

CMS H→WW→lyly

26th July 2013

Andre Massironi

on behalf of the CMS collaboration

(Northeastern University)

Higgs Hunting 2013

Orsay - France

Outline

- HWW 2l2v searches
 - Event kinematics
 - Production modes
 - Different analyses
 - Limits and discovery

 $\mbox{H} \rightarrow \mbox{WW} \rightarrow \mbox{lvlv at m}_{\mbox{\tiny H}} = 125 \mbox{ GeV}$ one of the most luminous channels for Higgs searches

Different production modes

ggH	VBF	WH	ZH
436 fb	36 fb	16 fb	9 fb

$H \rightarrow WW \rightarrow lyly$

- Final state
 - 2 leptons (e/μ)
 - 2 neutrinos

- Clean signature:
 - 2 high p_T isolated leptons
 - Missing transverse energy E_T miss

- Several production modes have been analyzed:
 - Gluon fusion (**ggH**)
 - Vector Boson Fusion (VBF)
 - Associated production (W/Z H)

Measurement of resonance couplings

Different final states with different background contamination

ure	0 jet	1 jet	2 j	et	3 leptons
gnat	ggH	mainly ggH	ggH and VBF	ggH and VH	WH
sig	g 000000 t t t t t t t t t t t t t t t t	g (100000 t t t t t t t t t t t t t t t t t	q_2 V q_2 V q_1 q_1	q H Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	q H W W
bkg	WW & Wjets	WW and Top	Тор	Тор	WZ

Backgrounds

- Since there is no mass peak it's important to control the background contamination
- Strategies to suppress all the backgrounds have been developed
- The main backgrounds after requiring 2 leptons and $E_{\scriptscriptstyle T}^{\scriptscriptstyle miss}$ are:

- $WW \rightarrow lvlv \rightarrow kinematic cuts$
- W + jets \rightarrow lepton id and isolation requirements
- Z/γ + jets $\rightarrow E_T^{\text{miss}}$ cut and Z invariant mass veto for ee/ $\mu\mu$
- Top: $t\bar{t}$ and $tW \rightarrow b$ -veto for jets
- WZ → kinematic cuts and number of leptons

- Data driven estimation for each background has been developed
- Important kinematic distributions checked in phase spaces dominated by a single background
- Relative background importance depends on the actual final state analyzed

Selections for $H \rightarrow WW \rightarrow lyly$

CMS Preliminary

s = 8 TeV, L = 19.5 fb⁻¹

 \bar{s} = 7 TeV, L = 4.9 fb⁻¹

0-jet eµ

• No mass peak \rightarrow transverse mass (m_T)

$$m_{\rm T} = \sqrt{2 \cdot p_{\rm T}^{\ell\ell} \cdot E_{\rm T}^{\rm miss} \left(1 - cos\Delta\phi_{\ell\ell, E_{\rm T}^{\rm miss}}\right)}$$

- Exploiting kinematics of Higgs decay products
 - Low invariant mass of di-lepton system (m₁₁)
 - Low azimuthal angular distance $(\Delta \phi_{\parallel})$

events / 10 GeV/c²

m_H=125 G€V W+jets

Top

ww

Z/γ*

stat.⊕syst.

N-1 plot

ggH $H \rightarrow WW \rightarrow lyly$

- Gluon fusion (ggH)
 - Basic preselections to suppress background
 - 0 jet and 1 jet in the event and ee/μμ and eμ final states treated separately
 - Different backgrounds → divide et impera
 - Analysis approach:
 - Shape analysis in $e\mu$ final state on kinematics variables: \mathbf{m}_{μ} : \mathbf{m}_{τ}
 - Cut based analysis as a cross check

19.5 fb⁻¹ at 8 TeV

channel		Data	Signal	Background
0 jet	еμ	505	90 ± 19	429 ± 34
	ee/µµ	421	56 ± 12	360 ± 38
1 jet	еμ	228	42 ± 12	209 ± 14
	ee/µµ	140	18 ± 5	111 ± 9

CMS-PAS-HIG-13-003

ggH shape analysis

Limits and discovery significance

- Limit plot: 95% CL $\sigma/\sigma_{_{SM}}$
 - Injection of a SM Higgs boson (m_H125 GeV)
 - Observed limit compatible with it
 - Excess smaller than expected

- Discovery significance:
 - Injection of a SM Higgs boson (m_H125 GeV)
 - Observed (expected) = **4.0** (**5.1**) σ
 - Mass resolution ~ 20%: broad excess

Properties of the resonance

- ∘ σ/σ_{sm} scan vs m_H
- Sensitivity to the mass mainly through $\sigma*{\sf BR}$ mass dependence
 - $\sigma/\sigma_{SM} = 0.76 \pm 0.13 \text{ (stat)} \pm 0.16 \text{ (syst)}$
 - One of the most accurate channels to measure it!

- Are there additional Higgs bosons?
 - Limit plot with the Higgs as a background:
 - No significant excess seen

$VBF H \rightarrow WW \rightarrow lyly$

- Vector Boson Fusion
 - 4.9 fb⁻¹ at 7 TeV + 12.1 fb⁻¹ at 8 TeV

- CMS-PAS-HIG-12-042
- $\Delta \eta_{ij} > 3.5$, $m_{ij} > 500$ GeV and no jet ($p_T > 30$ GeV) between tag jets
- 80% VBF, 20% ggH
- High S/B ~ 0.5
- Stay tuned for fresh new updates in the next weeks

12.1 fb⁻¹ at 8 TeV

channel		Data	Signal	Background
2 jet VBF	еμ	2	2.8 ± 0.4	2.9 ± 0.8
	ее/µµ	11	1.5 ± 0.2	6.5 ± 1.5

$V(jj)H H \rightarrow WW \rightarrow lyly$

Search for Higgs boson in association with a vector boson V (=W/Z)

CMS-PAS-HIG-13-017

- m_{jj} in 65-105 GeV range and $\Delta \eta_{jj} < 1.5$ since V \rightarrow jj
- 40% VH, 60% ggH

- Analysis approach:
 - $ee/\mu\mu$ and $e\mu$ final states treated separately
 - Cut based analysis (ee/μμ and eμ)
 - Shape analysis on m₁₁ in eμ final state

Results $V(jj)H H \rightarrow WW \rightarrow lyly$

- Observed (expected) $\lim_{x \to 0} t = 5.0 (4.2)$
 - Similar performance for cut based and shape analysis
 - Still statistical dominated

19.5 fb⁻¹ at 8 TeV

channel		Data	Signal	Background
2 jet VH	еμ	55	4.2 ± 0.8	43 ± 6
	ee/µµ	79	2.7 ± 0.6	81 ± 8

$W(ly)H H \rightarrow WW \rightarrow lyly$

 $\Lambda B(I^{\dagger}I)$

- Search for Higgs boson in association with a W
 - 3 leptons final state:
 - Signature: 3 high p_T leptons and E_T miss
 - Two categories:
 - 2 leptons opposite sign and same flavour (OSSF)
 - otherwise (SSSF)
 - 90% WH \rightarrow WW, 10% WH \rightarrow $\tau\tau$
 - Z veto and b veto to reject WZ and top background
 - Analysis strategy:
 - Cut based
 - Shape analysis on opposite charge leptons ΔR_{l+l-}

CMS-PAS-HIG-13-009

Results $W(ly)H H \rightarrow WW \rightarrow lyly$

- shape analysis ~ 20% improvement w.r.t. cut based
- Observed (expected) limit = 3.3 (3.0)

u VBF,VH

Combining H→WW→lyly searches

CMS-PAS-HIG-13-005

- Sensitivity to the production modes:
 - σ/σ_{SM} VBF vs σ/σ_{SM} ggH
 - Smaller ellipse!

Compatibility between different channels

Conclusions

- Higgs boson searches at CMS in the $H \rightarrow WW \rightarrow l\nu l\nu$ decay channel
 - The boson has been seen: hundreds of events
 - significance discovery 4.0σ
 - the "hunt" is a **success!**
 - Different production modes studied
 - Gluon fusion, Vector Boson Fusion and Associate production
 - Measurement of resonance couplings
 - Signal strength $\sigma/\sigma_{SM} = 0.76 \pm 0.13$ (stat) ± 0.16 (syst)
 - Now it's time to measure the Higgs boson properties: spin (see talk by Sten Luyckx and Sara Bolognesi)
 - And prepare for the next run at 13 TeV!

Backup

HWW sub-channels

- Main analyses: 0 jet and 1 jet
- Compatibility between different channels

Azimuthal angular distance $\Delta \phi_{\parallel}$

• Azimuthal distance $(\Delta \phi_{\shortparallel})$ between the two leptons

Results cut based W(ly)H $H \rightarrow WW \rightarrow lyly$

• Event yields for cut based analysis

4.9 fb⁻¹ at 7 TeV

chai	nnel	Data	Signal	Background
3 lep	SSSF	2	0.26± 0.01	0.8 ± 0.2
WH	OSSF	5	0.52± 0.01	6.7 ± 0.5

19.5 fb⁻¹ at 8 TeV

channel		Data	Signal	Background
3 lep	SSSF	6	1.1 ± 0.2	6.9 ± 0.9
			2.2 ± 0.2	33 ± 1

Shape distributions W(ly)H $H \rightarrow WW \rightarrow lyly$

Detailed cuts for each channel

0/1/2 jet + 2 leptons + E_{T}^{miss}

Lepton selections:

- 2 opposite charge leptons ($|\eta|$ <2.5 for e, $|\eta|$ <2.4 for μ)
- $p_{\rm T}^{\rm lepton} > 20 (10) \text{ GeV}$
- WW selections
 - Low mass resonances: $m_{\parallel} > 12 \text{ GeV}$
 - Z-peak veto: $|m_{\parallel} m_{z}| > 15$ GeV for ee/ $\mu\mu$ events
 - ightharpoonup projected E_t^{miss} selection: min[proj(E_T^{miss} ,ll), proj(charged E_T^{miss} ,ll)] > 20 GeV
 - \bullet $E_{T}^{miss} > 20 \text{ GeV}$

 - Δφ (ll, jj/j) < 165°
 - Kinematic cut: $p_T^{1} > 30 (45)$ GeV for 0/1 (2) jets
 - **Solution** Extra lepton veto: 2 leptons only with $p_T > 10 \text{ GeV}$

Jet selections:

- Jet counting for jets with p_T>30 GeV
- B-veto:
 - b jets identified looking at tracks associated to the jet exploiting lifetime of B mesons
 - No soft muons coming from leptonic b decays

Mass dependent selections 0/1 jet cut based analysis

Higgs boson mass dependent cuts

$m_{ m H}$	$p_{ m T}^{\ell,{ m max}}$	$p_{ m T}^{\ell, m min}$	$m_{\ell\ell}$	$\Delta\phi_{\ell\ell}$	$m_{ m T}$
[GeV]	[GeV]	[GeV]	[GeV]	[°]	[GeV]
	>	>	<	<	[,]
120	20	10	40	115	[80,120]
125	23	10	43	100	[80,123]
130	25	10	45	90	[80,125]
160	30	25	50	60	[90,160]
200	40	25	90	100	[120,200]
250	55	25	150	140	[120,250]
300	70	25	200	175	[120,300]
400	90	25	300	175	[120,400]

List of all uncertainties

List of all uncertainties:

- Experimental
 - Leptons efficiency, momentum scale and resolution uncertainty
 - Jet scale uncertainty
 - Missing transverse energy modeling
 - B-tag modelling
 - Pile-up simulation
 - Luminosity measurement
- Theoretical
 - Error from parton distribution functions
 - Missing higher orders in calculation (scale variation)
 - Parton shower simulation

Details on data-driven

- Details on data-driven estimation of each background:
 - W + jets (mis-identified lepton)
 - Measure the probability for a jet to be identified as a good lepton in a di-jet enriched phase space.
 - Use this probability on data to infer how many events have 2/3 good leptons one of which is actually a jet
 - $Z/\gamma \rightarrow ee/\mu\mu$
 - Normalize the number Z/γ events measuring the rate in a mass window around the Z one
 - Top
 - Measure the b-tag probability in a top enriched phase space
 - Infer the number of b-vetoed events from the number of b-tagged ones
 - WZ (for 3 leptons)
 - Normalize the number of WZ events measuring the rate in a 3 leptons final state with a pair of opposite sign same flavour leptons compatible with the Z mass

Details on data-driven: W + jets

- W + jets (mis-identified lepton)
 - Measure the probability for a jet to be identified as a good lepton in a di-jet enriched phase space.

 Use this probability on data to infer how many events have 2 good leptons one of which is actually a jet

Control regions for each background: W, Vy and WZ

- Control regions for each background
 - Several kinematic distributions for each background have been checked

Control regions for each background: Top

Top

Higgs boson mass dependence for shape analysis

- Mass dependence for shape analysis:
 - \bullet M_T and m_{II} distributions are different for different Higgs boson mass hypotheses

1 jet bin shape analysis

Cut based limits: 0 + 1 jet

Large mass spectrum results $V(jj)H H \rightarrow WW \rightarrow lyly$

Results in the whole Higgs mass spectrum

Cut based (7+8 TeV)

Shape (8 TeV)

