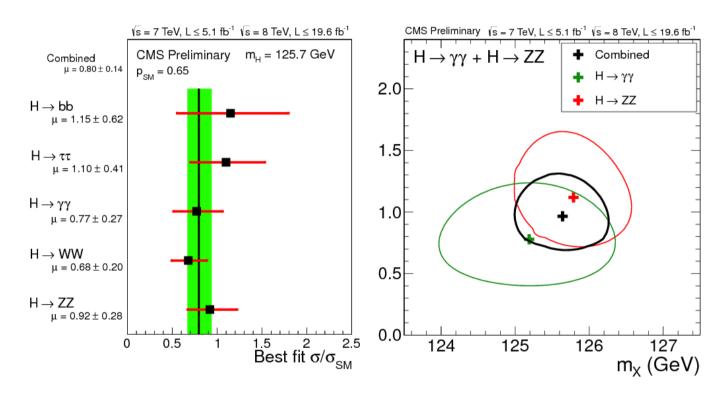


Spin measurements in H \rightarrow WW \rightarrow 2 ℓ 2 ν with CMS

Sten Luyckx (UA)
On behalf of CMS

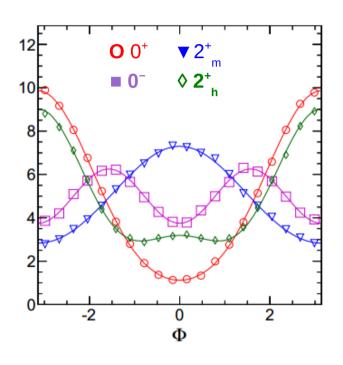

Higgs Hunting 2013 – Paris

25 July 2013

CMS

Introduction

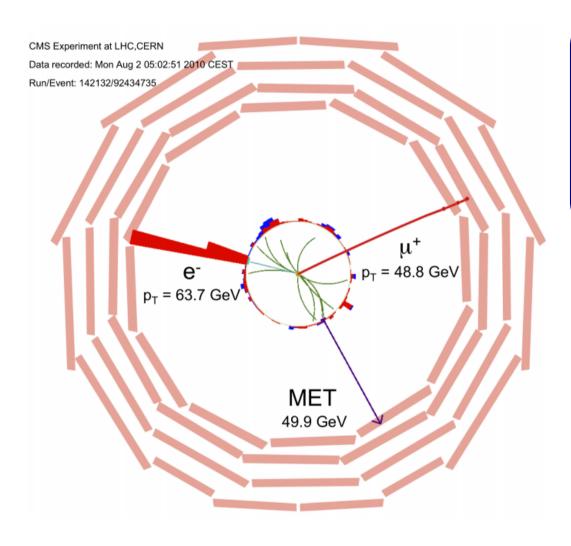
A narrow resonance was found in multiple channels at a mass of 125 GeV in both ATLAS and CMS


- Next step: the determination of Quantum Numbers such as Spin and Parity is
- > This talk covers the spin-parity measurement in H \rightarrow WW \rightarrow 2 ℓ 2 ν with CMS data

Generator Study

> As shown in arXiv:1208.4018 (Y. Gao et al.), the WW channel is sensitive to test the tensor structure of the couplings of the new boson to WW:

scenario	$X \to ZZ$	$X \to WW$	$X \to \gamma \gamma$
0_m^+ vs background	5.0	5.0	5.0
$0_m^+ \text{ vs } 0_h^+$	1.8	1.1	0.0
$0_m^+ \text{ vs } 0^-$	2.9	1.2	0.0
$0_m^+ \text{ vs } 1^+$	2.1	2.0	_
$0_m^+ \text{ vs } 1^-$	2.8	3.2	
$0_m^+ \text{ vs } 2_m^+$	1.1	2.8	2.4
$0_m^+ \text{ vs } 2_h^+$	~ 5	1.1	3.1
$0_m^+ \text{ vs } 2_h^-$	~ 5	2.5	3.1



- We considered 2 different possibilities :
 - Spin-0 scalar : J^P = 0⁺ SM predicted value
 - Spin-2 tensor : J^P = 2⁺

The minimal couplings spin-2 model

Briefly: $H \rightarrow WW \rightarrow 2\ell 2n$

Signature:

- 2 isolated high p_{τ} leptons (e, μ)
- Large missing E_T
- \bullet Small $\Delta \varphi_{\ell\ell}$ and low $M_{_{\ell\ell}}$ for low $M_{_{H}}$
- No resonance peak

Backgrounds:

• WW : continuum

tt / tW : b-jets

• W+jets : « fake » lepton

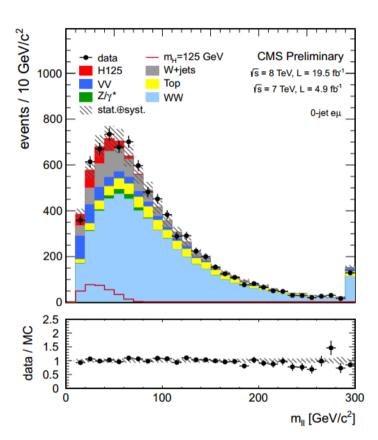
• Z / γ^* : mis-measured MET

• W / Z+ $\gamma^{(*)}$: $\gamma^{(*)} \rightarrow \ell \ell$

• WZ / ZZ : V+jj/vv or missing lepton

Spin Analysis

- > Try to separate the SM hypothesis (0⁺) and the spin-2 minimal coupling graviton (2⁺)
- > Set ZH, WH and qqH components to 0 in all hypotheses
 - → tested ggH processes against each other :
 - 0⁺ from POWHEG (NLO)
 - 2⁺ from JHU (LO generator)
- > Fix the 2⁺ normalization to the same values as the 0⁺
- > Let the signal event rate float and threat it as a nuisance parameter



Briefly: Analysis overview

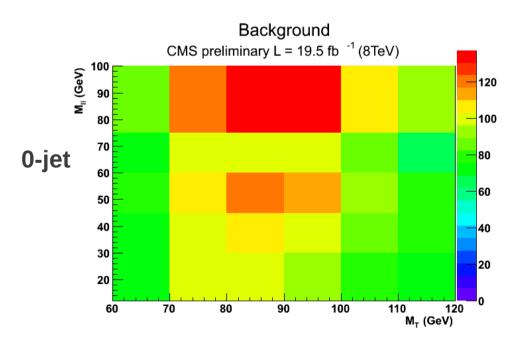
- **Analysis optimized in different categories to reach better sensitityity**
 - Lepton flavour pairs : DF (e μ) (and SF (ee/ $\mu\mu$) in main analysis)
 - Exclusive jet multiplicity (0, 1 -jet)
 - Use the full 7 + 8 TeV datasets (4.9 and 19.5 invfb)

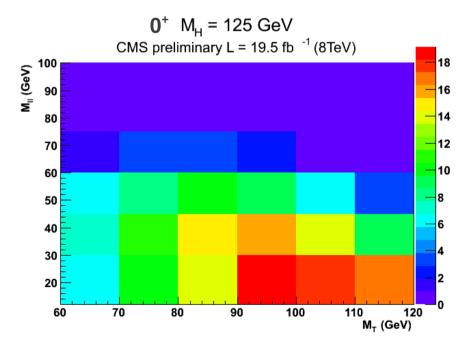
Most sensitive in low m_H search

	0-jet	1-jet
DF	WW W+jets, V+ $\gamma^{(*)}$ (low m _H)	WW, Top

> The spin analysis is based on the same selection as the 2D shape analysis but only uses DF!

Dominant backgrounds

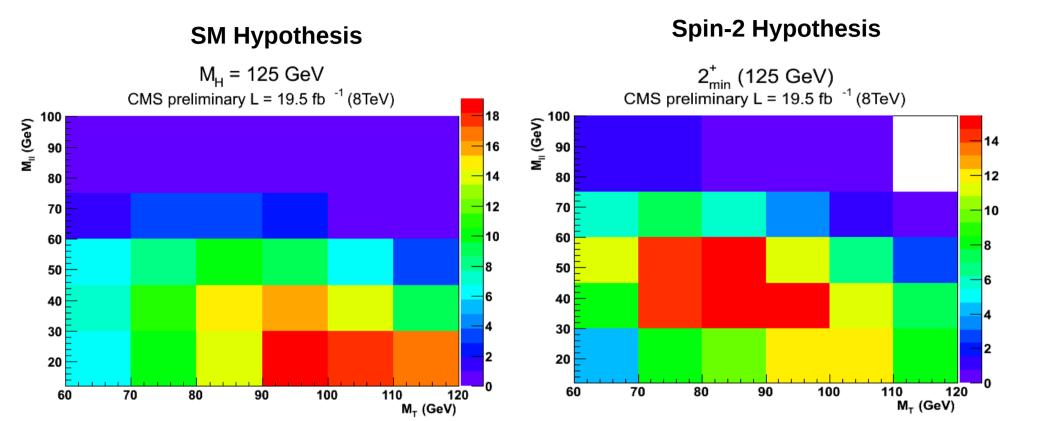

2D Shape analysis $M_T:M_{\ell\ell}$


Binning in mass-like variables :

- $m_{\scriptscriptstyle \perp}$: higgs transverse mass
- $m_{_{\ell\ell}}$: di-lepton invariant mass
 - → These 2 variables are both correlated to the angles of the leptons
- binning chosen to ensure sufficient statistics
 - is a bit finer in signal region

M _T (GeV)	M _{II} (GeV)
[60 - 280]	[0-200]

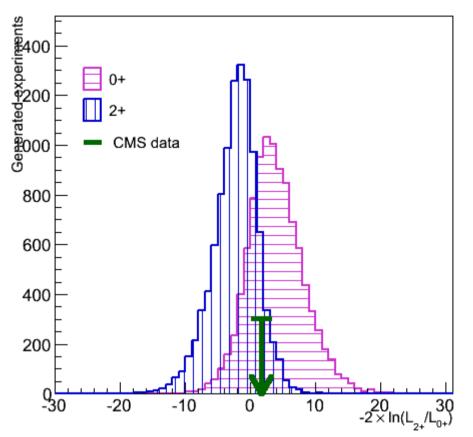
 $m_T = \sqrt{2p_T^{\ell\ell} E_T^{\text{miss}} \left(1 - \cos \Delta \phi_{E_T^{\text{miss}}\ell\ell}\right)}$



> Different backgrounds peak at different locations

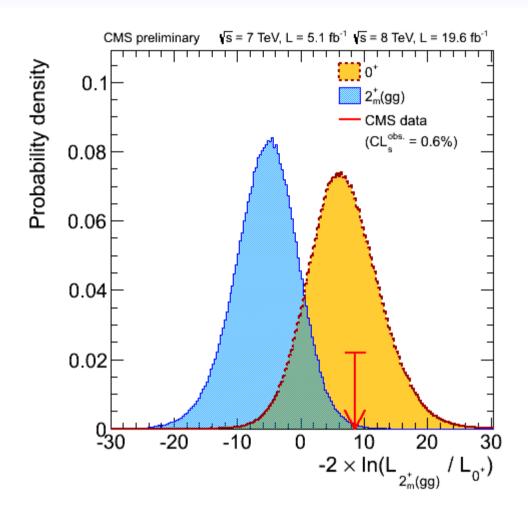
Spin: 0j DF (8 TeV)

> Only difference between spin and main analysis is 2 different signal shapes
The kinematic of the final leptons is sensitive to spin structure of the resonance



Spin hypothesis separation

- Perform a maximum likelihood fit to extract the best fit signal strength for each model
- Compare the best fit likelihoods to determine the consistency of each hypothesis with the data
- > **Test** $q = -2 ln(L_{2+}/L_{0+})$
- Expect hypothesis separation at the 2-sigma level


6360	ovpocted	observed		
case	expected			
assuming $\sigma/\sigma_{ extsf{SM}}\equiv 1$				
0+	1.9	0.9		
2_{\min}^{+}	2.4	1.3		
assuming $\sigma/\sigma_{SM} \approx 0.8$				
0+	1.5	0.5		
2_{\min}^{+}	1.9	1.3		

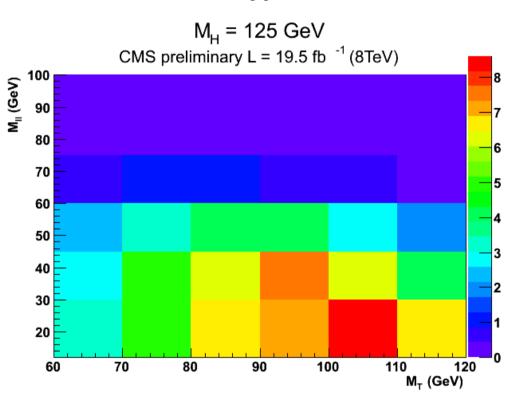
Spin separation combined with $H \rightarrow ZZ$

Combining H → WW with H → ZZ disfavours the 2⁺ signal hypothesis with a CLs value of 0.6 %

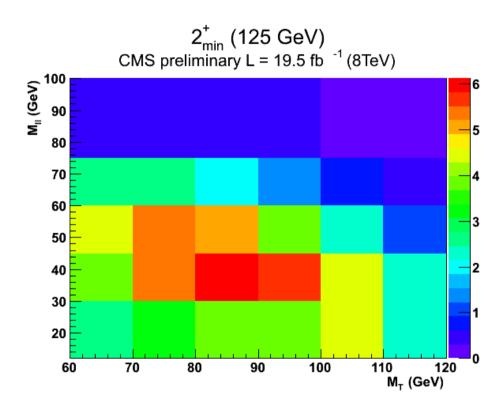
See Talk: S. Bolognesi, Properties of the Higgs-Like resonance

Summary

- > Spin Parity result for the H \rightarrow WW \rightarrow 2 $\ell 2\nu$ analysis with full 7 and 8 TeV datasets (4.9 and 19.5 invfb) is performed in the DF 0/1 jet channel
- The 2⁺ hypothesis is disfavored with a CLs value of 0.6 % in the combined H → WW and H → ZZ observed data.
- > Future
 - add the qqH instead of only ggH



BACKUP



Spin: 1j DF (8 TeV)

Spin-2 Hypothesis

> Only difference between spin and main analysis is 2 different signal shapes
The kinematic of the final leptons is sensitive to spin structure of the resonance