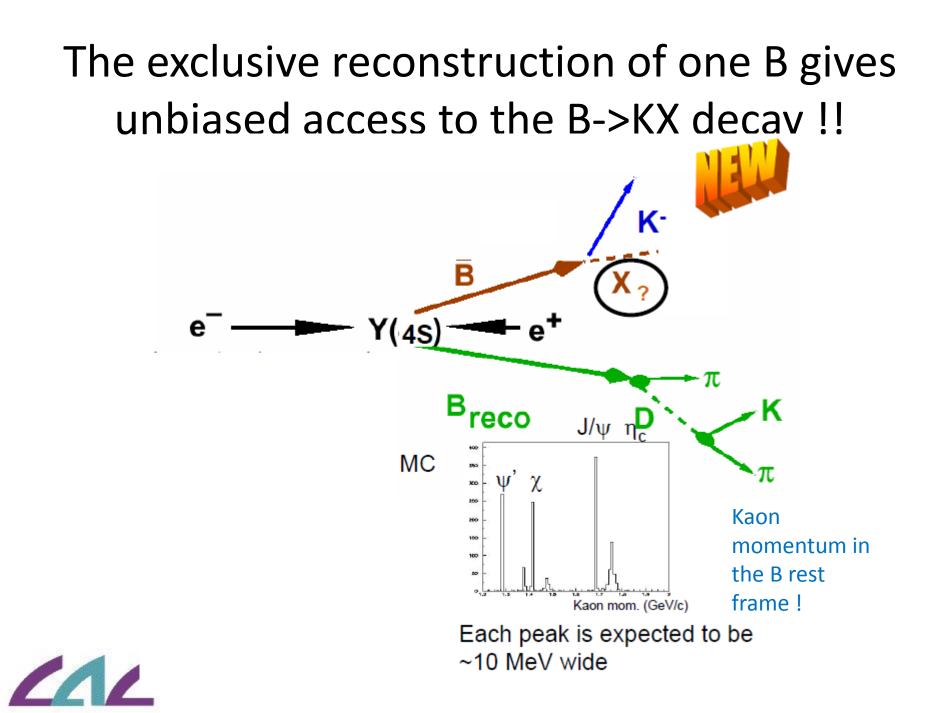
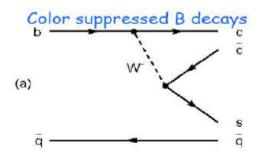

Results and prospects from inclusive charmonium measurements


G. Wormser IN2P3/CNRS and Paris Sud University March 6, 2013 Charmonium workshop, Orsay

How to produce charmonium at the Y(4S)

Principle of the analysis

- Study the two-body decays $B^+ \rightarrow X K^+$
 - (X =cc) by simply studying the K momentum spectrum in the B center of mass: one peak per particle X
- Access to the B center of mass frame is provided thru exclusive reconstruction of the other B
- Works equally well for neutral X (B⁺ Reco) or charged X (B⁰ Reco)
- This work was performed in BABAR in 2004-2005 and published in Phys.Rev.Lett. 96 (2006) 052002
- Used 200 fb-1 (50% of the full present BBAR statistics)


Physics goals for kaon recoil

- Direct measurements: Properties of the full charmonium spectrum
 - Access to unbiased measurements of mass and widths of known or unknown particles
 - Measurement of production rate: absolute branching ratios of BR ($B^+ \rightarrow X K^+$)
- Knowing this absolute BR and observation of exclusive channels B→K X, X→abc, one gets a measurement of BR(X→abc)

Charmonium production in B decays

B meson is an interesting charmonium factory

- Large phase space, « democratic production » at zeroth order of all charmonium states
- Selection rule : Factorisation suppression for χ_0 , χ_2 states. Is it respected? Can we undestand the source of the violations if any
- Understand the pattern in $\psi, \psi', \psi'', \eta_c, \eta'_c, \chi_1$ production rates

Search for Factorization-Suppressed $B \rightarrow \chi_{cJ} K^{(*)}$ Decays : Motivation

Hypothesis: Factorization of hadronic currents:

$$\langle XY|\mathcal{H}_{eff}|B\rangle = \langle X|\mathcal{J}_{EW}|0\rangle\langle Y|\mathcal{J}_{S}|B\rangle$$

Terms in J_{EW} :

$$\begin{aligned} \langle S(q) | \overline{c} \gamma^{\mu} c | 0 \rangle &= -i f_S q^{\mu} \\ \langle P(q) | \overline{c} \gamma^{\mu} \gamma_5 c | 0 \rangle &= -i f_P q^{\mu} \\ \langle V(q, \varepsilon) | \overline{c} \gamma^{\mu} c | 0 \rangle &= -i f_V m_V \varepsilon^{\mu} \\ \langle A(q, \varepsilon) | \overline{c} \gamma^{\mu} \gamma_5 c | 0 \rangle &= -i f_A m_A \varepsilon^{\mu} \end{aligned}$$

- Weak current produces no $J = 2 : \Rightarrow \chi_{c2}$ suppressed.
- $J^{PC} = 1^{--} (J/\psi, \psi(2S))$, and $J^{PC} = 1^{++} (\chi_{c1})$ allowed

• $J^{PC} = 0^{++} (\chi_{c0})$ forbiden M. Diehl, G. Hiller, JHEP 0106:067,2001, hep-ph/0105194 But sizeable $B \to \chi_{c0} K^+$ was found:

• $(6.0^{+2.1}_{-1.8} \pm 1.1) \times 10^{-4}$, Belle PRL 88 031802 , $(2.7 \pm 0.7) \times 10^{-4}$, BABAR PRD 69 071103

Interesting measurements regarding the η_{c}

Measure the absolute BR(B⁺→η_c K⁺), only known today with a 30% error:

PDG2004: BR(B⁺ $\rightarrow \eta_c K^+$)=9 $\mp 2.7 \ 10^{-4}$

- This will in turn gives better measurements of the η_{c} BR decays
- This will in turn give a better measurement of the BR(J/ $\psi \rightarrow \gamma \eta_c$) previously used to normalize the exclusive η_c decays.

Interesting measurements regarding the X(3872)

- Measure the absolute BR (B⁺→X K⁺) (or get an upper limit)
- Deduce the BR($X \rightarrow J/\psi \pi^+\pi^-$) (or get a LOWER limit)
- Look for a charged partner, irrespective of its decay modes
- These three informations are very useful to know more about the true nature of this particle

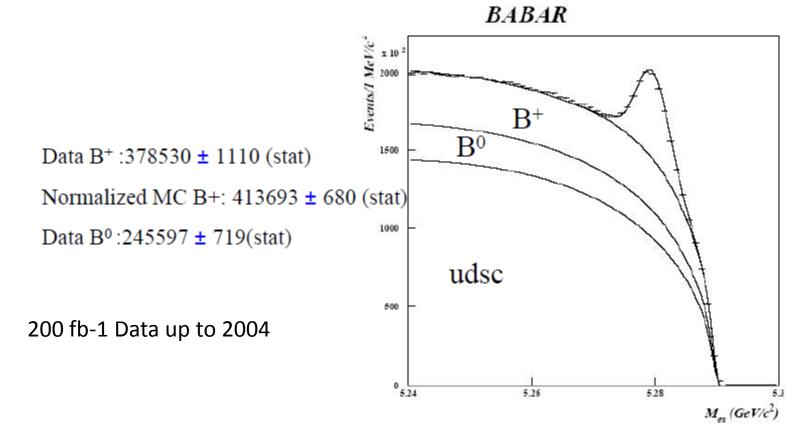
Search for other high mass states

- Various high mass states have been reported in BR (B⁺→ X K⁺) channels: X(3940), Y(3940),...
- Try to confirm their existence, measure their production rate, etc,...

Sensitivity up to 4.8 GeV!

Description of the analysis

B selection


- SemiExclusive B reconstruction sample candidate, Very high yield (~2000 B/fb⁻¹), low purity.
- B purification: NN based on event shape variables and angular information (Breco-rest of the event, Breco-recoil Kaon)
 - NN_sel> cut_b
 - M_min<Mes<M_max</p>
- Kaon Selection
 - Kaon Identification: Tight Kaon id (LH selector)
 - Kaon Purification:
 - Correct sign
 - Rejection of secondary kaons: NN based on energy flow around the kaon track and angular correlations

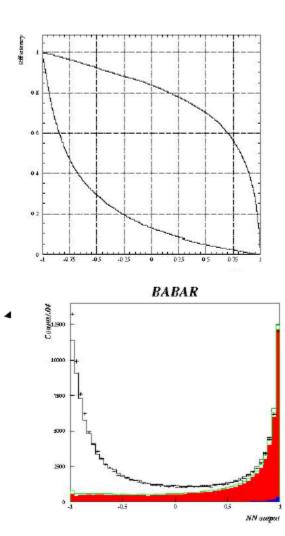
NN_top>cut_top

- Cuts optimization : cut_b, M_min, M_max, cut_top
- Fits to the Kaon momentum spectrum

The fit to the B mass spectrum

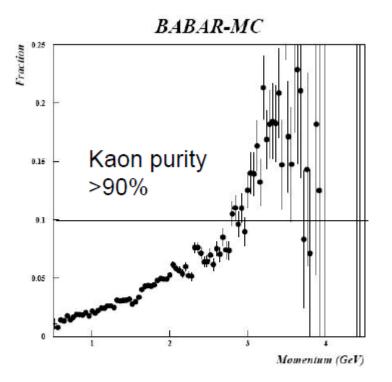
B counting results

Parameter	MC	Runs 1-2	Run3	Run4	Total Data	Typical error
Endpoint (MeV)	5288.76	5290.20	5289.85	5289.25		0.05
Peak Mass (MeV/c^2)	5279.42	5279.83	5279.67	5279.42		0.05
Peak Width (MeV/c^2)	2.50	2.69	2.65	2.615		0.06
α Cristal Ball	1.41	1.7	2.9	1.67		0.13
N Cristal Ball	19.9	27.8	48	23.9		6
High purity B^{\pm} (kB/fb ⁻¹)	0.173	0.133	0.147	0.125	0.131	0.01
High purity B^{\pm} MC-truth (kB/fb ⁻¹)	0.173	0.179	0.169	0.168		0.004
B^{\pm}	1313311	145789	56499	176292	378580	800
B^{\pm} (kB/ fb ⁻¹)	1.97	1.83	1.88	1.76	1.80	0.007
B^{\pm} MC truth (kB/ fb ⁻¹)	2.06	2.11	1.99	2.04		
MC B^{\pm} only fits (kB/ fb ⁻¹)	2.01	2.05	1.97	1.99		

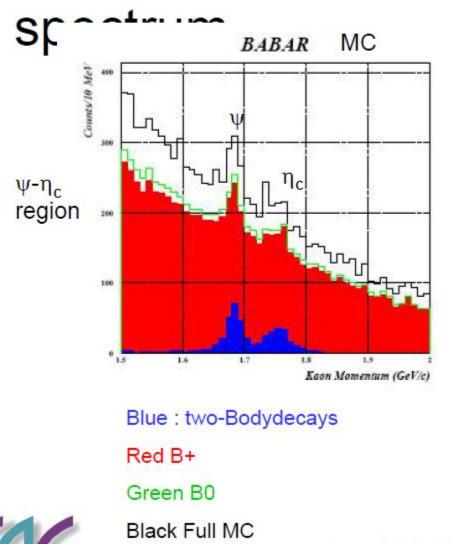

Table 1: Summary of all B^{\pm} mass fit results.

B purification

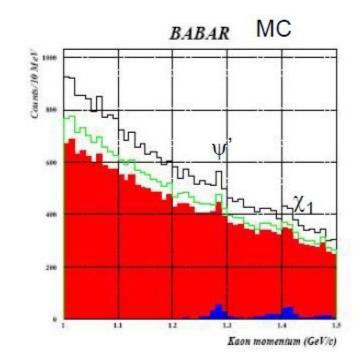
NN based on


- usual cocktail of discriminating variables between BB and continuum (thrust, R₂, Wolfram moments,etc)
- $\Box \cos(B_1 B_2)$
- $\Box \cos(B_{reco}-K)$

Séminaire LAL, 11 Avril 2005

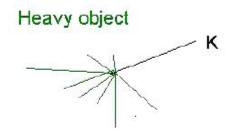

A very good Kaon ID is essential

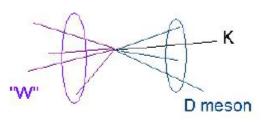
Fraction of MisID Kaons as function of Kaon momentum Less than 5% contamination !


MC expectations for the kaon

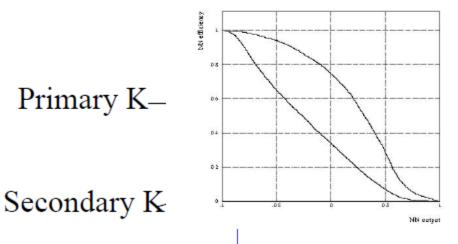
DE L'ACCÉLÉRATEUR

Spectrum dominated by real Kaons from real B decays

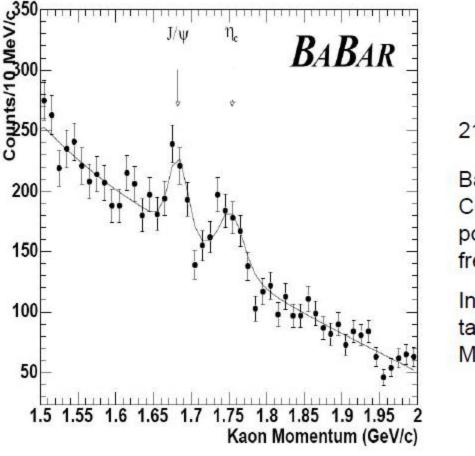

High mass region


54

Séminaire LAL, 11 Avril 2005


Performance of the topology NN selector

Training done with B+ MC: Primary K from charmonia (signal), K from D decays (background) in two kinematic regions m>3.2 GeV and below



Séminaire LAL, 11 Avril 2005

Results in the low mass region

Very clear J/ψ and η_c signals

Significance> 6 σ N J/ ψ =258 ± 42 N_ η_c =266 ± 42

210 fb-1

Background: Cubic polynomial free in the fit Initial values

taken as in MC

Measurement of the BR(B⁺ $\rightarrow \eta_c K^+$)

- N_J/ψ=258 ± 42
- N_η_c =266 ± 42

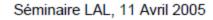
using MC efficiency BR(B⁺ \rightarrow J/ ψ K⁺)= (8.1 ± 1.2(stat) ± 0.9(sys) 10 ⁻⁴ BR(B⁺ \rightarrow η_c K⁺)_{MC}=(8.3 ± 1.3(stat) ± 0.9(sys)) 10 ⁻⁴

Using Intradata:

- BR(B⁺ → η_c K⁺)/BR(B→ J/ ψ K⁺)=1.03 ± 0.22(stat) ± 0.06(sys)
- BR(B⁺ → $\eta_c K^+$)_{data}=(10.3 ± 2.2(stat) ± 0.6(sys) ± 0.4(ref)) 10 ⁻⁴

using the PDG04 BR for the J/ ψ decay

⇒ BR(B⁺ → $\eta_c K^+$)=(8.9 ± 1.5) 10 ⁻⁴


PDG 2012: 9.6+1.2

Summary of results derived concerning η_c and η_c '

	BR(KKπ) (%)	$\Gamma_{\gamma\gamma}$ (KeV)	BR(J/ψ→γ η _c)(%)
η _c	8.3 ± 1.7	5.8 ± 1.2	0.81 ± 0.17
	PDG 5.7 ± 1.6	PDG 7 ± 1 ± 2	PDG 1.30 ± 0.4
	9 ± 5	0.8 ± 0.5	
η _c ΄	First meast PDG 2012 1.9+-1.2	First meast <0.2 keV	

Precision can be further improved by combining these measurements

Mass and width of η_c and η'_c

Part icle	Mass (MeV) This analysis	Mass (MeV) Other results	Width Limit at 90% CL (MeV) This analysis	Width Other results
η _c	2994 ± 5	PDG: 2979.6 ± 1.2 BABAR 2982± 1.1± 0.9 PDG 2012 2981+- 1.1	<43	PDG 17.3 ± 2.5 BABAR 34 ±2.5 29.7+-1.0
η _c ΄	3639 ± 7	PDG:3654 ± 6 ± 8 BABAR 3630.8 ± 3.5 PDG 2012 3639+-1.3	<23	PDG <55 BABAR :17.3 ± 8.3 ± 1.5 PDG 2012 10+-4

Results derived from η_{c} and η'_{c} production rates

- This analysis gives $BR(B^+ \rightarrow \eta_c K^+)=(8.9 \pm 1.5) \ 10^{-4}$
- From BABAR,

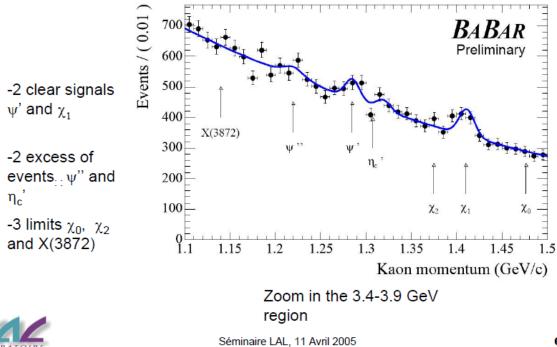
BR $(B \rightarrow \eta_c K)^*BR(\eta_c \rightarrow KK\pi) = (74 \pm 5 \pm 7) 10^{-6}$

BR($\eta_c \rightarrow KK\pi$)= (8.3 ± 1.7)%

PDG2012 7.2+-0.6

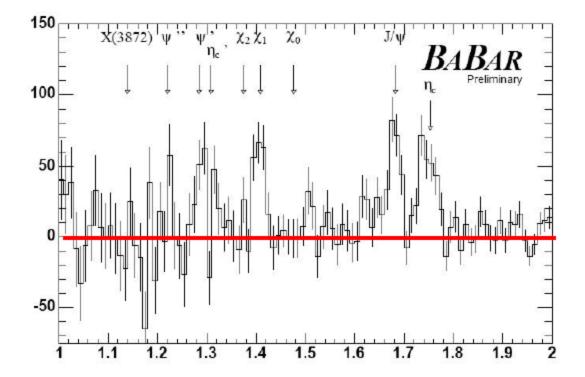
From BES, MARKIII and DM2,

BR($\eta_c \rightarrow KK\pi$)*BR(J/ $\psi \rightarrow \gamma \eta_c$) =(6.7 ± 0.9) 10⁻⁴


BR(J/ψ \rightarrow γ η_c)= (0.81 ∓ 0.17)%

From PDG2004 $\Gamma(\eta_c \rightarrow \gamma \gamma) * BR(\eta_c \rightarrow KK\pi) = (0.48 \pm 0.06) \text{ keV}$

 $\Gamma(\eta_c \rightarrow \gamma \gamma)=5.8 \pm 1.2 \text{ keV}$



Results in the high mass region

The complete charmonium spectrum from a single analysis!

Fit Results in the high mass region

Particle	Yield	Peak Position	Width	$BR(10^{-4})$	PDG 2012
χ _{c0} χ _{c1}	9 ± 21 192 ± 35			<1.8 7.0 \pm 1.3(stat) \pm 1.0(sys)	1.34+-0.19
$\begin{array}{c} \chi_{c1} \\ \chi_{c2} \\ \eta_c \ (2S) \end{array}$	0 ± 36 84 ± 39	$1.319{\pm}0.005$	<15	<2.0 $3.1\pm1.4(stat)\pm0.4(sys)$	0,1+-0,04
$\begin{array}{c} \psi' \\ \psi'' \\ X(3872) \end{array}$	116 ± 37 87 ± 60 10 ± 18			$4.2\pm 1.3(\text{stat})\pm 0.6(\text{sys})$ $3.2\pm 2.2(\text{stat})\pm 0.5(\text{sys})$ < 3.2	6,4+-0,3 4.9+-1.3

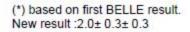

Note: χ_1 désigne en fait χ_1 + h_c

Table of the Branching Ratios

Particle	BR (10^{-4})	BR(PDG2004)	BR(BABAR)
η_c	8.9 ± 1.5	$9.0{\pm}2.7$	13.4 ± 4.4
J/ψ	8.1 ± 1.6	10.0 ± 0.4	10.6 ± 0.5
χ_{c0}	<1.8	$6\pm2.4\pm2.1$ (*)	2.7 ± 0.7
χ_{c1}	$7.0{\pm}1.6$	6.8 ± 1.2	$5.8 {\pm} 0.7$
χ_{c2}	$<\!2$	No entry	< 0.3
$\eta_c(2S)$	3.1 ± 1.5	No entry	
ψ'	4.2 ± 1.4	$6.8 {\pm} 0.4$	6.2 ± 0.5
ψ''	3.2 ± 2.3	No entry	
X(3872)	<3.2	No entry	

Many improvements compared to PDG2004

hep-ex/0412066

Séminaire LAL, 11 Avril 2005

Results concerning X(3872)

N_X(3872) = 10 ± 18

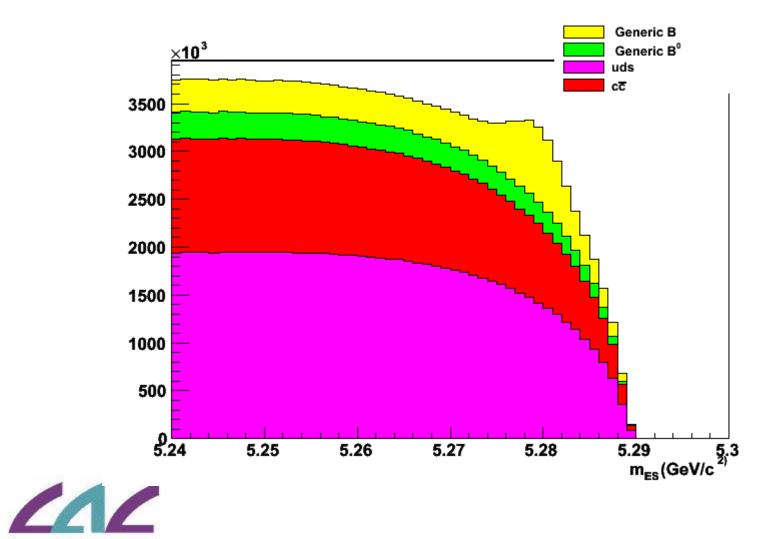
PDG 2012 <3.2 10-4

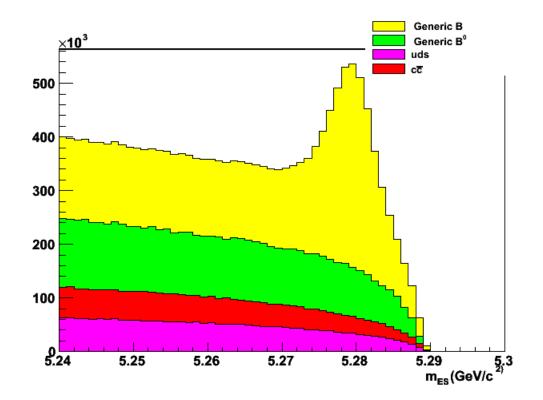
- The 90% CL on BR(B⁺→X(3872) K⁺) is 3.2 10⁻⁴
- From BR(B⁺→X(3872) K⁺) * BR(X(3872)→ψππ) =(13.7 ± 2.2) 10⁻⁶ (BABAR-BELLE averaged), one gets:

BR(X(3872)→ψππ)> 4.3% at 90% CL

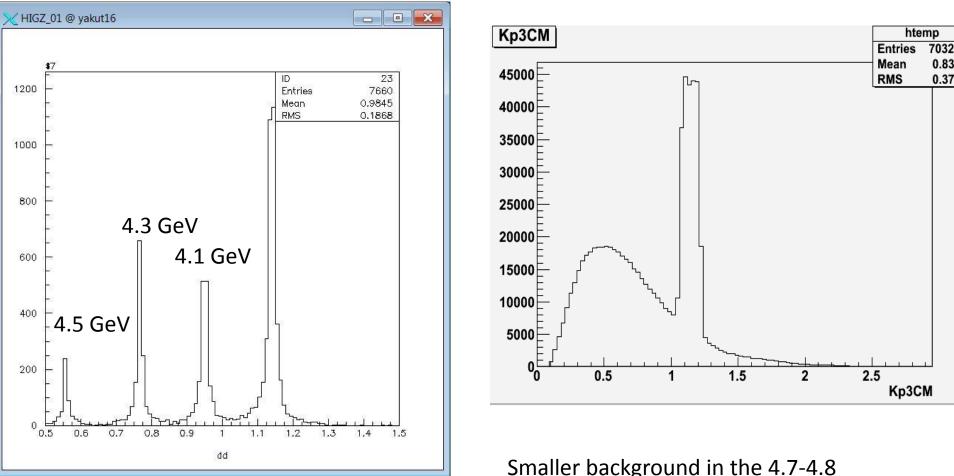
Limits were also set on the production rate of X(3940) and Y(3940) (allowing up to 100 MeV width for this last state) of respectively 3.3 and 2.4 10⁻⁴ at 90% CL

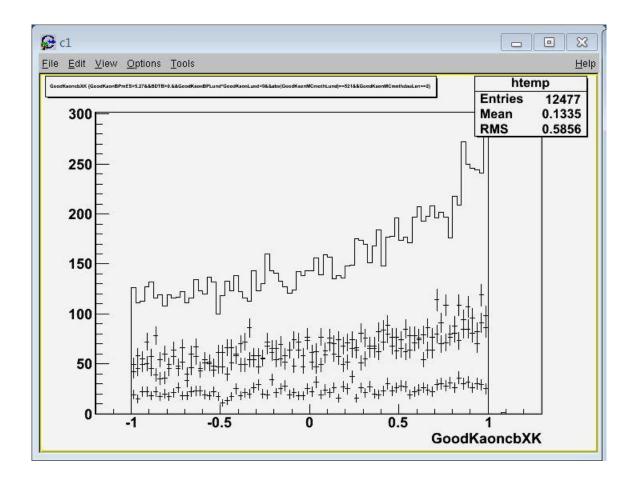
The update of the analysis


 Goal : Update 2004-2006 analysis published on 200 fb-1 with 378k reconstructed B+ (1.9 kB+/fb-1) (with a focus on high mass)


- Yield 259 J/Psi 1.25 J/Psi per fb-1

- Hope is to multiply the stat by a factor 2 (not difficult) and the yield by another x2
 - The factor 2 seems easier to get on the B rate rather than on the K rate
 - Goal 4 KB+/fb-1 ; 2.5 J/Psi/fb-1
 - (1 fb-1= 1 M B+-, B reco efficiency of 0,4%)


MC distribution with all categories before BDT cut (1.3 ab-1)


K signals from all signal MC

Smaller background in the 4.7-4.8 GeV region



Evolution cos

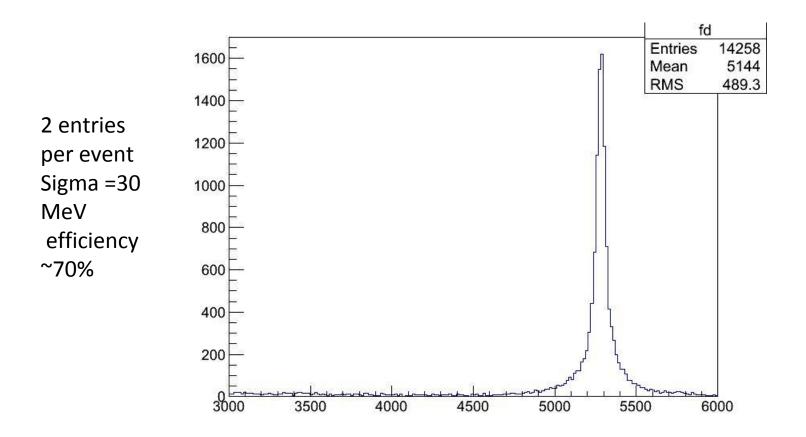
Visibility of a X3872 in BABAR with 1.3 ab-1 MC (Preliminary)

Expectations

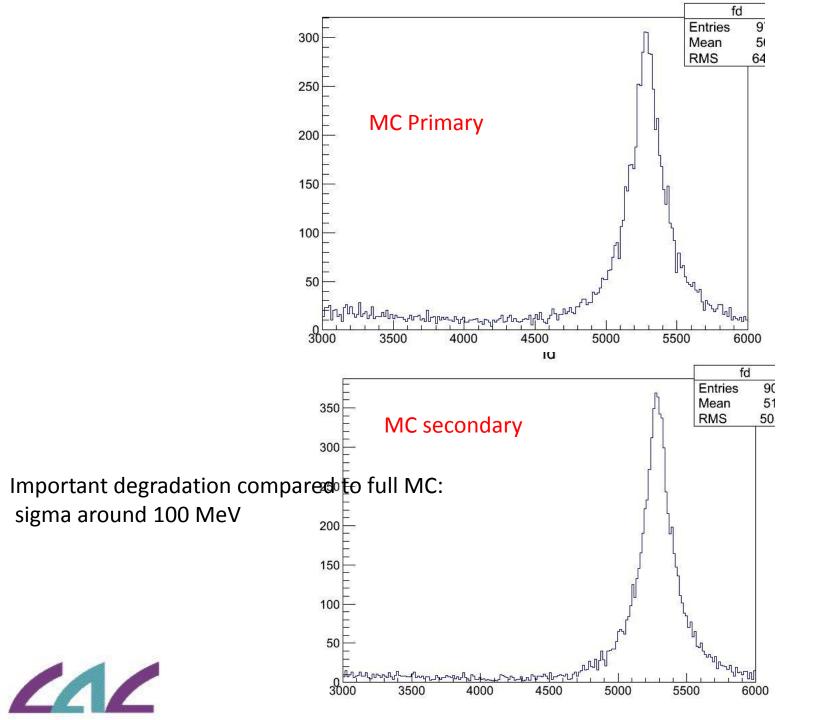
- 1629 J/Psi reconstructed with 0.8 efficiency wrt final selection
- Total number of J/psi for MC (1.4 ab-1):
- 2100 expected, ie 1.5 j/Psi per fb1-> 600 for the full data sample to be compared with 250 in the old analysis
- Regarding the X, final sensivity not yet estimated but should be close to 10-4

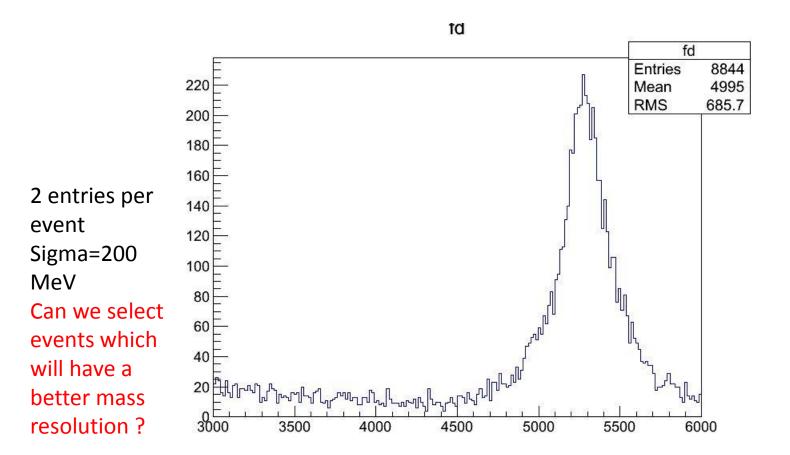
Some very preliminary thoughts about inclusive analysis at LHCb

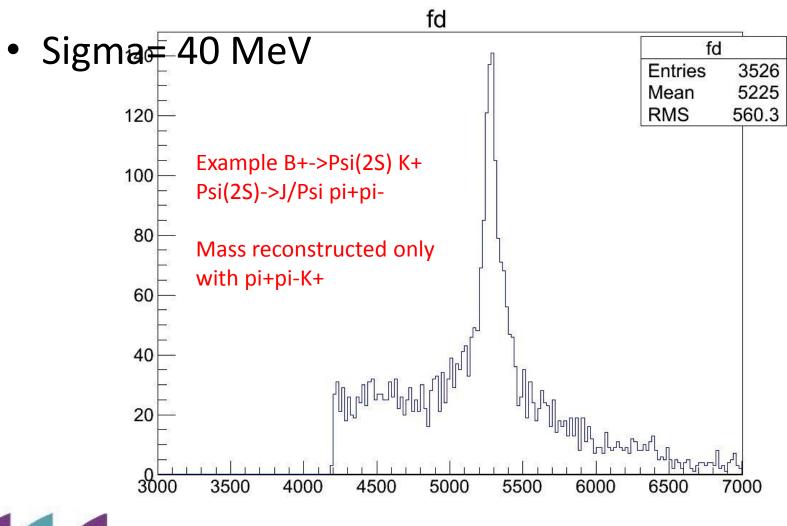
- AT LHCb, one does not have access to the B center of mass
- BUT, one knows the B direction of flight (ie the vector joining the primary vertex and secondary vertex.
- Typical precisions
 - x,y 8 microns/~20 microns
 - Z 100 microns
- Typical flight distance
 - xy 30 Microns
 - Z up to a few cms!
- Very good secondary vertex reconstruction in case of charmonium
- One constraint missing to « forget » one particle :
 - Can be provided by the mass of an intermediate resonance
 - The decay length is a crude measurement of the B energy (to be explored)



One simple example


- B+-> Eta' K+
 - Eta' ->pi+pi_ gamma
- One forgets about the gamma and reconstructs only pi+pi- and K+
- Second degree equation to be solved to fully reconstruct the gamma and the B
 - Two solutions per event


B mass reconstructed with partial technique MC line of flight



Mass distribution real vertex (MC) No cuts

Much better with charmonium (when using ther J/psi tracks at the secondary vertex)

Table of interesting decays in the pipi mode –Low mass

	eta	omega	Eta'	phi			
Gamm a			29				
pi0		85	43	15			
eta			40				
Omega							
Eta'							
	In each	n box, the	BR in %				

Table of interesting decays in the pipi mode –High mass

	Eta_c	Psi	chi	psip	X3872	Υ	Z	
Psi				65	Stat?	Stat?		
Eta_c					Х	Х		
chi					Х	Х		
Psi-2S					Х	Х		

Also possible to « project » charmonia state into light mesons

Conclusion

- Original results produced by inclusive charmonium method study in BABAR in 2005. (B. Aubert et al. **Phys.Rev.Lett. 96 (2006) 052002)**
 - Still the only one on the market!
- Unique results on absolute BR
- Update of the 2004-2005 analysis quite relevant
- Expected Increase in stats between 2.6 (guaranteed) and 4
 - Should be ready for summer conferences
- Will give improved precision on low mass charmonium and new results or limits on X,Y,Z up to 4.8 GeV/c with a sensitivity close to 10**-4
- Inclusive analysis also possible at LHCb to study states not easy to fully reconstruct
 - Could be interesting to « project » X,Y,Z states to other charmonia states than J/psi

