

$VH, H \rightarrow b\bar{b}$ in ATLAS

Inês Ochoa (University College London) for the ATLAS collaboration

Higgs Hunting Conference July 26th, 2013

Introduction

Overview of ATLAS search of the VH, H→bb process*

Outline:

- + Event selection
- + Search strategy
- + Background modeling
- + Systematic uncertainties
- + Diboson Fit
- + Higgs Results

Latest result combines the full 2011 and 2012 ATLAS datasets 7 TeV pp collisions 4.7 fb⁻¹ 8 TeV pp collisions 20.3 fb⁻¹

Result reported in: ATLAS-CONF-2013-079

*see <u>Jason Lee</u>'s talk for more $H \rightarrow bb$ (SM and BSM)

Analysis overview

Associated production VH, H→bb + provides signatures for triggering and to reduce backgrounds

Common selection:

- + Reconstruct vector boson candidate ($W \rightarrow |v, Z \rightarrow vv, Z \rightarrow ||; |=e,\mu$)
- + Reconstruct the Higgs candidate
 - + 2 jets (pT > 20 GeV and central region)
 - + Leading jet pT > 45 GeV
 - + Both jets b-tagged (70% efficiency)
 - + ΔR cuts between the two leading jets depending on transverse momentum of vector boson $p_T(V)$

+ Channel-specific kinematic cuts to suppress QCD and other backgrounds (see backup slides)

p_T(V) defined as: W→lv: p_T(I+missing transverse energy) Z→II: p_T(II) Z→vv: p_T(missing transverse energy)

 $\ell\ell bb$

Search Strategy

^LUCL

Perform analysis by defining different event categories to exploit different sensitivities

Background modeling

Global fit

Interplay between regions helps constrain shape and normalization of backgrounds, within uncertainties

+ Normalization freely-floating in the fit for main background processes

+ MC generators consistent across channels and datasets (2011 and 2012)

Diboson

Herwig

50

WH/ZH

Pythia8

100

150

single-top

Acer/Powheq

 $\begin{array}{c} & & & & & \\ \hline & & & & & \\ 200 & 250 & 300 \\ & & p_{T}^{V} [GeV] \end{array} \end{array} \stackrel{\scriptstyle 0.5}{=} \begin{array}{c} & & & \\ 0 & 50 & 100 & 150 & 200 & 250 & 300 \\ & & & & & \\ p_{T}^{V} [GeV] \end{array}$

Multijet

data-driven

Systematic uncertainties

Determine how these shapes and ratios are affected by: + ISR/FSR

- + higher order effects in QCD
- + shower and hadronization models

Diboson MCFM

Data/MC

ttbar MC@NLO/Powheg+Herwig/AcerMC single-top MC@NLO/Powheg+Herwig/AcerMC W+bb Powheg and aMC@NLO

data-driven for Z+jets and multijet

1000

Data/MC

+ uncertainties on flavor composition, cross-section

m_{bb} [GeV]

Theoretical (signal)

- + NLO EW corrections
- + ren. and fact. scales
- + PDF's
- + signal acceptance

Experimental

- + luminosity
- + trigger
- + lepton ID & reconstruction
- + b-tagging uncertainties
- + jet energy scale

Dominant systematic uncertainties are related to b-tagging and top modeling

All treated as nuisance parameters in the global fit

Fit validation: diboson peak

Fit validation: diboson peak

Event

Data/MC

Higgs Results

Perform fit for the Higgs signal

 + diboson contributions now constrained to their Standard Model values
 + no significant excess is observed

+ obs. (exp.) limits at 125 GeV: 1.4 (1.3) xSM @ 95% CL

+ obs. (exp.) probability of obtaining a result at least as signal-like: 0.36 (0.05)

ATLAS Prelim. m _H = 125 GeV		-+- σ(stat) σ(sys) σ(theo)		- , [Total uncertainty $= \pm 1\sigma \text{ on } \mu$				
VH(bb), 7 T	$\mu = -2.1^{+1.4}_{-1.4}$	±1.1 ±0.9 ±0.2							
VH, 0 lepton	$\mu = -2.7^{+2.2}_{-1.9}$	±1.8		•				· · · · ·	: : .
VH, 1 lepton	$\mu = -2.5_{-1.9}^{+2.0}$	±1.6	-						: : .
VH, 2 leptons	$\mu = 0.6_{_{-3.6}}^{^{+4.0}}$	±3.1			• • • •				
VH(b b), 8 T	eV $\mu = 0.6^{+0.7}_{-0.7}$	±0.5 ±0.4 <0.1		· · · · · · · · · · · · · · · · · · ·		-			<u> </u>
VH, 0 lepton	$\mu = 0.9_{-0.9}^{+1.0}$	±0.8		· · · ·		-		· · · · ·	· · · :
VH, 1 lepton	$\mu = 0.7^{+1.1}_{-1.1}$	±0.8				•		· · · ·	
VH, 2 leptons	$\mu = -0.3^{+1.5}_{-1.3}$	±1.2						· · · · ·	:
Comb. VH(b $\overline{\mathbf{b}}$) $\mu = 0.2^{+0.7}_{-0.6}$	±0.5 ±0.4 <0.1		· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·	· · · ·
VH, 0 lepton	$\mu = 0.5^{+0.9}_{-0.9}$	±0.8		· · · ·		┝┿╂┷		· · · ·	<u> </u>
VH, 1 lepton	$\mu = 0.1_{-1.0}^{+1.0}$	±0.8				╺╼┤╼╸			:
VH, 2 leptons	$\mu = -0.4_{-1.4}^{+1.5}$	±1.2							: : L .
√s = 7 TeV ∫Ldt	= 4.7 fb ⁻¹		-4		-2	0	2	4	4
√s = 8 TeV ∫Ldt	= 20.3 fb ⁻¹				Sigr	nal s [.]	tren	gth	[μ]
						_			

The fitted value of the signal strength parameter is:

$$\mu = 0.2 \pm 0.5 (\text{stat.}) \pm 0.4 (\text{syst.})$$

 $m_H = 125 \text{GeV}$

+ New preliminary results on the ATLAS search for VH, H→bb production + combination of full 7 TeV (4.7 fb⁻¹) and 8 TeV (20.3 fb⁻¹) datasets

+ The diboson VZ cross-section measurement is consistent with SM prediction with an observed (expected) significance of 4.8 (5.1) standard deviations.

+ The search for VH production is performed and a combined observed (expected) limit of 1.4 (1.3) x SM at 95% CL is obtained

+ The observed signal strength is $\frac{\sigma_{VH \to b\bar{b}}}{\sigma_{SM}} = 0.2 \pm 0.5 (\text{stat.}) \pm 0.4 (\text{syst.})$

Beyond the gain from the increased integrated luminosity, the analysis has achieved ~35% increase in sensitivity

Fit to Higgs peak is consistent with both a SM Higgs and no SM Higgs: more data needed to resolve the two hypotheses

Object	0-lepton	1-lepton	2-lepton				
Leptons	0 loose leptons	1 tight lepton	1 medium lepton				
		+ 0 loose leptons	+ 1 loose lepton				
		2 b-tags					
Jets	$p_{\rm T}^{\rm jet_1} > 45 {\rm GeV}$						
	$p_{\rm T}^{\rm jet_2} > 20 {\rm GeV}$						
		$+ \le 1$ extra jets					
Missing E_T	$E_{\rm T}^{\rm miss} > 120 {\rm GeV}$	$E_{\rm T}^{\rm miss} > 25 {\rm Gev}$	$E_{\rm T}^{\rm miss} < 60 {\rm ~GeV}$				
	$p_{\rm T}^{\rm miss} > 30 {\rm GeV}$						
	$\Delta \phi(E_{\rm T}^{\rm miss}, p_{\rm T}^{\rm miss}) < \pi/2$						
	$\min[\Delta \phi(E_{T}^{\text{miss}}, \text{jet})] > 1.5$						
	$\Delta \phi(E_{\rm T}^{\rm miss}, bb) > 2.8$						
Vector Boson		$m_{\rm T}^W < 120 { m GeV}$	$83 < m_{\ell\ell} < 99 \text{ GeV}$				

Table 1: The basic event selection for the three channels.

Table 2: Further topological criteria in p_T^V intervals. The 0-lepton channel does not use the lowest two p_T^V intervals.

	$p_{\rm T}^V$ [GeV]	0-90	90-120	120-160	160-200	>200	
All Channels	$\Delta R(b, \bar{b})$	0.7-3.4	0.7-3.0	0.7-2.3	0.7-1.8	<1.4	
1_lepton	$E_{\rm T}^{\rm miss}$ [GeV]	>25				>50	
1-lepton	$m_{\rm T}^W$ [GeV]	40-120			<12	<120	

Main changes since previous result

- + Improved Monte-Carlo statistics and coherent choice of generators
- + Optimization and uniformization of selection cuts
- + New control region for top background with high purity
- + Missing transverse energy based trigger to recover sensitivity in 1-lepton selection
- + Reduced impact of experimental systematic uncertainties
 + improved b-tagging systematic assignment based on top eµ sample with >=4 jets
- + Better understanding of background modeling systematics for all backgrounds
 - + detailed studies on top and W+jets

reduced uncertainties from 5% to 2% on the intermediate p_T region

Delta Phi in NLO calculations

Fit Model

Description of the procedure Combined profile likelihood fit

+ Likelihood of Poisson probabilities:

$$L(\mu, \theta) = \prod_{j=1}^{N} \frac{(\mu s_j + b_j)^{n_j}}{n_j!} e^{-(\mu s_j + b_j)} \prod_{k=1}^{M} \frac{u_k^{m_k}}{m_k!} e^{-u_k}$$

+ signal and background parameterizations:

$$s_i = s_{tot} \int_{\text{bin } i} f_s(x; \theta_s) dx$$
 $b_i = b_{tot} \int_{\text{bin } i} f_b(x; \theta_b) dx$

+ test mu hypothesis with a test statistic:

$$\Lambda(\mu) = \frac{L(\mu, \hat{\hat{\theta}}(\mu))}{L(\hat{\mu}, \hat{\theta})}$$

 θ : "nuisance parameters"

Detailed results

