Charged Higgs Searches in ATLAS $H^+ \rightarrow \tau \nu$ and $H^+ \rightarrow cs$

Alexander Madsen (Uppsala University / LPSC Grenoble) on behalf of the ATLAS collaboration

> Higgs Hunting July 25, 2013 | Orsay, France

UPPSALA UNIVERSITET

The Hunt is still on!

Charged Higgs?

- Charged Higgs bosons appear in models with extended Higgs Sectors (e.g SUSY).
- So far using m^{max}_h in Type II 2HDM as benchmark scenario. For m_{H⁺} < m_{top}:
 - Main production mode is $gg \rightarrow t\bar{t} \rightarrow H^+ bW^-\bar{b}.$
 - H^+ decays mainly to $c\overline{s}$ or $\tau\nu$.
- Results presented as limits on $Br(t \rightarrow H^+b)$.
 - \rightarrow Not model dependent.

Presented here:

- (7 TeV data)
- $\underline{H^+ \rightarrow c\overline{s}}$ [Eur. Phys. J. C, 73 6 (2013) 2465].
 - Using the di-jet invariant mass.
- $\underline{H^+ \rightarrow au
 u}$ [JHEP 03 (2013) 076].
 - Test of lepton universality in $t\bar{t}$ decays.

Adds sensitivity to scenarios not well covered by neutral Higgs searches. *Heavy MSSM Higgs H at* ~ 125 GeV, light h below LEP limit with reduced couplings??

M_{H*}=100 GeV

$H^+ ightarrow c\overline{s}$

> All hadronic decay of H^+ allows for full mass reconstruction.

- The QCD multijet background is determined by a fit to the $E_{\rm T}^{miss}$ distribution.
- The W+jets background is determined from data exploiting the charge asymmetry of such events.

Jet Selection

- At least four jets.
- At least two b-tagged jets (using an MVA algorithm with 70% efficiency).

Electron Channel

- 25 GeV electron.
- $E_{\rm T}^{miss}$ > 30 GeV
- $m_{\rm T}^{e,miss} > 30 {
 m GeV}$

Muon Channel

- 20 GeV muon.
- $E_{\rm T}^{miss}$ > 20 GeV
- $E_{\mathrm{T}}^{miss} + m_{\mathrm{T}}^{\mu,miss} > 60 \; \mathrm{GeV}$

Kinematic fitting

- Full reconstruction of the $t\bar{t}$ system Neutrino p_z determined by fixing $m_W = 80.4$ GeV
- 5 highest $p_{\rm T}$ jets considered as possible $t\bar{t}$ decay products, 2 highest $p_{\rm T}$ jets always assumed to be $t\bar{t}$ decay products, b-tagged jets assumed to originate from b-quarks
- Find the best *bbjj* combination by minimizing:

Results and limits

Alexander Madsen: Charged Higgs Searches in ATLAS - Higgs Hunting 2013

Alexander Madsen: Charged Higgs Searches in ATLAS - Higgs Hunting 2013

Alexander Madsen: Charged Higgs Searches in ATLAS - Higgs Hunting 2013

Analysis Outline

Event Selection

- Exactly one electron or muon having p_T > 25 GeV
- At least two jets having $p_{\rm T}$ > 20 GeV, exactly two b-tags.
- *E*_T^{miss}> 40 GeV.
- In addition one muon, electron or tau (p_T > 25 GeV)
- Separate events based on the tau charge: Same Sign (SS) or Opposite Sign (OS) as the lepton.

Subtracting Same Sign Events

- Tau misidentification rates differ between light quarks, heavy quarks, and gluons.
- Relative fractions of these contributions are not well known.
- Assume b quarks and gluons misidentified as taus contribute equally to SS and OS events.
- Assign negative weight to SS events b quark and gluon contributions should cancel!

OS-SS procedure in a W+2 jets control region. The poor data/mc agreement motivates using data driven methods.

Backgrounds

Misidentified taus

- > 46% of taus in simulated SM $t\bar{t}$ events are actually quarkor gluon-initiated jets.
- Tau misidentification rates measured using W + 2 jets events in data:
 - Exactly one electron or muon
 - At least one tau candidate
 - At least two additional jets, no b-tags
 - $E_{\rm T}^{miss}$ > 40 GeV
 - $m_{\rm T}^{lep,miss}$ > 30 GeV
- ➤ Parametrized by tau p_T, number of tracks within ΔR < 0.2 (N^{track}_τ) and within ΔR < 0.4 (N^{track}_{iso}).
- > Used to weight MC events with misidentified taus.

Misidentified leptons

- Small contribution from misidentified (non-isolated) leptons (e.g. QCD multijet events).
- Estimated using a matrix method also relying on (mis)identification efficiencies measured in control regions.

Backgrounds with real leptons and taus

Taken from simulation.

Exclusion limits

Ratio	Re	R_{μ}
Background only	$0.105 \pm 0.004(stat) \pm 0.013(syst)$	$0.166 \pm 0.004(stat) \pm 0.026(syst)$
Measured value	$0.115 \pm 0.010(stat)$	$0.165 \pm 0.015(stat)$

- After accounting for dilepton events firing both triggers, a combination of both channels can be made.
- Limit on $B(t \rightarrow bH^+)$ placed at 2.9% (90 GeV) to 16.6% (160 GeV).
- Improvement over previous best result from direct search in tau+jes events [JHEP 1206 (2012) 039] at low mass (was ≈ 6% at 90 GeV).

Largest uncertainties	ΔR_e	ΔR_{μ}
mis-ID leptons	3.5%	4.3%
τ ID efficiency	3.9%	3.9%
au mis-ID meas. (stat)	3.3%	3.2%
au energy scale	2.9%	3.0%

Alexander Madsen: Charged Higgs Searches in ATLAS - Higgs Hunting 2013

Summary

- The 2012 discovery is perhaps just the beginning...
 - Many models predict additional Higgs bosons.
- ATLAS has searched for Charged Higgs bosons decaying to $c\overline{s}$ or $\tau\nu$ in the mass range 90 GeV< m_H^+ < 160 GeV.

-
$$B(t \to bH^+) \times B(H^+ \to c\overline{s}) < 1.2\%$$
 - 5.1% (90-150 GeV).

- $B(t \to bH^+) \times B(H^+ \to \tau \nu) < 0.9\%$ 3.4% (90-160 GeV).
- No LHC results with 8 TeV data
 - stay tuned for updates...

