

MC TOOLS & NLO MONTE CARLOS Rikkert Frederix CERN theory group

Higgs Hunting 2013, Orsay, France

CONTENTS

- Short Introduction:
 - # Automatic NLO+PS has been solved
 - * Understanding the merging of multiplicities is underway
 - Seven first steps for NNLO+PS have been taken
- Spin-correlations in ttbarHiggs
- # Higgs Characterization framework
- VBF comparisons between aMC@NLO and POWHEG
- Open questions in H+2j vs. VBF
- Mass effects in gg->H and the Higgs pT distribution --> see H. Sargsyan's talk tomorrow afternoon

NLO PREDICTIONS

- The most accurate predictions for fully exclusive event generation are based on NLO matrix elements. What does it give us?
 - Predictions are much more reliable
 - Compensation in the scale dependences make for a reliable estimate of the uncertainties
 - PDF uncertainties can be trusted
- It improves the theory accuracy: less need for tuning; more predictive power; better understanding of the data; smaller uncertainties in interpolation from calibration regions to regions of interest
- * However, does the advantage of NLO overcome the enormously steep increase in complexity one faces (in particular for higher multiplicities)? This is not obvious

NLO PREDICTIONS

The most accurate predictions for fully exclusive event generation are based on NLO matrix elements. What does it give us?

F The answer is obviously 'yes', if we let the computer do the hard work. The increased imate of complexity just means longer CPU computing time

Full automation also builds trust in the calculation.
 Separate pieces can be checked independently

pow inte This has now been achieved for NLO corrections in any SM process (+simple BSM extensions)

How steep increase in complexity one faces (in particular for higher multiplicities)? This is not obvious

Rikkert Frederix

ctive

AVAILABLE NLO+PS CODES

	NLO + PS	Parton Shower	Processes	Merging multiplicities at NLO
MC@NLO	Yes	Herwig 6 and Herwig++	Library for key SM processes	No
aMC@NLO	Yes	Herwig6, Herwig++, Pythia6 and Pythia8*	Code generation allows for any SM process, including simple BSM extensions	Yes, FxFx merging
POWHEG BOX	Yes	All*	Large library of processes; implementing new processes is relatively easy	Yes, MiNLO (without merging scale for simple processes)
SHERPA	Yes	Sherpa	Needs virtual corrections from external code	Yes, MEPS@NLO

MadGraph 5

Hirschi, Zaro, Alwall, RF, Mattelaer, Torrielli, Frixione, Maltoni, Pittau + Artoisenet, Rietkerk; + Collaborators

Binoth-LHA

MadFKS

MadSpin

particle decays

MadGraph 5 MC@NLO method to match NLO to parton shower (Herwig(++) & Pythia6/8) MadLoop (+CutTools) for the one-loop virtual corrections -- also possible to use external tools via aMC@NLO to factor out IR divergences in phase-space integrals to keep spin-correlations in

Hirschi, Zaro, Alwall, RF, Mattelaer, Torrielli, Frixione, Maltoni, Pittau + Artoisenet, Rietkerk; + Collaborators

The code is publicly available since last November Rikkert Frederix

AMC@NLO: QUICK GUIDE

- % Open the madgraph python shell:
 \$./bin/mg5
- From the shell generate the requested process, e.g.:
 > generate p p > e+ e- mu+ mu- [QCD]
 (the tag "[QCD]" means: do NLO QCD corrections). This generates
 the process internally in the code
- Output the process and write it to disk:
 - > output my_NLO_eemumu_process
- And launch the event generation:
 > launch
- And the code will generate the events at NLO accuracy

FOUR-LEPTON PRODUCTION

4-lepton invariant mass is almost insensitive to parton shower effects.
 4-lepton transverse momentum is extremely sensitive

Including scale uncertainties

MERGING JET MULTIPLICITIES AT NLO

- Recent development in combining samples of various jet multiplicities (e.g. H+0j @NLO + H+1j @NLO + H+2j @NLO + ...) into one consistent event sample (also known as "CKKW" or "MLM" at NLO)
- Works very similar to their LO counterparts: (except the one implemented in POWHEG BOX)
 - Introduce a merging scale: use NLO matrix elements with jets harder than that scale, and the shower below the scale
 - Solve the extra sources of double counting compared to LO: explicit virtual corrections ⇔ Sudakov in shower real emission (below merging scale) ⇔ shower emissions
 - * Also imposing "unitarity" (as defined by the "unlops" procedure) helps
- Merging scale cannot be chosen very small, because that formally hampers NLO precision of inclusive observables (e.g. Higgs rapidity) Rikkert Frederix

FXFX MERGING: HIGGS BOSON PRODUCTION

RF & Frixione, 2012

- Differential jet rates
- Matching up to 2 jets at NLO
- Results very much consistent with matching up to 1 jet at NLO

MINLO: MERGING WITHOUT A MERGING SCALE

Hamilton, Nason, Oleari, Zanderighi, 2013

- By changing the Sudakov factor, the merging scale can be taken very small, without hampering the precision of inclusive observables (like the Higgs rapidity distribution)
- * This effectively resums some higher order logarithmic effects
- * However, this change in the Sudakov factor is process dependent and not so straight-forward to compute
- In fact, it is only known for S+0,1jets, where S is a general color-singlet state (H, H+W, Z, etc) and implemented in the POWHEG BOX for these kind of processes
- This opens a road to NNLO+PS by reweighting the events to the NNLO rapidity distribution. The technical details and validation of this method are currently on-going

SPIN CORRELATIONS IN TTBARH PRODUCTION

Artoisenet, RF, Mattelaer, Rietkerk arXiv:1212.3460

- Substitution Structure Structure
- Only tree-level matrix elements are used (i.e. only NLO spin correlations in the virtual corrections that do not factor over the Born are lost)
- For some observables, spin correlations are much more important than higher order effects

SPIN CORRELATIONS IN TTBARH PRODUCTION

Artoisenet, RF, Mattelaer, Rietkerk arXiv:1212.3460

- Substitution Structure Structure
- Only tree-level matrix elements are used (i.e. only NLO spin correlations in the virtual corrections that do not factor over the Born are lost)
- For some observables, spin correlations are much more important than higher order effects

HIGGS CHARACTERIZATION: SPIN-O

[P. Artoisenet et al. 2013]

- Completely general spin-0, spin-1 and spin-2 "Higgs" with couplings up to dimension 6 are available as the FeynRules model "Higgs Characterization"
- This allows for automatic ME+PS event generation, but also NLO+PS (if the one-loop matrix elements are provided) within the MG5 framework
- For example: general Lagrangian for spin-0 "Higgs"

$$\begin{aligned} \mathcal{L}_{0}^{f} &= -\sum_{f=t,b,\tau} \bar{\psi}_{f} \left(c_{\alpha} \kappa_{Hff} g_{Hff} + i s_{\alpha} \kappa_{Aff} g_{Aff} \gamma_{5} \right) \psi_{f} X_{0} \\ \mathcal{L}_{0}^{V} &= \left\{ c_{\alpha} \kappa_{SM} \left[\frac{1}{2} g_{HZZ} Z_{\mu} Z^{\mu} + g_{HWW} W_{\mu}^{+} W^{-\mu} \right] \right. \\ &- \frac{1}{4} \left[c_{\alpha} \kappa_{H\gamma\gamma} g_{H\gamma\gamma} A_{\mu\nu} A^{\mu\nu} + s_{\alpha} \kappa_{A\gamma\gamma} g_{A\gamma\gamma} A_{\mu\nu} \widetilde{A}^{\mu\nu} \right] \\ &- \frac{1}{2} \left[c_{\alpha} \kappa_{HZ\gamma} g_{HZ\gamma} Z_{\mu\nu} A^{\mu\nu} + s_{\alpha} \kappa_{AZ\gamma} g_{AZ\gamma} Z_{\mu\nu} \widetilde{A}^{\mu\nu} \right] \\ &- \frac{1}{4} \left[c_{\alpha} \kappa_{Hgg} g_{Hgg} G_{\mu\nu}^{a} G^{a,\mu\nu} + s_{\alpha} \kappa_{Agg} g_{Agg} G_{\mu\nu}^{a} \widetilde{G}^{a,\mu\nu} \right] \\ &- \frac{1}{4} \frac{1}{4} \left[c_{\alpha} \kappa_{HZZ} Z_{\mu\nu} Z^{\mu\nu} + s_{\alpha} \kappa_{AZZ} Z_{\mu\nu} \widetilde{Z}^{\mu\nu} \right] \\ &- \frac{1}{2} \frac{1}{2} \left[c_{\alpha} \kappa_{HWW} W_{\mu\nu}^{+} W^{-\mu\nu} + s_{\alpha} \kappa_{AWW} W_{\mu\nu}^{+} \widetilde{W}^{-\mu\nu} \right] \\ &- \frac{1}{4} \frac{1}{4} \kappa_{H\partial\gamma} Z_{\nu} \partial_{\mu} A^{\mu\nu} + \kappa_{H\partialZ} Z_{\nu} \partial_{\mu} Z^{\mu\nu} + \kappa_{H\partialW} \left(W_{\nu}^{+} \partial_{\mu} W^{-\mu\nu} + h.c. \right) \right] \end{aligned}$$

Rikkert Frederix

 X_0

AMC@NLO CODES AS "SPECIAL CODES"

http://amcatnlo.cern.ch

aMC@NLO web page

he project	Process		Codes	Plots	Extra info
Home People Contact	Higgs characterizatio Comparison plots: pt	n. of the "Higgs" rap	oidity of the "Hi	lggs" jet rates	
News	New codes (version be	ta3): All codes us	e the Higgs Char	acterization 2.0	model (new since April 17, 2013)
MC Tools	Please read the inclu	ded README file.			
(registration needed)					Virtuals coded by hand by R. Frederix and M. Zar
Download aMC@NLO Help and FAQs Event samples DB Special Codes	$pp \rightarrow 0^{\pm} + X$		Decay to 2 photons Decay to 2 Zs Decay to 2 Ws	Coming soon	from the known analytic results. Setting the 'ca parameter in the param_card.dat to 0 or 1 allows to obtain respectively a pseudoscalar or a scala resonance. The mixed case is not allowed in aMCatNLO. Codes include the leptonic decay of vector bosons.
Communication					Virtuals coded by hand by R. Frederix and M. Zar from the known analytic results. The 1- (vector) case can be obtained setting the
Citations Publications Talks & Seminars	$pp \to 1^\pm + X$	I	Decay to 2 Zs Decay to 2 Ws	Coming soon	parameters $\kappa_{f_b} = \kappa_{V_4} = \kappa_{V_5} = 0$ For the 1+ (axial-vector) case: $\kappa_{e_1} = \kappa_{V_2} = \kappa_{V_3} = 0$
Resources					$\kappa_{f_a} = \kappa_{V_1} = \kappa_{V_2} = \kappa_{V_3} = 0$. Mixed cases are also possible. Codes include the leptonic decay of vector bosons.
Useful links File Sharing	$pp \rightarrow 2^+ + X$		Decay to 2 photons Decay to 2 Zs	X Pt (varying kg, kg)	Virtuals from V. Ravindran et al. The 'kq', 'kg' parameters in the param_card.dat allow to change the relative strength of the spin-2 particle
			Decay to 2 Ws	<u>xq, xq)</u>	coupling to quarks and gluons. Codes include the leptonic decay of vector bosons.

HIGGS CHARACTERIZATION: SPIN-2 EXAMPLE [P. Artoisenet et al. 2013]

$$\mathcal{L}_2^f = -\frac{1}{\Lambda} \sum_{f=q,\ell} \kappa_f T^f_{\mu\nu} X_2^{\mu\nu}$$

- * Extra unitarity violating terms due to non-decoupling (when κ_f≠κ_V) of the longitudinal parts of graviton polarization tensor
- Rather different shape between κ_f ≠0 and κ_V ≠0
- Need NLO or ME+PS to see these effects

$$\mathcal{L}_2^V = -\frac{1}{\Lambda} \sum_{V=Z,W,\gamma,g} \kappa_V T_{\mu\nu}^V X_2^{\mu\nu}$$

JHU CHECK

The well-known leading-order JHU code [Bolognesi et al.] covers only a subset of the allowed parameter space

JHU scenario	HC	HC parameter choice	
	X production	X decay	
0_m^+	$\kappa_{Hgg} \neq 0$	$\kappa_{\rm SM} \neq 0 \ (c_{\alpha} = 1)$	
0_h^+	$\kappa_{Hgg} \neq 0$	$\kappa_{H\gamma\gamma,HZZ,HWW} \neq 0 \ (c_{\alpha} = 1)$	
0^{-}	$\kappa_{Agg} \neq 0$	$\kappa_{A\gamma\gamma,AZZ,AWW} \neq 0 \ (c_{\alpha} = 0)$	
1+	$\kappa_{f_a,f_b} \neq 0$	$\kappa_{Z_5,W_5} \neq 0$	
1-	$\kappa_{f_a,f_b} \neq 0$	$\kappa_{Z_3,W_3} \neq 0$	
2_m^+	$\kappa_g \neq 0$	$\kappa_{\gamma,Z,W} eq 0$	

Couplings not explicitly mentioned are understood to be equal to zero

VBF WITH AMC@NLO AND POWHEG

- Frixione, Torrielli and Zaro (arXiv:1304.7927) studied the differences between aMC@NLO and POWHEG as well as the dependence on the parton shower (Herwig6, Pythia6 and Herwig++) for key observables in Higgs production by VBF
- Wery consistent picture:
 - Difference are ~5% for NLO accurate observables, which is the about the same as the scale uncertainty
 - Differences are 10-15% for LO accurate observables (related to a 3rd jet), which is again about the same as the scale uncertainty

VBF WITH AMC@NLO AND POWHEG

- Rapidity difference (left) and invariant mass (right) of the two hardest jets, with VBF type cuts (without jet veto)
- Differences between the showers for the two matching methods are ~5%, which is of the same order as the scale uncertainty
- Difference with fixed order larger, in particular in the tails of the distributions

VBF WITH AMC@NLO AND POWHEG

- % pT and rapidity of the "veto-jet" (hardest jet between the two tagging jets)
- Differences between showers and between matching procedures are larger, but so is the scale uncertainty: these are LO observables, so no surprise
- * If we want to reduce these uncertainties, need to do VBF+0,1Jet merging at NLO

GLUON FUSION AS BACKGROUND TO VBF

[From the Handbook of LHC Higgs Cross Sections: 3. Higgs properties]

		Dijet selection	WBF selection	Effect of WBF cut
	MCFM	1.73 pb	0.192 pb	0.111
	HEJ	2.20 pb	0.127 pb	0.058
	POWHEGBOX	2.41 pb	0.237 pb	0.098
	Sherpa	2.38 pb	0.225 pb	0.094
∦ Di	fferences betwee	en	Azumuthal separ	ation of the two leading jets
app and	proaches are nou d not understood	n-negligible, 1	0.15 Hej Powr Sher	hegBox Rpa
℁ In your with a second se	practice, this me certainties	eans large	0.1	
	ere are on-going to get a consiste	g studies to ent picture	0.05	
			o	

0.5

0

1.5

1

2

2.5

3

 $\Delta \phi(j_1, j_2) = 20$

OUTLOOK AND CONCLUSIONS

- Completely automatic NLO+PS is available. Merging event samples of various multiplicities mostly understood. For NNLO+PS first steps have been taken using MiNLO
- MiNLO method to merge without a merging scale looks like the correct way forward. However, can this be generalized to other processes with arbitrarily complicated color structures and/or also include S+2j@NLO ?
- * Understand the systematics in gluon fusion with VBF-type cuts
- ** VBF+0,1j merged desirable? Yes, if we want to reduce uncertainty on jet-veto plot.
 Need to understand how to do the merging for processes that have jets already at the lowest order Born process
- # Higgs Characterization framework available in MadGraph: completely general implementation of spin-0, spin-1 & spin-2 "Higgs" boson, including NLO+PS or ME+PS matching.