are being studied in detail, with a huge range of p_T and y covered, and the LHC experiments nicely complementing each other.

LANCASTER

- These measurements provide lots of input for theorists, and plenty of questions, but
 no clear answers yet
- First "two-angle" measurements of vector quarkonium spin alignment show no signs of strong polarisation, against the expectations of leading models
- pT and rapidity distributions alone are not enough to discriminate between various models
- First LHC measurements of "**new observables**" -- studies of Onia associations with other Onia, open HF, underlying event characteristics have become available for J/ψ , providing new challenges to theory
- Similar measurements with Y will also show up in due course "watch this space"
- No sign of n_b or h_b so far at LHC. Looks like a very tough task please convince me that it's worth the effort...

Now about the future

- Exciting times at LHC: Huge amounts of data together with good understanding of the detectors!
- Many new measurements to be presented at Moriond next month, surely some of them will include heavy flavours and quarkonia!

LANCASTER

- Further down the line: higher statistics measurements for various B-hadrons at ever higher pT
- Polarisation of prompt J/ ψ , ψ (2S), and more of Y
- χ_c and χ_b production cross sections, although individual χ_{bJ} (NP) may not be resolved (χ_{cJ} will be), more for J/ ψ , $\psi(2S)$
- Bc production (and spectroscopy!) in some detail
- Much more on di-onia production: cross sections, resonances?
- Much more on "new observables": Onia + open HF, Onia + tracks, Onia + jets or photons
- Other things...

List of references (most certainly incomplete...)

• Y discovery: Phys. Rev. Lett. 39 (1977) 252

CDF:

- Y polarisation: PRL 108 (2012) 151802
- Y cross section & polarisation: PRL 88 (2002) 161802
- Y feeddown from chi_b: PRL 84 (2000) 2094

D0

- χ_b(3P) confirmation: PRD 86 (2012) 031103(R)
- Y cross section: PRL 94 (2005) 232001
- Y polarisation: PRL 101 (2008) 182004

ATLAS

- $\chi_{b}(3P)$ first observation: PRL 108 (2012) 152001
- Y cross section: PRD 87 (2013) 052004
- Y fiducial cross section: PL B703 (2011) 428

CMS

- Y polarization arXiv:1209.2922; PRL 110 (2013) 081802
- Y cross section: PRD 83 (2011) 112004

LHCb

- Y feeddown from chi_b: arXiv:1209.0282
- $\chi_b(3P)$ confirmation: LHCb: CONF-2012-020
- Y cross section: EPJC 72 (2012) 2025

THANK YOU!