

X,Y,Z at Hadron Colliders

Wenbin Qian

LAPP, Annecy-le-vieux IN2P3-CNRS et Université de Savoie

Workshop for New Results on Charmonium Production and Decays March 6–8, 2013, Orsay France

de Physique des Particules

X,Y,Z States

Recently, discoveries or evidences have been made in the well understood charmonium system and new resonance structures found are noted as *X*, *Y*, *Z* to indicate their unknown nature

	State	m (MeV)	Γ (MeV)	JPC	Process (mode)	Experiment $(\#\sigma)$	Year	Status
Many models exist:	X(3872)	3871.52±0.20	1.3±0.6 (<2.2)	1++/2-+	$\begin{array}{l} B \rightarrow K(\pi^+\pi^-J/\psi) \\ p\bar{p} \rightarrow (\pi^+\pi^-J/\psi) + \dots \\ B \rightarrow K(\omega J/\psi) \end{array}$	Belle , BABAR CDF, DØ Belle BABAR	2003	OK
Tetra-quark: Tightly boun	d				$B \rightarrow K(D^{*0}\overline{D}^{0})$ $B \rightarrow K(\gamma J/\psi)$ $B \rightarrow K(\gamma \psi(2S))$	Belle, BABAR Belle, BABAR BABAR, Belle		
iour quarks	X(3915)	$\textbf{3915.6} \pm \textbf{3.1}$	28±10	0/2?+	$B \rightarrow K(\omega J/\psi)$	Belle, BABAR	2004	OK
Molecular state: Loosely bound mesons	X(3940)	3942 ⁺⁹ -8	37 ⁺²⁷ _17	??+	$e^+e^- \rightarrow e^+e^-(\omega J/\psi)$ $e^+e^- \rightarrow J/\psi(DD^*)$ $e^+e^- \rightarrow J/\psi()$	Belle Belle	2007	NC!
bound mesons	G(3900)	3943 ± 21	52±11	1	$e^+e^- \rightarrow \gamma(DD)$	BABAR, Belle	2007	OK
> Charmonium hybrids:	Y(4008)	4008+121 49	226±97	1	$e^+e^- ightarrow \gamma (\pi^+\pi^- J/\psi)$	Belle	2007	NC!
aharmanium statos with an	Z1(4050)+	4051 ⁺²⁴ -43	82+51	7	$B \rightarrow K(\pi^+\chi_{c1}(1P))$	Belle	2008	NC!
charmonium states with an	X(4140)	$\textbf{4143.4} \pm \textbf{3.0}$	15_7	??+	$B ightarrow K(\phi J/\psi)$	CDF	2009	NC!
excited gluonic degree of	X (4160)	4156+29	139-65	7?+	$e^+e^- \rightarrow J/\psi(D\bar{D}^*)$	Belle	2007	NC
freedom	Z ₂ (4250) ⁺ Y(4260)	4248^{+185}_{-45} 4263 ± 5	177-321 108±14	? 1	$B \rightarrow K(\pi^+\chi_{c1}(1P))$ $e^+e^- \rightarrow \gamma(\pi^+\pi^-J/\psi)$	Belle BABAR	2008 2005	OK
> Threshold effects					$e^+e^- ightarrow (\pi^+\pi^- J/\psi)$ $e^+e^- ightarrow (\pi^0\pi^0 J/\psi)$	Belle CLEO CLEO		
- Focus on current results of	X(4300)	4274.4+8.4	32+22	??+	$B \to K(\phi J/\psi)$	CDF	2010	NC!
	X(4350)	4350.6+4.6	$13.3^{+18.4}_{-10.0}$	0,2++	$e^+e^- ightarrow e^+e^-(\phi J/\psi)$	Belle	2009	NC!
X(3872), X(4140), X(4300) and	Y(4360)	4353 ± 11	96±42	1	$e^+e^- \rightarrow \gamma(\pi^+\pi^-\psi(2S))$	BABAR, Belle	2007	OK
	Z(4430)	4443+24	107+113	?	$B \rightarrow K(\pi^+\psi(2S))$	Belle	2007	NC!
Z(4430) (better access through	X (4630)	4634-9	92+41	1	$e^+e^- \rightarrow \gamma(\Lambda_c^+\Lambda_c^-)$	Belle	2007	NC!
hadron machines, others see tall	Y(4660) $Y_b(10888)$	4664±12 10888.4±3.0	48±15 30.7 ^{+8.9} -7.7	1	$e^+e^- ightarrow \gamma(\pi^+\pi^-\psi(2S))$ $e^+e^- ightarrow (\pi^+\pi^-\Upsilon(nS))$	Belle	2007 2010	NC!
by R. Mizuk)				"Heavy	quarkonium: p	rogress, puz	zles,	and

"Heavy quarkonium: progress, puzzles, and opportunities", arXiv:1010.5827

Exploring Nature of X(3872)

> Discovered in 2003 by Belle (PRL 91(2003) 262001), quickly confirmed by other experiments

> Information offered by B factories:

> Evidence of J/ $\psi\gamma$ by Belle (talk at 2010 QWG workshop) and Babar (PRD 74 (2006) 071101) : C = +1; radiative decay rates prefer 1⁺⁺ vs 2⁻⁺

- > Evidence (or not) of decay $\psi(2s)\gamma$ by Babar and Belle
- > Search for charged X(3872)⁺ (PRD 85, 052004)
- > Search for C = -1 X(3872) partners ($J/\psi\eta$, $X_c\gamma$)
- > Mass and width measurements

≻

> Three main directions to undercover its nature: mass measurement (vs $D^{*0}D^{0}$), cross section measurement, decay chain analysis (J^{PC})

X(3872): Mass Measurement (1)

> In molecular state hypothesis, the mass should be below the $D^{*\theta}D^{\theta}$ threshold $3871.8 \pm 3.1 \pm 3.0$ MeV 500

DØ

MeV/c

400

300

> Both CDF, D0 and LHCb (Belle, Babar) perform measurements on X(3872) mass using $J/\psi \pi \pi$ decay channel (with $\psi(2s)$ for control particle)

X(3872): Mass Measurement (2)

> Current accuracy at similar level for CDF, Babar, Belle and LHCb

> "new average" : 3871.66 ± 0.18 MeV

➤More accuracy is desired to see if it is above, at, or below threshold (δm = -0.28±0.18(X(3872))±0.33(D⁰) MeV)

➤ First measurement in LHCb with 37 pb⁻¹ data; Further measurement with 1 fb⁻¹ data ongoing to pin down the statistical error to ~0.12 MeV

➤ More accuracy on M(D⁰) and M(D^{*}) (M(D^{*})- M(D⁰) known ~0.07 MeV) also required; An update from LHCb (soon) will decrease error on average mass of M(D⁰) from 0.16 MeV to 0.12 (×2) MeV

[1] CDF Collaboration, Phys. Rev. Lett. 103 (2009) 152001
 [2] BABAR Collaboration, Phys. Rev. D77 (2008) 111101R
 [3] D0 Collaboration, Phys. Rev. Lett. 93 (2004) 162002

[4] Belle Collaboration, Phys. Rev. D84 (2011) 052004R
[5] Particle Data Group, J. Phys. G37 (2010) 075021
[6] LHCb Collaboration, Eur. Phys. J. C. 72 (2012) 1972

X(3872) : Cross Section (1)

Cross section measurements also help in testing different models, calculations have been done for LHC using molecular nature and results from Tevatron P. Artoisenet and E. Braaten; arXiv:0911.2016

> The predictions in $\eta \in [2.5, 4.5]$ and $p_T \in [5, 20]$ GeV give

> Prompt + *b* cross section: 13 ± 2.7 nb

> Using 35 pb⁻¹ data, LHCb made an inclusive cross section measurement

X(3872) : Cross Section (2)

> The measurement is done using:

$$\sigma_{X(3872)} \times \mathcal{BR}(X(3872) \to J/\psi\pi^{+}\pi^{-}) = \frac{N_{X(3872)}}{\epsilon_{\text{tot}} \times \mathcal{L}_{\text{int}} \times \mathcal{BR}(J/\psi \to \mu^{+}\mu^{-})}$$

- > N_{x(3872)}, the number of reconstructed X(3872) $\rightarrow J/\psi(\rightarrow \mu^+\mu^-)\pi^+\pi^-$
- > $\mathcal{L}_{int} = 34.7 \text{ pb}^{-1}$, the integrated luminosity used
- $> \epsilon_{tot}$, the total reconstruction efficiency
- > $\mathscr{B}r(J/\psi \rightarrow \mu^+\mu^-)$, the $J/\psi \rightarrow \mu^+\mu^-$ branching fraction
- > We obtain the inclusive cross section in $\eta \in [2.5, 4.5]$ and $p_T \in [5, 20]$ GeV:
 - $\sigma_{X(3872)} \times \mathcal{BR}(X(3872) \to J/\psi \pi^+ \pi^-) = 4.7 \pm 1.1(\text{stat}) \pm 0.7(\text{syst})$
- > The measured value is 2.8 σ smaller than the prediction in previous slide
- > Measurements with 1 fb⁻¹ is ongoing and we will separate prompt and *b* component and measure it as a function of p_T and η

[1] LHCb Collaboration, Eur. Phys. J. C. 72 (2012) 1972

X(3872) : Cross Section (3)

> Using 4.8 fb⁻¹ data, CMS performs a differential cross section (w.r.t $\psi(2s)$) measurement for prompt X(3872) in $\eta \in [-1.2, 1.2]$ and $p_T \in [10, 50]$ GeV

> Prompt and detached components separated using lifetime-like distribution in x-y plane

 $\sigma^{\text{prompt}}(\text{pp} \rightarrow X(3872) + \text{anything}) \cdot \mathcal{B}(X(3872) \rightarrow J/\psi \pi^+ \pi^-) = 1.06 \pm 0.11 \text{ (stat.)} \pm 0.15 \text{ (syst.)} \text{ nb.}$ > NRQCD prediction: 4.01±0.88 nb (arXiv:0911.2016)

[1] CMS Collaboration, arXiv: 1302.3968

X(3872) : Cross Section (4)

[1] CMS Collaboration, arXiv: 1302.3968

X(3872) : J^{PC} Determination (1)

Citation: J. Beringer et al. (Particle Data Group), PR D86, 010001 (2012) (URL: http://pdg.lbl.gov)

X(3872)

$$I^{G}(J^{PC}) = 0^{?}(?^{?+})$$

Seen by CHOI 03 in $B \to K \pi^+ \pi^- J/\psi(1S)$ decays as a narrow peak in the invariant mass distribution of the $\pi^+ \pi^- J/\psi(1S)$ final state,

A helicity amplitude analysis of the $X(3872) \rightarrow J/\psi \pi^+ \pi^-$ decay gives two possible J^{PC} assignments: $J^{PC} = 1^{++}$ and 2^{-+} (ABULENCIA 07E and CHOI 11).

Unknown J^{PC} after 10 years of discovery

1++: D^0D^{0*} molecule? 2-+: $\eta_{c2}(1^1D_2)$?

> Angular Analysis Needed (X(3872) \rightarrow J/ $\psi \pi \pi$, ρ^0 dominated)

X(3872) : J^{PC} Determination (2)

> Using 2292±113 inclusively produced X(3872), CDF performs angular analysis on J^{PC}

> All other spins up to 3 ruled out except 1⁺⁺ and 2⁻⁺

> 1D analysis by Belle (173±16 events) in 2011 can't distinguish two states (another analysis by Babar using B→J/ $\psi\omega(3\pi)$ prefers 2⁻⁺)

J^{PC}	decay	LS	χ^2 (11 d.o.f.)	χ^2 prob.
1++	$J/\psi ho^0$	01	13.2	0.28
2-+	$J/\psi \rho^0$	11,12	13.6	0.26
1	$J/\psi(\pi\pi)_S$	01	35.1	2.4×10^{-4}
2+-	$J/\psi(\pi\pi)_S$	11	38.9	5.5×10^{-5}
1+-	$J/\psi(\pi\pi)_S$	11	39.8	3.8×10^{-5}
2	$J/\psi(\pi\pi)_S$	21	39.8	$3.8 \times I10^{-5}$
3+-	$J/\psi(\pi\pi)_S$	31	39.8	3.8×10^{-5}
3	$J/\psi(\pi\pi)_S$	21	41.0	2.4×10^{-5}
2++	$J/\psi \rho^0$	02	43.0	1.1×10^{-5}
1-+	$J/\psi\rho^0$	10,11,12	45.4	4.1×10^{-6}
0^{-+}	J/1/10	11	104	3.5×10^{-12}
0^{+-}	$J/\psi(\pi\pi)_S$	11	129	$\leq 1 \times 10^{-20}$
0++	$J/\psi \rho^0$	00	163	$\leq 1 \times 10^{-20}$

[1] CDF Collaboration, Phys. Rev. Lett. 98 (2007), 132002, arXiv: hep-ex/0612053

X(3872) : J^{PC} Determination (3)

- > LHCb joined with 313±26 X(3872) signals using 1fb⁻¹ data
- > A full 5D analysis performed

> Several analysis technics used and made it possible to distinguish the remaining two hypothesis

 $\gg \psi(2s)$ with known J^{PC} = 1⁻⁻ used as control (test) particle

[1] LHCb Collaboration, arXiv: 1302.6269

X(3872) : J^{PC} Determination (4)

> Matrix elements for angular analysis

$$\mathcal{M}(\Omega|J_X)|^2 = \sum_{\Delta\lambda_{\mu}=-1,+1} \left| \sum_{\substack{\lambda_{J/\psi},\lambda_{\pi\pi}=-1,0,+1}} A_{\lambda_{J/\psi},\lambda_{\pi\pi}} \times D^{J_X}_{0,\lambda_{J/\psi}-\lambda_{\pi\pi}}(\phi_X,\theta_X,-\phi_X) \times D^{1}_{\lambda_{\pi\pi},0}(\phi_{\pi\pi},\theta_{\pi\pi},-\phi_{\pi\pi}) \times D^{1}_{\lambda_{J/\psi},\Delta\lambda_{\mu}}(\phi_{J/\psi},\theta_{J/\psi},-\phi_{J/\psi}) \right|^2,$$

Different amplitude related by Clebsch-Gordan coefficients

$$A_{\lambda_{J/\psi},\lambda_{\pi\pi}} = \sum_{L} \sum_{S} B_{LS} \times \begin{pmatrix} J_{J/\psi} & J_{\pi\pi} \\ \lambda_{J/\psi} & \lambda_{\pi\pi} \end{pmatrix} \begin{pmatrix} S \\ \lambda_{J/\psi} & \lambda_{\pi\pi} \end{pmatrix} \times \begin{pmatrix} L & S \\ 0 & \lambda_{J/\psi} - \lambda_{\pi\pi} \end{pmatrix} \begin{pmatrix} J_X \\ \lambda_{J/\psi} & \lambda_{\pi\pi} \end{pmatrix}$$

As higher L is suppressed (L_{min} + 2, 4 ...), only L_{min} considered $\rho^0(770): 1^- J/\psi: 1^-$

JPC	1++	2-+
L, S	L=0,S=1	L=1, S=1or 2

For J=1, 0 free parameter, J=2, 1 complex parameter: $\alpha = B_{11}/(B_{12}+B_{11})$

[1] LHCb Collaboration, arXiv: 1302.6269

X(3872) : J^{PC} Determination (5)

LHCb THCp

> A likelihood ratio test performed

$$t = -2 s_w \sum_{i=1}^{N} w_i \ln \frac{P(\Omega_i \mid 2^{-+}, \alpha_{\max})}{P(\Omega_i \mid 1^{++})}$$

 $P - \mathsf{PDF}$ $\int P(\Omega \mid hyp) \, d\Omega = 1$

> Background subtracted using sweight (ω_i)

> α_{\max} maximizes the 2⁻⁺ likelihood $2 s_w \sum_{i=1}^{N} w_i \ln P(\Omega_i | 2^{-+}, \alpha)$

 $\alpha_{\text{max}} = (0.671 \pm 0.046, 0.280 \pm 0.046)$

> s_w is a constant factor for correcting errors when using sweight to subtract background

 $P(\Omega \mid hyp) = \varepsilon(\Omega \mid hyp) |M(\Omega \mid hyp)|^2 / I(hyp)$ $I(hyp) = \int \varepsilon(\Omega \mid hyp) |M(\Omega \mid hyp)|^2 d\Omega$

> Efficiency depends little on hypothesis and can be factorized out with only dependence on its integration which can be obtained using simulated sample

[1] LHCb Collaboration, arXiv: 1302.6269

 $s_w = \frac{\sum_{i=1}^{N} w_i}{\sum_{i=1}^{N} w_i^2}$

X(3872) : J^{PC} Determination (6)

2^{-+} ruled out by 8.4 σ (Gaussian approximation)

 $> 5\sigma$ (direct from simulated number)

9.7σ (Wilks' theorem)

1⁺⁺ p-value: 34%

X(3872) : J^{PC} Determination (7)

➤ Distinguish by "eye"

Distinguish between two J^{PC}

[1] LHCb Collaboration, arXiv: 1302.6269

Search for X(4140)+X(4300) (1)

C)

CDF observed a narrow structure $X(4140) \rightarrow J/\psi \varphi$ (also named as Y(4140)) in $B \rightarrow J/\psi \varphi K$ decay with 6 fb⁻¹ data

Candidates

> In CDF, 19±6(stat)±3(syst) resonance events within 115±12(stat) reconstructed $B \rightarrow J/\psi \varphi K$ events: 3.8 σ significance and mass:

 $M_{X(4140)} = 4143.4^{+2.9}_{-3.0}(stat) \pm 0.6(syst)MeV$

CDF data also suggested a second state with 22±8 events,
 3.1σ significance at higher mass:

 $M = 4274.4^{+8.4}_{-6.7}(stat) \pm 1.9(syst) MeV$

> With 0.38 fb⁻¹ of data, LHCb also performed a search using 346 ± 20 reconstructed B $\rightarrow J/\psi \phi K$

MeV/c

b)

Search for X(4140)+X(4300) (2)

Search for X(4140)+X(4300) (3)

> Using 5.2 fb⁻¹ of data, CMS joins with 2478 ± 162 reconstructed $B \rightarrow J/\psi \phi K$

> The structure at 4148 MeV with significance >5 σ consistent with a previous resonance structure by CDF

> Evidence for a second structure at 4317 MeV (4274 MeV for CDF)

Search for Z(4430) (1)

> Claim of exotic Z(4430)⁺ $\rightarrow \psi$ (2S) π^+ resonance by Belle (minimal quark content ccud – "smoking gun" for existence of four-quark bound states)

► <u>Four independent variables (4D)</u> describing full kinematics of B→ $\psi(2S)K\pi$, $\psi(2S) \rightarrow \mu^+\mu^-$ decay (with additional assumptions also for $\psi(2S) \rightarrow \pi^+\pi^- J/\psi$, $J/\psi \rightarrow \mu^+\mu^-$)

> Belle PRL 100 (2008) 142001: 605 fb⁻¹

 \blacksquare B→ψ(2S)Kπ (K⁺ and K⁰_s, ψ(2S)→*l*⁺*l*⁻ or ψ(2S)→π⁺π⁻J/ψ, J/ψ→*l*⁺*l*⁻, *l*=e or μ)

Simple-minded 1D analysis in M(K π) and M($\psi(2S)\pi$):

> veto K*(892),K*(1430) regions by cutting on M(K π)

- > 1D fit to $M(\psi(2S)\pi)$:
 - $M = 4433 \pm 4(\text{stat}) \pm 2((syst))MeV$ $\Gamma = 45^{+18}_{-13}(\text{stat})^{+30}_{-13}((syst)MeV$

■ 121±20 Z events, 6.5σ evidence for $\psi(2S)\pi^+$ "resonance-like structure"

Search for Z(4430) (2)

Z(4430)

Background shapes determined by the $K\pi$ reflections. Fit only background amplitude and relativistic S-wave BW line shape.

► BaBar PRD 79 (2009) 112001: 413 fb⁻¹

 \implies B $\rightarrow \psi(2S)K\pi$ and B $\rightarrow J/\psi K\pi$ (K⁺ and K⁰_s,

 $\psi(2S) \rightarrow l^+l^- \text{ or } \psi(2S) \rightarrow \pi^+\pi^- J/\psi , J/\psi \rightarrow l^+l^-, l=e \text{ or } \mu)$

■ Sophisticated 2D analysis in $M(K\pi)$ vs cos Θ_K (Θ_K -angle between K direction in Kπ rest frame and Kπ direction in the B rest frame):

> 2D efficiency corrections

> Fit M(K π) with known K π resonances (modified LASS parameterization for S-wave)

> Determine $\cos\Theta_{K}$ moments vs M(K π)

> Transform the above into reflections of the fitted $K\pi$ structures in $M(\psi(2S)\pi)$ [also $M(J/\psi\pi)$]. Conclude that their observed $M(\psi(2S)\pi)$ and $M(J/\psi\pi)$ data well described by the reflections of these $K\pi$ structures.

> When fitting Z(4430)⁺ explicitly, set an upper limit which is consistent with the Belle's result

> No evidence for Z(4430)⁺ in the BaBar data, but also no disagreement with the Belle's claim

Search for Z(4430) (3)

> Belle PRD 80 (2009) 031104: 605 fb⁻¹

Reanalysis of $B \rightarrow \psi(2S)K\pi$ in response to implicit criticism contained in the BaBar paper

Sophisticated 2D analysis in M(Kπ) vs M(ψ(2S)π) ("Dalitz analysis"):

> 2D efficiency corrections:

Still not bullet proof if efficiency not uniform in the other 2 degrees of freedom!

> 2D fit of known $K\pi$ resonances (Isobar model [i.e. explicit spin 0 resonances] for S-wave, LASS as cross-check) plus optionally Z(4430)

> Conclude that their Dalitz plot not well described by the $K\pi$ structures alone.

➤ When fitting with Z(4430)⁺ component:

- $M = 4443^{+15}_{-12}(\text{stat})^{+19}_{-13}((syst))MeV \Gamma = 107^{+86}_{-43}(\text{stat})^{+74}_{-56}((syst)MeV$
- From change of the fit likelihood: 6.4σ evidence for exotic Z(4430)
- **No B** \rightarrow J/ ψ K π results from Belle

Dotted curve – fit with the $K\pi$ structures alone.

Changed in values and errors compared to their naïve approach in the 1st publication

Search for Z(4430) (4)

> Z(4430)-like bump observed in B $\rightarrow \psi(2S)K\pi$ data, simple fit results in same mass as BELLE but larger width

> By now use full 2011 1 fb⁻¹ data

≻ Four independent variables (4D) describing full kinematics of $B \rightarrow \psi(2S)K\pi$, $\psi(2S) \rightarrow \mu^+\mu^$ decay

> One choice: $M(K\pi)$, $M(\psi(2S)\pi)$, $\cos(\theta_{\psi})$, ϕ ; 4D analysis

> Alternative approach using Babar's method also tried

Conclusion

> Rich programs for X, Y, Z physics at hadron colliders

> Still puzzle on nature of X(3872), but approaching closer with more properties explored

> Better precision measurement on both X(3872) mass and D^0 mass

> Production of X(3872) disagree with theoretical predictions using Molecular hypothesis with NRQCD

> J^{PC} of X(3872) determined to b 1⁺⁺

> Puzzle on the existence of X(4140), X(4300) and Z(4430) still remains

> Its existence should soon be answered with current data collected at LHC

> Next will be on its properties