Implications of the LHC Higgs Discovery for SUSY models

Lisa Zeune Higgs Hunting 2013, Orsay 26 July, 2013

Together with P. Bechtle, S.Heinemeyer, O.Stål, T. Stefaniak, G.Weiglein, based on [1211.1955]

Motivation

- In each decay channel experiments give best fit signal strength $\mu = (\sigma \times BR)/(\sigma \times BR)_{SM}$
- Slight deviation from the SM
- Tendency in 2011/12 analysis:
 - Suppressed bb, ττ
 - Enhanced γγ

Motivation

- In each decay channel experiments give best fit signal strength $\mu = (\sigma \times BR)/(\sigma \times BR)_{SM}$
- This tendency (more or less) vanished

Motivation

- In each decay channel experiments give best fit signal strength $\mu = (\sigma \times BR) / (\sigma \times BR)_{SM}$
- $\sqrt{s} = 7 \text{ TeV}, L \le 5.1 \text{ fb}^{-1} \sqrt{s} = 8 \text{ TeV}, L \le 19.6 \text{ fb}^{-1}$ Observation compatible with Combined SM Higgs $\mu = 0.80 \pm 0.14$ p_{SM} = 0.65 Many new physics $H \rightarrow bb$ $\mu = 1.15 \pm 0.62$ explanations possible $H \rightarrow \tau \tau$ Signal strength $\mu = 1.10 \pm 0.41$ measurements $H \rightarrow \gamma \gamma$ can be use to
 - How well does the MSSM describe the signal seen by the experiments?

restrict models

Parameter scan

- Random scan over 7 (8) pMSSM parameters
 + top mass varied in 2σ
- ~ 10 million points (in update so far only ~ 2 million)

	Min	Max
M_A	90	1000
aneta	1	60
M_{Q_3}	200	1500
A_t	$-3 M_{Q_3}$	$3 M_{Q_3}$
μ	200	3000
M_{L_3}	200	1500
M_2	200	500

 $M_{Q_{1,2}} = M_{U_{1,2}} = M_{D_{1,2}} = 1 \text{ TeV}$ $M_{D_3} = M_{U_3} = M_{Q_3}$ $M_{L_{1,2}} = M_{E_{1,2}} = 300 \text{ GeV}$ $M_{E_3} = M_{L_3}$ $A_b = A_\tau = A_t$ $M_3 = 1 \text{ TeV}$ M1 fixed by gut relation

Parameter scan

- Random scan over 7 (8) pMSSM parameters
 + top mass varied in 2σ
- ~ 10 million points (in update so far only ~ 2 million)

1.2 TeV

How well can the MSSM describe the Higgs signal?

- For every point a χ^2 value is calculated
- Standard χ^2 method:

$$\chi^2 = \sum_{i=1}^{n_{\rm LHC} + n_{\rm Tev}} \frac{(\mu_i - \hat{\mu}_i)^2}{\sigma_i^2} + \frac{(M_{h,H} - \hat{M}_H)^2}{\sigma_{\hat{M}_H}^2} + \sum_{i=1}^{n_{\rm LEO}} \frac{(O_i - \mu_i)^2}{\sigma_i^2} + \sum_{i=$$

- Signal strength and Higgs mass χ^2 calculated using HiggsSignals*
- MSSM Higgs decay rates calculated with channel efficiencies as weights (when available)

$$\mu_{xx} = \frac{\sum_k w_k \ \sigma_k \times BR(h \to xx)}{\sum_k w_k \ \sigma_k^{SM} \times BR(h \to xx)^{SM}}$$

 Low energy observables (LEO) taken into account:

$$b \to s\gamma, B_s \to \mu\mu,$$

 $B \to \tau\nu, (g_\mu - 2), M_W$

* Bechtle, Heinemeyer, Stål, Stefaniak, Weiglein: arXiv:1305.1933

Observables included in HiggsSignals

Results of the fit

- Minimal χ^2 result:
 - Higgs signal strength and Higgs mass:

 $\chi^2/\nu = 33.9/43$ (SM: $\chi^2/\nu = 38.94/50$)

- including LEO: $\chi^2/\nu = 38.6/48$ (SM: $\chi^2/\nu = 53.27/55$)
- SM and MSSM interpretations similar
- Including LEO, SM gets slightly worse
 - $(g_{\mu}-2)$ differs by more than 3 σ
- Overall good MSSM fit

* HiggsBounds 4.0.0. Bechtle, Heinemeyer, Stål, Stefaniak, Weiglein Naive calculation of degrees of freedom: $\nu = n_{\rm obs} - n_{\rm para}$

 χ^{2}

Higgs decay rates

Plots here and in the following always refer to the complete fit, including LEO

• $R_{xx} \ (\approx \mu_{xx}) : \sum \sigma_i^{(8 \text{ TeV})} \times \text{BR}(h \to xx)/\text{SM}$

Decay rates cloⁱse to SM value preferred

121 < M_h < 129 GeV
HiggsBounds* allowed $\Delta \chi^2 < 2.30$ $\Delta \chi^2 < 5.99$

Favored region

- Which MSSM region describes data best?
- With autumn 2012 data

Favored region

- Which MSSM region describes data best?
- Update

- Larger HiggsBounds excluded region
 - Still slight preference for intermediate $\tan \beta$ values
- Preferred region opens up Statistics still much lower

Favored region

- Which MSSM region describes data best?
- Update

Conclusions

- LHC experiments provide measurements of the Higgs decay rates
- Signal rates got closer to 1(SM)

 \rightarrow MSSM decoupling region

- Fitting the MSSM to experimental rates
 - **Using** HiggsSignals
 - Including low energy observables
- Discovered Higgs can be interpreted as the light CP even Higgs
 - \rightarrow Good fit for the light Higgs case
- To investigate favored regions in parameter space higher statistics in needed

Backup

Parameter ranges for MSSM fit

Random scan of 7 "pMSSM" parameters (~10 M points) (+ m_t varied in 2 σ interval)

3

Heavy Higgs scenario

- Possible only in very small corner of parameter space
- All MSSM Higgs would be light \rightarrow Should be accessible soon
- Lightest CP-even Higgs reduced couplings to vector bosons
- Very constraint by LHC searches

Heavy Higgs scenario

- Possible only in very small corner of parameter space
- All MSSM Higgs would be light \rightarrow Should be accessible soon
- Lightest CP-even Higgs reduced couplings to vector bosons
- Very constraint by LHC searches
- Result of previous fit (using LHC Higgs results from 11/2012)
 - Higgs signal strength: $\chi^2/\nu = 33.1/31$ (SM: $\chi^2/\nu = 31.0/37$)
 - Including LEO: $\chi^2/\nu = 42.4/36$ (SM: $\chi^2/\nu = 45.3/42$) Large contribution of light Higgs bosons to b-physics observables

Low-M_H MSSM benchmark scenario

Bechtle, Heinemeyer, Stål, Stefaniak, Weiglein

Results of the fit (Nov 12)

	LHC only		LHC+Tevatron		LHC+LEO			LHC+Tevatron+LEO				
Case	χ^2/ν	χ^2_{ν}	p	χ^2/ν	χ^2_{ν}	p	χ^2/ u	χ^2_{ν}	p	χ^2/ u	χ^2_{ν}	p
\mathbf{SM}	27.6/34	0.81	0.77	31.0/37	0.84	0.74	41.6/39	1.07	0.36	45.3/42	1.08	0.34
h	23.3/28	0.83	0.72	26.8/31	0.86	0.68	26.7/33	0.81	0.77	30.4/36	0.84	0.73
H	26.0/28	0.93	0.57	33.1/31	1.07	0.37	35.5/33	1.08	0.35	42.4/36	1.18	0.21

Naive calculation if dof: $\nu = n_{\rm obs} - n_{\rm para}$

- Only collider data: SM and both MSSM interpretations similar
- Including also low energy observables (LEO): SM and heavy Higgs case become slightly worse

 \rightarrow SM because $(g_{\mu} - 2)$ differs by more than 3σ

- → H case because light charged Higgs give (too) large contributions to B physics observables
- Overall good MSSM fits (for both cases)
- No clear preference for either MSSM or SM

Lisa Zeune | Implications of the LHC Higgs Discovery for supersymmetric models | Higgs Hunting 2013 | Page 21

MSSM best fit values for LEO

		Light Higgs case			Heavy Higgs case			
Channel		μ_h	χ_h^2	Pull	μ_H	χ^2_H	Pull	
LEO	$BR(B \to X_s \gamma) \times 10^4$	3.41	0.00	-0.03	4.38	2.12	1.46	
LEO	$BR(B_s \to \mu^+ \mu^-) \times 10^9$	2.79	0.00	0.00	2.24	0.00	0.00	
LEO	$BR(B_u \to \tau \nu_\tau) \times 10^4$	0.98	2.37	-1.54	0.80	3.78	-1.94	
LEO	$\delta a_{\mu} \times 10^9$	2.58	0.24	-0.49	1.34	3.48	-1.87	
LEO	M_W [GeV]	80.379	0.04	-0.19	80.383	0.00	-0.05	

- Best fit points give small values for
- Rather large χ^2 contribution from BR $(B_u \to \tau \nu_{\tau})$
 - Including new Belle result would reduce χ^2 contribution
- In the heavy Higgs case large χ^2 contribution from (g-2)
 - Could be improved by treating also slepton parameters as free fit parameters

Higgs sector of the MSSM

Two Higgs doublets

$$H_1 = \begin{pmatrix} v_1 + \frac{1}{\sqrt{2}} (\phi_1 - i\chi_1) \\ -\phi_1^- \end{pmatrix}, \quad H_2 = \begin{pmatrix} \phi_2^+ \\ v_2 + \frac{1}{\sqrt{2}} (\phi_2 + i\chi_2) \end{pmatrix}$$

5 physical Higgs bosons: 2 CP-even, 1 CP-odd, 2 charged

$$\begin{pmatrix} \mathbf{H} \\ \mathbf{h} \end{pmatrix} = U_{\alpha} \begin{pmatrix} \phi_1 \\ \phi_2 \end{pmatrix}, \quad \begin{pmatrix} G \\ \mathbf{A} \end{pmatrix} = U_{\beta} \begin{pmatrix} \chi_1 \\ \chi_2 \end{pmatrix}, \quad \begin{pmatrix} G^{\pm} \\ \mathbf{H}^{\pm} \end{pmatrix} = U_{\beta} \begin{pmatrix} \phi_1^{\pm} \\ \phi_2^{\pm} \end{pmatrix}$$

- Tree level: $M_h \leq M_Z$
- Large radiative corrections:
- In the MSSM the Higgs signal at 126 GeV can be:
 - Light CP-even Higgs: h
 - Heavy CP-even Higgs: H

$B_s \to \mu^{\!\!\!\!+}\!\mu^{\!\!\!\!-}$

- Branching ratio measurement from LHCb presented at HCP BR $(B_s^0 \rightarrow \mu^+ \mu^-) = (3.2^{+1.5}_{-1.2}) \times 10^{-9}$ SM prediction: 3:55 § 0:38 £ 10ⁱ 9
- MSSM fit predicts low values of $BR(B_s^0 \to \mu^+ \mu^-)$
 - Already without including measurement/limit in χ^2 calculation

• Points predicting $b \rightarrow s\gamma$ in the right range and an enhanced $\gamma\gamma$ rate, automatically feature a suppressed Haisch, Mahmoudi, 'arXiv:1210.7806

Lisa Zeune | Implications of the LHC Higgs Discovery for supersymmetric models | Higgs Hunting 2013 | Page 24

New limits from MSSM Higgs boson searches

- New results given only in the m^{max}_h - scenario
- No model-independent cross section limits