Robust Determination of the Higgs Couplings: Power to the Data

Juan González Fraile

Universitat de Barcelona

Tyler Corbett, O. J. P. Éboli, J. G-F and M. C. Gonzalez-Garcia

arXiv:1207.1344, 1211.4580, 1304.1151

http://hep.if.usp.br/Higgs

Juan González Fraile (UB)

Higgs Hunting 2013

Orsay, July 26th 2013

Sac

1 / 11

1 D F 1 B F

Overview

Discovery of a $\simeq 125$ GeV "Higgs-like" particle $\rightarrow EWSB$ direct exploration:

- Spin
- Parity
- EWSB connected new states
- Couplings

Bottom-up model-independent effective Lagrangian approach:

$$\mathcal{L}_{\mathrm{eff}} = \sum_{n} \frac{f_n}{\Lambda^2} \mathcal{O}_n$$

- \mathcal{L}_{eff} : describe the low energy effects of new physics in the couplings of this observed new state in the coefficients of dimension-6 operators.
- Assume observed state is light electroweak doublet scalar and that $SU(3)_c \otimes SU(2)_L \otimes U(1)_Y$ is linearly realized in the effective theory.
- $\bullet~$ Choice of operators and basis $\rightarrow \mathbf{Driven}~\mathbf{by}~\mathbf{the}~\mathbf{data}$
- Complementarity of experimental searches \rightarrow TGV \leftrightarrow Higgs

Determine coefficients of operators using all available data: Tevatron, LHC, TGV, EWPD,

Juan González Fraile (UB)

Higgs Hunting 2013

2 / 11

Overview

Discovery of a $\simeq 125$ GeV "Higgs-like" particle $\rightarrow EWSB$ direct exploration:

- Spin
- Parity
- EWSB connected new states
- Couplings

Bottom-up model-independent effective Lagrangian approach:

$$\mathcal{L}_{\text{eff}} = \sum_{n} \frac{f_n}{\Lambda^2} \mathcal{O}_n$$

- $\mathcal{L}_{\mathrm{eff}}$: describe the low energy effects of new physics in the couplings of this observed new state in the coefficients of dimension-6 operators.
- Assume observed state is light electroweak doublet scalar and that $SU(3)_c \otimes SU(2)_L \otimes U(1)_Y$ is linearly realized in the effective theory.
- \bullet Choice of operators and basis \rightarrow Driven by the data
- \bullet Complementarity of experimental searches \rightarrow TGV \leftrightarrow Higgs

Determine coefficients of operators using all available data: Tevatron, LHC, TGV, EWPD.

Juan González Fraile (UB)

Higgs Hunting 2013

Effective Lagrangian

$$\mathcal{L}_{\text{eff}} = \sum_{n} \frac{f_n}{\Lambda^2} \mathcal{O}_n$$

Our assumptions are:

- The observed state belongs to a SU(2) doublet.
- The state is CP-even as in SM.
- Narrow resonance and no overlapping resonances.
- $\bullet~SU(3)_c\otimes SU(2)_L\otimes U(1)_Y$ SM local symmetry, C and P even, lepton and baryon number conservation

59 dimension-6 operators are enough...¹

Set reduced by considering only C and P even and EOM to eliminate/choose the basis

$$\begin{split} 2\mathcal{O}_{\Phi,2} &- 2\mathcal{O}_{\Phi,4} = \sum_{ij} \left(y_{ij}^e \mathcal{O}_{e\Phi,ij} + y_{ij}^u \mathcal{O}_{u\Phi,ij} + y_{ij}^d (\mathcal{O}_{d\Phi,ij})^\dagger + \text{h.c.} \right) \quad , \\ 2\mathcal{O}_B &+ \mathcal{O}_{WB} + \mathcal{O}_{BB} + g'^2 \left(\mathcal{O}_{\Phi,1} - \frac{1}{2} \mathcal{O}_{\Phi,2} \right) = -\frac{g'^2}{2} \sum_i (-\frac{1}{2} \mathcal{O}_{\Phi L,ii}^{(1)} + \frac{1}{6} \mathcal{O}_{\Phi Q,ii}^{(1)} - \mathcal{O}_{\Phi e,ii}^{(1)} + \frac{2}{3} \mathcal{O}_{\Phi u,ii}^{(1)} \\ &- \frac{1}{3} \mathcal{O}_{\Phi d,ii}^{(1)} \right) \\ 2\mathcal{O}_W &+ \mathcal{O}_{WB} + \mathcal{O}_{WW} + g^2 \left(\mathcal{O}_{\Phi,4} - \frac{1}{2} \mathcal{O}_{\Phi,2} \right) = -\frac{g^2}{4} \sum_i \left(\mathcal{O}_{\Phi L,ii}^{(3)} + \mathcal{O}_{\Phi Q,ii}^{(3)} \right) \quad . \end{split}$$

*Buchmuller & Wyler; Grzadkowski et al. arXiv: 1008.4884 👘 🖌 🗗 🕨 🤇 🖹 🕨 🤇 🖹 🕨

Juan González Fraile (UB)

Orsay, July 26th 2013

3 / 11

Effective Lagrangian

$$\mathcal{L}_{\text{eff}} = \sum_{n} \frac{f_n}{\Lambda^2} \mathcal{O}_n$$

Our assumptions are:

- The observed state belongs to a SU(2) doublet.
- The state is CP-even as in SM.
- Narrow resonance and no overlapping resonances.
- $SU(3)_c \otimes SU(2)_L \otimes U(1)_Y$ SM local symmetry, C and P even, lepton and baryon number conservation

59 dimension-6 operators are enough...¹

Set reduced by considering only C and P even and EOM to eliminate/choose the basis

$$\begin{split} 2\mathcal{O}_{\Phi,2} &- 2\mathcal{O}_{\Phi,4} = \sum_{ij} \left(y_{ij}^e \mathcal{O}_{e\Phi,ij} + y_{ij}^u \mathcal{O}_{u\Phi,ij} + y_{ij}^d (\mathcal{O}_{d\Phi,ij})^\dagger + \text{h.c.} \right) \ , \\ 2\mathcal{O}_{\mathcal{B}} &+ \mathcal{O}_{WB} + \mathcal{O}_{BB} + {g'}^2 \left(\mathcal{O}_{\Phi,1} - \frac{1}{2} \mathcal{O}_{\Phi,2} \right) = -\frac{{g'}^2}{2} \sum_i (-\frac{1}{2} \mathcal{O}_{\Phi L,ii}^{(1)} + \frac{1}{6} \mathcal{O}_{\Phi Q,ii}^{(1)} - \mathcal{O}_{\Phi e,ii}^{(1)} + \frac{2}{3} \mathcal{O}_{\Phi u,ii}^{(1)} \\ &- \frac{1}{3} \mathcal{O}_{\Phi d,ii}^{(1)} \right) \\ 2\mathcal{O}_W &+ \mathcal{O}_{WB} + \mathcal{O}_{WW} + g^2 \left(\mathcal{O}_{\Phi,4} - \frac{1}{2} \mathcal{O}_{\Phi,2} \right) = -\frac{g^2}{4} \sum_i \left(\mathcal{O}_{\Phi L,ii}^{(3)} + \mathcal{O}_{\Phi Q,ii}^{(3)} \right) \ . \end{split}$$

 ¹Buchmuller & Wyler; Grzadkowski et al. arXiv: 1008.4884
 <□>
 <</td>

 ≥
 <</td>
 ≥
 <</td>
 >
 <</td>

 >

 >

 >

 <

Effective Lagrangian

$$\mathcal{L}_{\text{eff}} = \sum_{n} \frac{f_n}{\Lambda^2} \mathcal{O}_n$$

Our assumptions are:

- The observed state belongs to a SU(2) doublet.
- The state is CP-even as in SM.
- Narrow resonance and no overlapping resonances.
- $\bullet~SU(3)_C\otimes SU(2)_L\otimes U(1)_Y$ SM local symmetry, C and P even, lepton and baryon number conservation

59 dimension-6 operators are enough...¹

Set reduced by considering only C and P even and EOM to eliminate/choose the basis

$$\begin{split} 2\mathcal{O}_{\Phi,2} &- 2\mathcal{O}_{\Phi,4} = \sum_{ij} \left(y_{ij}^e \mathcal{O}_{e\Phi,ij} + y_{ij}^u \mathcal{O}_{u\Phi,ij} + y_{ij}^d (\mathcal{O}_{d\Phi,ij})^\dagger + \text{h.c.} \right) \ , \\ 2\mathcal{O}_B &+ \mathcal{O}_{WB} + \mathcal{O}_{BB} + {g'}^2 \left(\mathcal{O}_{\Phi,1} - \frac{1}{2} \mathcal{O}_{\Phi,2} \right) = -\frac{{g'}^2}{2} \sum_i (-\frac{1}{2} \mathcal{O}_{\Phi L,ii}^{(1)} + \frac{1}{6} \mathcal{O}_{\Phi Q,ii}^{(1)} - \mathcal{O}_{\Phi e,ii}^{(1)} + \frac{2}{3} \mathcal{O}_{\Phi u,ii}^{(1)} \\ &- \frac{1}{3} \mathcal{O}_{\Phi d,ii}^{(1)} \end{split}$$
$$2\mathcal{O}_W + \mathcal{O}_{WB} + \mathcal{O}_{WW} + g^2 \left(\mathcal{O}_{\Phi,4} - \frac{1}{2} \mathcal{O}_{\Phi,2} \right) = -\frac{g^2}{4} \sum_i \left(\mathcal{O}_{\Phi L,ii}^{(3)} + \mathcal{O}_{\Phi Q,ii}^{(3)} \right) \ . \end{split}$$

 1
 Buchmuller & Wyler; Grzadkowski et al. arXiv: 1008.4884
 < □ > < ♂ > < २ > < २ > < २ > < २ > < २ >

 Juan González Fraile (UB)
 Higgs Hunting 2013
 Orsay, July 26th 2013
 3 / 11

Higgs interactions with gauge bosons2:

$$\begin{split} \mathcal{O}_{GG} &= \Phi^{\dagger} \Phi \ G^{a}_{\mu\nu} G^{a\mu\nu} \ , \qquad \mathcal{O}_{WW} &= \Phi^{\dagger} \hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \Phi \ , \qquad \mathcal{O}_{BB} &= \Phi^{\dagger} \hat{B}_{\mu\nu} \hat{B}^{\mu\nu} \Phi \ , \\ \mathcal{O}_{BW} &= \Phi^{\dagger} \hat{B}_{\mu\nu} \hat{W}^{\mu\nu} \Phi \ , \qquad \mathcal{O}_{W} &= (D_{\mu} \Phi)^{\dagger} \hat{W}^{\mu\nu} (D_{\nu} \Phi) \ , \qquad \mathcal{O}_{B} &= (D_{\mu} \Phi)^{\dagger} \hat{B}^{\mu\nu} (D_{\nu} \Phi) \ , \\ \mathcal{O}_{\Phi,1} &= (D_{\mu} \Phi)^{\dagger} \Phi \ \Phi^{\dagger} (D^{\mu} \Phi) \ , \qquad \mathcal{O}_{\Phi,2} &= \frac{1}{2} \partial^{\mu} \left(\Phi^{\dagger} \Phi \right) \partial_{\mu} \left(\Phi^{\dagger} \Phi \right) \ , \qquad \mathcal{O}_{\Phi,4} &= (D_{\mu} \Phi)^{\dagger} (D^{\mu} \Phi) \left(\Phi^{\dagger} \Phi \right) \ , \end{split}$$

Higgs interactions with fermions:

$$\begin{array}{ll} \mathcal{O}_{e\Phi,ij} = (\Phi^{\dagger}\Phi)(\bar{L}_{i}\Phi e_{R_{j}}) & \mathcal{O}_{\Phi L,ij}^{(1)} = \Phi^{\dagger}(\mathcal{D}_{\mu}\Phi)(\bar{L}_{i}\gamma^{\mu}L_{j}) & \mathcal{O}_{\Phi L,ij}^{(3)} = \Phi^{\dagger}(\mathcal{D}_{\mu}\Phi)(\bar{L}_{i}\gamma^{\mu}\sigma_{a}L_{j}) \\ & \bigoplus \\ \mathcal{O}_{u\Phi,ij} = (\Phi^{\dagger}\Phi)(\bar{Q}_{i}\bar{\Phi}u_{R_{j}}) & \mathcal{O}_{\Phi Q,ij}^{(1)} = \Phi^{\dagger}(\mathcal{D}_{\mu}\Phi)(\bar{Q}_{i}\gamma^{\mu}Q_{j}) & \mathcal{O}_{\Phi Q,ij}^{(3)} = \Phi^{\dagger}(\mathcal{D}_{\mu}\Phi)(\bar{Q}_{i}\gamma^{\mu}\sigma_{a}Q_{j}) \\ & \bigoplus \\ \mathcal{O}_{d\Phi,ij} = (\Phi^{\dagger}\Phi)(\bar{Q}_{i}\Phi d_{R_{j}}) & \mathcal{O}_{\Phi e,ij}^{(1)} = \Phi^{\dagger}(\mathcal{D}_{\mu}\Phi)(\bar{e}_{R_{i}}\gamma^{\mu}e_{R_{j}}) \\ & \bigoplus \\ \mathcal{O}_{\Phi u,ij}^{(1)} = \Phi^{\dagger}(\mathcal{D}_{\mu}\Phi)(\bar{u}_{R_{i}}\gamma^{\mu}d_{R_{j}}) \\ & \bigoplus \\ \mathcal{O}_{\Phi u,ij}^{(1)} = \Phi^{\dagger}(\mathcal{D}_{\mu}\Phi)(\bar{d}_{R_{i}}\gamma^{\mu}d_{R_{j}}) \\ & \bigoplus \\ \mathcal{O}_{\Phi u,ij}^{(1)} = \Phi^{\dagger}(\mathcal{D}_{\mu}\Phi)(\bar{u}_{R_{i}}\gamma^{\mu}d_{R_{j}}) \end{array}$$

In the absence of theoretical prejudice chose a basis where the operators are more directly related to the existing data

Z properties, W decays, low energy ν scattering, atomic P, FCNC, Moller scattering P and $e^+e^- \rightarrow ff$ at LEP2.

$${}^{2}D_{\mu}\Phi = \left(\partial_{\mu} + i\frac{1}{2}g'B_{\mu} + ig\frac{\sigma_{a}}{2}W_{\mu}^{a}\right)\Phi, \ \hat{B}_{\mu\nu} = i\frac{g'}{2}B_{\mu\nu}, \ \hat{W}_{\mu\nu} = i\frac{g}{2}\sigma^{a}W_{\mu\nu}^{a}, \ \epsilon \equiv \flat \quad \epsilon \equiv \flat \quad \epsilon = \emptyset$$

Higgs interactions with gauge bosons²:

$$\begin{split} \mathcal{O}_{GG} &= \Phi^{\dagger} \Phi \; G^{a}_{\mu\nu} G^{a\mu\nu} \; , \qquad \mathcal{O}_{WW} &= \Phi^{\dagger} \hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \Phi \; , \qquad \mathcal{O}_{BB} &= \Phi^{\dagger} \hat{B}_{\mu\nu} \hat{B}^{\mu\nu} \Phi \; , \\ \mathcal{O}_{BW} &= \Phi^{\dagger} \hat{B}_{\mu\nu} \hat{W}^{\mu\nu} \Phi \; , \qquad \mathcal{O}_{W} &= (D_{\mu} \Phi)^{\dagger} \hat{W}^{\mu\nu} (D_{\nu} \Phi) \; , \qquad \mathcal{O}_{B} &= (D_{\mu} \Phi)^{\dagger} \hat{B}^{\mu\nu} (D_{\nu} \Phi) \; , \\ \mathcal{O}_{\Phi,1} &= (D_{\mu} \Phi)^{\dagger} \Phi \; \Phi^{\dagger} (D^{\mu} \Phi) \; , \qquad \mathcal{O}_{\Phi,2} &= \frac{1}{2} \partial^{\mu} \left(\Phi^{\dagger} \Phi \right) \partial_{\mu} \left(\Phi^{\dagger} \Phi \right) \; , \qquad \mathcal{O}_{\Phi,4} &= (D_{\mu} \Phi)^{\dagger} (D^{\mu} \Phi) \left(\Phi^{\dagger} \Phi \right) \; , \end{split}$$

Higgs interactions with fermions:

$$\begin{array}{ll} \mathcal{O}_{e\Phi,ij} = (\Phi^{\dagger}\Phi)(\bar{L}_{i}\Phi e_{R_{j}}) & \mathcal{O}_{\Phi L,ij}^{(1)} = \Phi^{\dagger}(\mathcal{D}_{\mu}\Phi)(\bar{L}_{i}\gamma^{\mu}L_{j}) & \mathcal{O}_{\Phi L,ij}^{(3)} = \Phi^{\dagger}(\mathcal{D}_{\mu}\Phi)(\bar{L}_{i}\gamma^{\mu}\sigma_{a}L_{j}) \\ & \bigoplus \\ \mathcal{O}_{u\Phi,ij} = (\Phi^{\dagger}\Phi)(\bar{Q}_{i}\tilde{\Phi}u_{R_{j}}) & \mathcal{O}_{\Phi Q,ij}^{(1)} = \Phi^{\dagger}(\mathcal{D}_{\mu}\Phi)(\bar{Q}_{i}\gamma^{\mu}Q_{j}) & \mathcal{O}_{\Phi Q,ij}^{(3)} = \Phi^{\dagger}(\mathcal{D}_{\mu}\Phi)(\bar{Q}_{i}\gamma^{\mu}\sigma_{a}Q_{j}) \\ & \bigoplus \\ \mathcal{O}_{d\Phi,ij} = (\Phi^{\dagger}\Phi)(\bar{Q}_{i}\Phi d_{R_{j}}) & \mathcal{O}_{\Phi e,ij}^{(1)} = \Phi^{\dagger}(\mathcal{D}_{\mu}\Phi)(\bar{e}_{R_{i}}\gamma^{\mu}e_{R_{j}}) \\ & \bigoplus \\ \mathcal{O}_{\Phi u,ij}^{(1)} = \Phi^{\dagger}(\mathcal{D}_{\mu}\Phi)(\bar{u}_{R_{i}}\gamma^{\mu}d_{R_{j}}) \\ & \bigoplus \\ \mathcal{O}_{\Phi d,ij}^{(1)} = \Phi^{\dagger}(\mathcal{D}_{\mu}\Phi)(\bar{d}_{R_{i}}\gamma^{\mu}d_{R_{j}}) \\ & \mathcal{O}_{\Phi u,d,ij}^{(1)} = \Phi^{\dagger}(\mathcal{D}_{\mu}\Phi)(\bar{u}_{R_{i}}\gamma^{\mu}d_{R_{j}}) \end{array}$$

In the absence of theoretical prejudice chose a basis where the operators are more directly related to the existing data

Z properties, W decays, low energy ν scattering, atomic P, FCNC, Moller scattering P and $e^+e^- \rightarrow f\bar{f}$ at LEP2.

Higgs interactions with gauge bosons²:

$$\begin{split} \mathcal{O}_{GG} &= \Phi^{\dagger} \Phi \ G^{a}_{\mu\nu} G^{a\mu\nu} \ , \qquad \mathcal{O}_{WW} &= \Phi^{\dagger} \hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \Phi \ , \qquad \mathcal{O}_{BB} &= \Phi^{\dagger} \hat{B}_{\mu\nu} \hat{B}^{\mu\nu} \Phi \ , \\ \mathcal{O}_{BW} &= \Phi^{\dagger} \hat{B}_{\mu\nu} \hat{W}^{\mu\nu} \Phi \ , \qquad \mathcal{O}_{W} &= (D_{\mu} \Phi)^{\dagger} \hat{W}^{\mu\nu} (D_{\nu} \Phi) \ , \qquad \mathcal{O}_{B} &= (D_{\mu} \Phi)^{\dagger} \hat{B}^{\mu\nu} (D_{\nu} \Phi) \ , \\ \mathcal{O}_{\Phi,1} &= (D_{\mu} \Phi)^{\dagger} \Phi \ \Phi^{\dagger} (D^{\mu} \Phi) \ , \qquad \mathcal{O}_{\Phi,2} &= \frac{1}{2} \partial^{\mu} \left(\Phi^{\dagger} \Phi \right) \partial_{\mu} \left(\Phi^{\dagger} \Phi \right) \ , \qquad \mathcal{O}_{\Phi,4} &= (D_{\mu} \Phi)^{\dagger} (D^{\mu} \Phi) \left(\Phi^{\dagger} \Phi \right) \ , \end{split}$$

Higgs interactions with fermions:

$$\begin{array}{ll} \mathcal{O}_{e\Phi,ij} = (\Phi^{\dagger}\Phi)(\bar{L}_{i}\Phi e_{R_{j}}) & \mathcal{O}_{\Phi L,ij}^{(1)} = \Phi^{\dagger}(\mathcal{D}_{\mu}\Phi)(\bar{L}_{i}\gamma^{\mu}L_{j}) & \mathcal{O}_{\Phi L,ij}^{(3)} = \Phi^{\dagger}(\mathcal{D}_{\mu}\Phi)(\bar{L}_{i}\gamma^{\mu}\sigma_{a}L_{j}) \\ & \bigoplus \\ \mathcal{O}_{u\Phi,ij} = (\Phi^{\dagger}\Phi)(\bar{Q}_{i}\tilde{\Phi}u_{R_{j}}) & \mathcal{O}_{\Phi Q,ij}^{(1)} = \Phi^{\dagger}(\mathcal{D}_{\mu}\Phi)(\bar{Q}_{i}\gamma^{\mu}Q_{j}) & \mathcal{O}_{\Phi Q,ij}^{(3)} = \Phi^{\dagger}(\mathcal{D}_{\mu}\Phi)(\bar{Q}_{i}\gamma^{\mu}\sigma_{a}Q_{j}) \\ & \bigoplus \\ \mathcal{O}_{d\Phi,ij} = (\Phi^{\dagger}\Phi)(\bar{Q}_{i}\Phi d_{R_{j}}) & \mathcal{O}_{\Phi e,ij}^{(1)} = \Phi^{\dagger}(\mathcal{D}_{\mu}\Phi)(\bar{e}_{R_{i}}\gamma^{\mu}e_{R_{j}}) \\ & \bigoplus \\ \mathcal{O}_{\Phi u,ij}^{(1)} = \Phi^{\dagger}(\mathcal{D}_{\mu}\Phi)(\bar{u}_{R_{i}}\gamma^{\mu}d_{R_{j}}) \\ & \bigoplus \\ \mathcal{O}_{\Phi u,ij}^{(1)} = \Phi^{\dagger}(\mathcal{D}_{\mu}\Phi)(\bar{d}_{R_{i}}\gamma^{\mu}d_{R_{j}}) \\ & \bigoplus \\ \mathcal{O}_{\Phi u,ij}^{(1)} = \Phi^{\dagger}(\mathcal{D}_{\mu}\Phi)(\bar{u}_{R_{i}}\gamma^{\mu}d_{R_{j}}) \end{array}$$

In the absence of theoretical prejudice chose a basis where the operators are more directly related to the existing data

Z properties, W decays, low energy ν scattering, atomic P, FCNC, Moller scattering P and $e^+e^- \rightarrow f\bar{f}$ at LEP2.

$${}^{2}D_{\mu}\Phi = \left(\partial_{\mu} + i\frac{1}{2}g'B_{\mu} + ig\frac{\sigma_{\alpha}}{2}W_{\mu}^{a}\right)\Phi, \ \hat{B}_{\mu\nu} = i\frac{g'}{2}B_{\mu\nu}, \ \hat{W}_{\mu\nu} = i\frac{g}{2}\sigma^{a}W_{\mu\nu}^{a} + \varepsilon + \varepsilon = \varepsilon \quad \Xi \quad \Im \land \Im$$
Juan González Fraile (UB) Higgs Hunting 2013 Orsay, July 26th 2013 4 / 11

Higgs interactions with gauge bosons²:

$$\begin{split} \mathcal{O}_{GG} &= \Phi^{\dagger} \Phi \; G^{a}_{\mu\nu} G^{a\mu\nu} \; , \qquad \mathcal{O}_{WW} &= \Phi^{\dagger} \hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \Phi \; , \qquad \mathcal{O}_{BB} &= \Phi^{\dagger} \hat{B}_{\mu\nu} \hat{B}^{\mu\nu} \Phi \; , \\ \mathcal{O}_{BW} &= \Phi^{\dagger} \hat{B}_{\mu\nu} \hat{W}^{\mu\nu} \Phi \; , \qquad \mathcal{O}_{W} &= (D_{\mu} \Phi)^{\dagger} \hat{W}^{\mu\nu} (D_{\nu} \Phi) \; , \qquad \mathcal{O}_{B} &= (D_{\mu} \Phi)^{\dagger} \hat{B}^{\mu\nu} (D_{\nu} \Phi) \; , \\ \mathcal{O}_{\Phi,1} &= (D_{\mu} \Phi)^{\dagger} \Phi \; \Phi^{\dagger} (D^{\mu} \Phi) \; , \qquad \mathcal{O}_{\Phi,2} &= \frac{1}{2} \partial^{\mu} \left(\Phi^{\dagger} \Phi \right) \partial_{\mu} \left(\Phi^{\dagger} \Phi \right) \; , \qquad \mathcal{O}_{\Phi,4} &= (D_{\mu} \Phi)^{\dagger} \left(D^{\mu} \Phi \right) \left(\Phi^{\dagger} \Phi \right) \end{split}$$

Higgs interactions with fermions:

$$\begin{array}{ll} \mathcal{O}_{e\Phi,ij} = (\Phi^{\dagger}\Phi)(\bar{L}_{i}\Phi e_{R_{j}}) & \mathcal{O}_{\Phi L,ij}^{(1)} = \Phi^{\dagger}(\mathcal{D}_{\mu}\Phi)(\bar{L}_{i}\gamma^{\mu}L_{j}) & \mathcal{O}_{\Phi L,ij}^{(3)} = \Phi^{\dagger}(\mathcal{D}_{\mu}^{a}\Phi)(\bar{L}_{i}\gamma^{\mu}\sigma_{a}L_{j}) \\ & \bigoplus \\ \mathcal{O}_{u\Phi,ij} = (\Phi^{\dagger}\Phi)(\bar{Q}_{i}\tilde{\Phi}u_{R_{j}}) & \mathcal{O}_{\Phi Q,ij}^{(1)} = \Phi^{\dagger}(\mathcal{D}_{\mu}\Phi)(\bar{Q}_{i}\gamma^{\mu}Q_{j}) & \mathcal{O}_{\Phi Q,ij}^{(3)} = \Phi^{\dagger}(\mathcal{D}_{\mu}^{a}\Phi)(\bar{Q}_{i}\gamma^{\mu}\sigma_{a}Q_{j}) \\ & \bigoplus \\ \mathcal{O}_{d\Phi,ij} = (\Phi^{\dagger}\Phi)(\bar{Q}_{i}\Phi d_{R_{j}}) & \mathcal{O}_{\Phi e,ij}^{(1)} = \Phi^{\dagger}(\mathcal{D}_{\mu}\Phi)(\bar{e}_{R_{i}}\gamma^{\mu}e_{R_{j}}) \\ & \bigoplus \\ \mathcal{O}_{\Phi u,ij}^{(1)} = \Phi^{\dagger}(\mathcal{D}_{\mu}\Phi)(\bar{u}_{R_{i}}\gamma^{\mu}d_{R_{j}}) \\ & \bigoplus \\ \mathcal{O}_{\Phi u,ij}^{(1)} = \Phi^{\dagger}(\mathcal{D}_{\mu}\Phi)(\bar{d}_{R_{i}}\gamma^{\mu}d_{R_{j}}) \\ & \bigoplus \\ \mathcal{O}_{\Phi u,ij}^{(1)} = \Phi^{\dagger}(\mathcal{D}_{\mu}\Phi)(\bar{u}_{R_{i}}\gamma^{\mu}d_{R_{j}}) \\ \end{array}$$

In the absence of theoretical prejudice chose a basis where the operators are more directly related to the existing data

Z properties, W decays, low energy ν scattering, atomic P, FCNC, Moller scattering P and $e^+e^- \rightarrow f\bar{f}$ at LEP2.

Higgs interactions with gauge bosons2:

$$\begin{split} \mathcal{O}_{GG} &= \Phi^{\dagger} \Phi \ G^{a}_{\mu\nu} G^{a\mu\nu} \ , \qquad \mathcal{O}_{WW} &= \Phi^{\dagger} \hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \Phi \ , \qquad \mathcal{O}_{BB} &= \Phi^{\dagger} \hat{B}_{\mu\nu} \hat{B}^{\mu\nu} \Phi \ , \\ \mathcal{O}_{BW} &= \Phi^{\dagger} \hat{B}_{\mu\nu} \hat{W}^{\mu\nu} \Phi \ , \qquad \mathcal{O}_{W} &= (D_{\mu} \Phi)^{\dagger} \hat{W}^{\mu\nu} (D_{\nu} \Phi) \ , \qquad \mathcal{O}_{B} &= (D_{\mu} \Phi)^{\dagger} \hat{B}^{\mu\nu} (D_{\nu} \Phi) \ , \\ \mathcal{O}_{\Phi,1} &= (D_{\mu} \Phi)^{\dagger} \Phi \ \Phi^{\dagger} (D^{\mu} \Phi) \ , \qquad \mathcal{O}_{\Phi,2} &= \frac{1}{2} \partial^{\mu} \left(\Phi^{\dagger} \Phi \right) \partial_{\mu} \left(\Phi^{\dagger} \Phi \right) \ , \qquad \mathcal{O}_{\Phi,4} &= (D_{\mu} \Phi)^{\dagger} (D^{\mu} \Phi) \left(\Phi^{\dagger} \Phi \right) \ , \end{split}$$

Higgs interactions with fermions:

$$\begin{array}{ll} \mathcal{O}_{e\Phi,ij} = (\Phi^{\dagger}\Phi)(\bar{L}_{i}\Phi e_{R_{j}}) & \mathcal{O}_{\Phi L,ij}^{(1)} = \Phi^{\dagger}(\mathcal{D}_{\mu}\Phi)(\bar{L}_{i}\gamma^{\mu}L_{j}) & \mathcal{O}_{\Phi L,ij}^{(3)} = \Phi^{\dagger}(\mathcal{D}_{\mu}^{a}\Phi)(\bar{L}_{i}\gamma^{\mu}\sigma_{a}L_{j}) \\ & \bigoplus \\ \mathcal{O}_{u\Phi,ij} = (\Phi^{\dagger}\Phi)(\bar{Q}_{i}\bar{\Phi}u_{R_{j}}) & \mathcal{O}_{\Phi Q,ij}^{(1)} = \Phi^{\dagger}(\mathcal{D}_{\mu}\Phi)(\bar{Q}_{i}\gamma^{\mu}Q_{j}) & \mathcal{O}_{\Phi Q,ij}^{(3)} = \Phi^{\dagger}(\mathcal{D}_{\mu}^{a}\Phi)(\bar{Q}_{i}\gamma^{\mu}\sigma_{a}Q_{j}) \\ & \bigoplus \\ \mathcal{O}_{d\Phi,ij} = (\Phi^{\dagger}\Phi)(\bar{Q}_{i}\Phi d_{R_{j}}) & \mathcal{O}_{\Phi e,ij}^{(1)} = \Phi^{\dagger}(\mathcal{D}_{\mu}\Phi)(\bar{e}_{R_{i}}\gamma^{\mu}e_{R_{j}}) \\ & \bigoplus \\ & \mathcal{O}_{\Phi u,ij}^{(1)} = \Phi^{\dagger}(\mathcal{D}_{\mu}\Phi)(\bar{u}_{R_{i}}\gamma^{\mu}d_{R_{j}}) \\ & \bigoplus \\ & \mathcal{O}_{\Phi u,ij}^{(1)} = \Phi^{\dagger}(\mathcal{D}_{\mu}\Phi)(\bar{d}_{R_{i}}\gamma^{\mu}d_{R_{j}}) \\ & \mathcal{O}_{\Phi u,ij}^{(1)} = \Phi^{\dagger}(\mathcal{D}_{\mu}\Phi)(\bar{u}_{R_{i}}\gamma^{\mu}d_{R_{j}}) \end{array}$$

In the absence of theoretical prejudice chose a basis where the operators are more directly related to the existing data

Z properties, W decays, low energy ν scattering, atomic P, FCNC, Moller scattering P and $e^+e^- \rightarrow f\bar{f}$ at LEP2.

Higgs interactions with gauge bosons²:

$$\begin{split} \mathcal{O}_{GG} &= \Phi^{\dagger} \Phi \ G^{a}_{\mu\nu} G^{a\mu\nu} \ , \qquad \mathcal{O}_{WW} &= \Phi^{\dagger} \hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \Phi \ , \qquad \mathcal{O}_{BB} &= \Phi^{\dagger} \hat{B}_{\mu\nu} \hat{B}^{\mu\nu} \Phi \ , \\ \mathcal{O}_{BW} &= \Phi^{\dagger} \hat{B}_{\mu\nu} \hat{W}^{\mu\nu} \Phi \ , \qquad \mathcal{O}_{W} &= (D_{\mu} \Phi)^{\dagger} \hat{W}^{\mu\nu} (D_{\nu} \Phi) \ , \qquad \mathcal{O}_{B} &= (D_{\mu} \Phi)^{\dagger} \hat{B}^{\mu\nu} (D_{\nu} \Phi) \ , \\ \mathcal{O}_{\Phi,1} &= (D_{\mu} \Phi)^{\dagger} \Phi \ \Phi^{\dagger} (D^{\mu} \Phi) \ , \qquad \mathcal{O}_{\Phi,2} &= \frac{1}{2} \partial^{\mu} \left(\Phi^{\dagger} \Phi \right) \partial_{\mu} \left(\Phi^{\dagger} \Phi \right) \ , \qquad \mathcal{O}_{\Phi,4} &= (D_{\mu} \Phi)^{\dagger} (D^{\mu} \Phi) \left(\Phi^{\dagger} \Phi \right) \end{split}$$

Higgs interactions with fermions:

$$\begin{split} \mathcal{O}_{e\Phi,ij} &= (\Phi^{\dagger}\Phi)(\bar{L}_{i}\Phi e_{R_{j}}) \quad \mathcal{O}_{\Phi L,ij}^{(1)} = \Phi^{\dagger}(\mathcal{D}_{\mu}\Phi)(\bar{L}_{i}\gamma^{\mu}L_{j}) \quad \mathcal{O}_{\Phi L,ij}^{(3)} = \Phi^{\dagger}(\mathcal{D}_{\mu}^{a}\Phi)(\bar{L}_{i}\gamma^{\mu}\sigma_{a}L_{j}) \\ \mathcal{O}_{u\Phi,ij} &= (\Phi^{\dagger}\Phi)(\bar{Q}_{i}\tilde{\Phi}u_{R_{j}}) \quad \mathcal{O}_{\Phi Q,ij}^{(1)} = \Phi^{\dagger}(\mathcal{D}_{\mu}\Phi)(\bar{Q}_{i}\gamma^{\mu}Q_{j}) \quad \mathcal{O}_{\Phi Q,ij}^{(3)} = \Phi^{\dagger}(\mathcal{D}_{a}^{a}\Phi)(\bar{Q}_{i}\gamma^{\mu}\sigma_{a}Q_{j}) \\ \mathcal{O}_{d\Phi,ij} &= (\Phi^{\dagger}\Phi)(\bar{Q}_{i}\Phi d_{R_{j}}) \quad \mathcal{O}_{\Phi e,ij}^{(1)} = \Phi^{\dagger}(\mathcal{D}_{\mu}\Phi)(\bar{e}_{R_{i}}\gamma^{\mu}e_{R_{j}}) \\ \mathcal{O}_{\Phi u,ij}^{(1)} &= \Phi^{\dagger}(\mathcal{D}_{\mu}\Phi)(\bar{u}_{R_{i}}\gamma^{\mu}u_{R_{j}}) \\ \mathcal{O}_{\Phi u,ij}^{(1)} &= \Phi^{\dagger}(\mathcal{D}_{\mu}\Phi)(\bar{d}_{R_{i}}\gamma^{\mu}d_{R_{j}}) \\ \mathcal{O}_{\Phi u,d,ij}^{(1)} &= \Phi^{\dagger}(\mathcal{D}_{\mu}\Phi)(\bar{u}_{R_{i}}\gamma^{\mu}d_{R_{j}}) \end{split}$$

In the absence of theoretical prejudice chose a basis where the operators are more directly related to the existing data

Z properties, W decays, low energy ν scattering, atomic P, FCNC, Moller scattering P and $e^+e^- \rightarrow f\bar{f}$ at LEP2.

 EWPD at tree level, TGV

$$\frac{^{2}D_{\mu}\Phi = \left(\partial_{\mu} + i\frac{1}{2}g'B_{\mu} + ig\frac{\sigma_{a}}{2}W_{\mu}^{a}\right)\Phi, \ \hat{B}_{\mu\nu} = i\frac{g'}{2}B_{\mu\nu}, \ \hat{W}_{\mu\nu} = i\frac{g}{2}\sigma^{a}W_{\mu\nu}^{a}, \ \forall \in \mathbb{R} + \langle \mathbb{R} \rangle \in \mathbb{R}$$

Higgs interactions with gauge bosons2:

$$\begin{split} \mathcal{O}_{GG} &= \Phi^{\dagger} \Phi \ G^{a}_{\mu\nu} G^{a\mu\nu} \ , \qquad \mathcal{O}_{WW} &= \Phi^{\dagger} \hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \Phi \ , \qquad \mathcal{O}_{BB} &= \Phi^{\dagger} \hat{B}_{\mu\nu} \hat{B}^{\mu\nu} \Phi \ , \\ \mathcal{O}_{BW} &= \Phi^{\dagger} \hat{B}_{\mu\nu} \hat{W}^{\mu\nu} \Phi \ , \qquad \mathcal{O}_{W} &= (D_{\mu} \Phi)^{\dagger} \hat{W}^{\mu\nu} (D_{\nu} \Phi) \ , \qquad \mathcal{O}_{B} &= (D_{\mu} \Phi)^{\dagger} \hat{B}^{\mu\nu} (D_{\nu} \Phi) \ , \\ \mathcal{O}_{\Phi,1} &= (D_{\mu} \Phi)^{\dagger} \Phi \ \Phi^{\dagger} (D^{\mu} \Phi) \ , \qquad \mathcal{O}_{\Phi,2} &= \frac{1}{2} \partial^{\mu} \left(\Phi^{\dagger} \Phi \right) \partial_{\mu} \left(\Phi^{\dagger} \Phi \right) \ , \qquad \mathcal{O}_{\Phi,4} &= (D_{\mu} \Phi)^{\dagger} (D^{\mu} \Phi) \left(\Phi^{\dagger} \Phi \right) \end{split}$$

Higgs interactions with fermions:

$$\begin{split} \mathcal{O}_{e\Phi,33} &= (\Phi^{\dagger}\Phi)(\bar{L}_{3}\Phi e_{R_{3}}) \quad \mathcal{O}_{\Phi L,ij}^{(1)} &= \Phi^{\dagger}(\mathcal{D}_{\mu}\Phi)(\bar{L}_{i}\gamma^{\mu}L_{j}) \qquad \mathcal{O}_{\Phi L,ij}^{(3)} &= \Phi^{\dagger}(\mathcal{D}_{a}^{a}\Phi)(\bar{L}_{i}\gamma^{\mu}\sigma_{a}L_{j}) \\ \mathcal{O}_{u\Phi,ij} &= (\Phi^{\dagger}\Phi)(\bar{Q}_{i}\bar{\Phi}u_{R_{j}}) \qquad \mathcal{O}_{\Phi Q,ij}^{(1)} &= \Phi^{\dagger}(\mathcal{D}_{\mu}\Phi)(\bar{Q}_{i}\gamma^{\mu}Q_{j}) \qquad \mathcal{O}_{\Phi Q,ij}^{(3)} &= \Phi^{\dagger}(\mathcal{D}_{a}^{a}\Phi)(\bar{Q}_{i}\gamma^{\mu}\sigma_{a}Q_{j}) \\ \mathcal{O}_{d\Phi,33} &= (\Phi^{\dagger}\Phi)(\bar{Q}_{3}\Phi d_{R_{3}}) \qquad \mathcal{O}_{\Phi e,ij}^{(1)} &= \Phi^{\dagger}(\mathcal{D}_{\mu}\Phi)(\bar{e}_{R_{i}}\gamma^{\mu}e_{R_{j}}) \\ & \qquad \mathcal{O}_{\Phi u,ij}^{(1)} &= \Phi^{\dagger}(\mathcal{D}_{\mu}\Phi)(\bar{u}_{R_{i}}\gamma^{\mu}u_{R_{j}}) \\ & \qquad \mathcal{O}_{\Phi d,ij}^{(1)} &= \Phi^{\dagger}(\mathcal{D}_{\mu}\Phi)(\bar{d}_{R_{i}}\gamma^{\mu}d_{R_{j}}) \\ & \qquad \mathcal{O}_{\Phi u,d,ij}^{(1)} &= \Phi^{\dagger}(\mathcal{D}_{\mu}\Phi)(\bar{u}_{R_{i}}\gamma^{\mu}d_{R_{j}}) \\ & \qquad \mathcal{O}_{\Phi u,d,ij}^{(1)} &= \Phi^{\dagger}(\mathcal{D}_{\mu}\Phi)(\bar{u}_{R_{i}}\gamma^{\mu}d_{R_{j}}) \end{split}$$

In the absence of theoretical prejudice chose a basis where the operators are more directly related to the existing data

Z properties, W decays, low energy ν scattering, atomic P, FCNC, Moller scattering P and $e^+e^- \rightarrow f\bar{f}$ at LEP2.

$${}^{2}D_{\mu}\Phi = \left(\partial_{\mu} + i\frac{1}{2}g'B_{\mu} + ig\frac{\sigma_{\alpha}}{2}W_{\mu}^{a}\right)\Phi, \hat{B}_{\mu\nu} = i\frac{g'}{2}B_{\mu\nu}, \hat{W}_{\mu\nu} = i\frac{g}{2}\sigma^{a}W_{\mu\nu}^{a} \land \langle \Xi \rangle \land \langle \Xi \land \langle \Xi \rangle \land \langle \Xi \land$$

Higgs interactions with gauge bosons2:

$$\begin{split} \mathcal{O}_{GG} &= \Phi^{\dagger} \Phi \; G^{a}_{\mu\nu} G^{a\mu\nu} \; , \qquad \mathcal{O}_{WW} &= \Phi^{\dagger} \hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \Phi \; , \qquad \mathcal{O}_{BB} &= \Phi^{\dagger} \hat{B}_{\mu\nu} \hat{B}^{\mu\nu} \Phi \; , \\ \mathcal{O}_{BW} &= \Phi^{\dagger} \hat{B}_{\mu\nu} \hat{W}^{\mu\nu} \Phi \; , \qquad \mathcal{O}_{W} &= (D_{\mu} \Phi)^{\dagger} \hat{W}^{\mu\nu} (D_{\nu} \Phi) \; , \qquad \mathcal{O}_{B} &= (D_{\mu} \Phi)^{\dagger} \hat{B}^{\mu\nu} (D_{\nu} \Phi) \; , \\ \mathcal{O}_{\Phi,1} &= (D_{\mu} \Phi)^{\dagger} \Phi \; \Phi^{\dagger} (D^{\mu} \Phi) \; , \qquad \mathcal{O}_{\Phi,2} &= \frac{1}{2} \partial^{\mu} \left(\Phi^{\dagger} \Phi \right) \partial_{\mu} \left(\Phi^{\dagger} \Phi \right) \; , \qquad \mathcal{O}_{\Phi,4} &= (D_{\mu} \Phi)^{\dagger} (D^{\mu} \Phi) \left(\Phi^{\dagger} \Phi \right) \end{split}$$

Higgs interactions with fermions:

$$\begin{split} \mathcal{O}_{e\Phi,33} &= (\Phi^{\dagger}\Phi)(\bar{L}_{3}\Phi e_{R_{3}}) \quad \mathcal{O}_{\Phi L,ij}^{(1)} &= \Phi^{\dagger}(\mathcal{D}_{\mu}\Phi)(\bar{L}_{i}\gamma^{\mu}L_{j}) \qquad \mathcal{O}_{\Phi L,ij}^{(3)} &= \Phi^{\dagger}(\mathcal{D}_{a}^{a}\Phi)(\bar{L}_{i}\gamma^{\mu}\sigma_{a}L_{j}) \\ \mathcal{O}_{u\Phi,ij} &= (\Phi^{\dagger}\Phi)(\bar{Q}_{i}\bar{\Phi}u_{R_{j}}) \qquad \mathcal{O}_{\Phi Q,ij}^{(1)} &= \Phi^{\dagger}(\mathcal{D}_{\mu}\Phi)(\bar{Q}_{i}\gamma^{\mu}Q_{j}) \qquad \mathcal{O}_{\Phi Q,ij}^{(3)} &= \Phi^{\dagger}(\mathcal{D}_{a}^{a}\Phi)(\bar{Q}_{i}\gamma^{\mu}\sigma_{a}Q_{j}) \\ \mathcal{O}_{d\Phi,33} &= (\Phi^{\dagger}\Phi)(\bar{Q}_{3}\Phi d_{R_{3}}) \qquad \mathcal{O}_{\Phi e,ij}^{(1)} &= \Phi^{\dagger}(\mathcal{D}_{\mu}\Phi)(\bar{e}_{R_{i}}\gamma^{\mu}e_{R_{j}}) \\ & \qquad \mathcal{O}_{\Phi u,ij}^{(1)} &= \Phi^{\dagger}(\mathcal{D}_{\mu}\Phi)(\bar{u}_{R_{i}}\gamma^{\mu}u_{R_{j}}) \\ & \qquad \mathcal{O}_{\Phi d,ij}^{(1)} &= \Phi^{\dagger}(\mathcal{D}_{\mu}\Phi)(\bar{d}_{R_{i}}\gamma^{\mu}d_{R_{j}}) \\ & \qquad \mathcal{O}_{\Phi u,d,ij}^{(1)} &= \Phi^{\dagger}(\mathcal{D}_{\mu}\Phi)(\bar{u}_{R_{i}}\gamma^{\mu}d_{R_{j}}) \\ & \qquad \mathcal{O}_{\Phi u,d,ij}^{(1)} &= \Phi^{\dagger}(\mathcal{D}_{\mu}\Phi)(\bar{u}_{R_{i}}\gamma^{\mu}d_{R_{j}}) \end{split}$$

In the absence of theoretical prejudice chose a basis where the operators are more directly related to the existing data

Z properties, W decays, low energy ν scattering, atomic P, FCNC, Moller scattering P and $e^+e^- \rightarrow f\bar{f}$ at LEP2.

$${}^{2}D_{\mu}\Phi = \left(\partial_{\mu} + i\frac{1}{2}g'B_{\mu} + ig\frac{\sigma_{a}}{2}W_{\mu}^{a}\right)\Phi, \ \hat{B}_{\mu\nu} = i\frac{g'}{2}B_{\mu\nu}, \ \hat{W}_{\mu\nu} = (i\frac{g}{2}\sigma^{a}W_{\mu\nu}^{a}) \leftrightarrow \Xi \to \Xi \quad \Xi \quad \Im \in \mathcal{G}$$
Juan González Fraile (UB) Higgs Hunting 2013 Orsay, July 26th 2013 4 / 11

Higgs interactions with gauge bosons2:

$$\begin{split} \mathcal{O}_{GG} &= \Phi^{\dagger} \Phi \; G^{a}_{\mu\nu} G^{a\mu\nu} \; , \qquad \mathcal{O}_{WW} &= \Phi^{\dagger} \hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \Phi \; , \qquad \mathcal{O}_{BB} &= \Phi^{\dagger} \hat{B}_{\mu\nu} \hat{B}^{\mu\nu} \Phi \; , \\ \mathcal{O}_{BW} &= \Phi^{\dagger} \hat{B}_{\mu\nu} \hat{W}^{\mu\nu} \Phi \; , \qquad \mathcal{O}_{W} &= (D_{\mu} \Phi)^{\dagger} \hat{W}^{\mu\nu} (D_{\nu} \Phi) \; , \qquad \mathcal{O}_{B} &= (D_{\mu} \Phi)^{\dagger} \hat{B}^{\mu\nu} (D_{\nu} \Phi) \; , \\ \mathcal{O}_{\Phi,1} &= (D_{\mu} \Phi)^{\dagger} \Phi \; \Phi^{\dagger} (D^{\mu} \Phi) \; , \qquad \mathcal{O}_{\Phi,2} &= \frac{1}{2} \partial^{\mu} \left(\Phi^{\dagger} \Phi \right) \partial_{\mu} \left(\Phi^{\dagger} \Phi \right) \; , \qquad \mathcal{O}_{\Phi,4} &= (D_{\mu} \Phi)^{\dagger} (D^{\mu} \Phi) \left(\Phi^{\dagger} \Phi \right) \end{split}$$

Higgs interactions with fermions:

$$\begin{split} \mathcal{O}_{e\Phi,33} &= (\Phi^{\dagger}\Phi)(\bar{L}_{3}\Phi e_{R_{3}}) \quad \mathcal{O}_{\Phi L,ij}^{(1)} &= \Phi^{\dagger}(\mathcal{D}_{\mu}\Phi)(\bar{L}_{i}\gamma^{\mu}L_{j}) \qquad \mathcal{O}_{\Phi L,ij}^{(3)} &= \Phi^{\dagger}(\mathcal{D}_{a}^{a}\Phi)(\bar{L}_{i}\gamma^{\mu}\sigma_{a}L_{j}) \\ \mathcal{O}_{u\Phi,ij} &= (\Phi^{\dagger}\Phi)(\bar{Q}_{i}\bar{\Phi}u_{R_{j}}) \qquad \mathcal{O}_{\Phi Q,ij}^{(1)} &= \Phi^{\dagger}(\mathcal{D}_{\mu}\Phi)(\bar{Q}_{i}\gamma^{\mu}Q_{j}) \qquad \mathcal{O}_{\Phi Q,ij}^{(3)} &= \Phi^{\dagger}(\mathcal{D}_{a}^{a}\Phi)(\bar{Q}_{i}\gamma^{\mu}\sigma_{a}Q_{j}) \\ \mathcal{O}_{d\Phi,33} &= (\Phi^{\dagger}\Phi)(\bar{Q}_{3}\Phi d_{R3}) \qquad \mathcal{O}_{\Phi e,ij}^{(1)} &= \Phi^{\dagger}(\mathcal{D}_{\mu}\Phi)(\bar{e}_{R_{i}}\gamma^{\mu}e_{R_{j}}) \\ & \oplus \\ \mathcal{O}_{\Phi u,ij}^{(1)} &= \Phi^{\dagger}(\mathcal{D}_{\mu}\Phi)(\bar{u}_{R_{i}}\gamma^{\mu}u_{R_{j}}) \\ & \oplus \\ \mathcal{O}_{\Phi u,ij}^{(1)} &= \Phi^{\dagger}(\mathcal{D}_{\mu}\Phi)(\bar{d}_{R_{i}}\gamma^{\mu}d_{R_{j}}) \\ & \oplus \\ \mathcal{O}_{\Phi u,d,ij}^{(1)} &= \Phi^{\dagger}(\mathcal{D}_{\mu}\Phi)(\bar{u}_{R_{i}}\gamma^{\mu}d_{R_{j}}) \end{split}$$

In the absence of theoretical prejudice chose a basis where the operators are more directly related to the existing data

Z properties, W decays, low energy ν scattering, atomic P, FCNC, Moller scattering P and $e^+e^- \rightarrow f\bar{f}$ at LEP2.

Higgs interactions with gauge bosons2:

$$\begin{split} \mathcal{O}_{GG} &= \Phi^{\dagger} \Phi \; G^{a}_{\mu\nu} G^{a\mu\nu} \; , \qquad \mathcal{O}_{WW} &= \Phi^{\dagger} \hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \Phi \; , \qquad \mathcal{O}_{BB} &= \Phi^{\dagger} \hat{B}_{\mu\nu} \hat{B}^{\mu\nu} \Phi \; , \\ \mathcal{O}_{BW} &= \Phi^{\dagger} \hat{B}_{\mu\nu} \hat{W}^{\mu\nu} \Phi \; , \qquad \mathcal{O}_{W} &= (D_{\mu} \Phi)^{\dagger} \hat{W}^{\mu\nu} (D_{\nu} \Phi) \; , \qquad \mathcal{O}_{B} &= (D_{\mu} \Phi)^{\dagger} \hat{B}^{\mu\nu} (D_{\nu} \Phi) \; , \\ \mathcal{O}_{\Phi,1} &= (D_{\mu} \Phi)^{\dagger} \Phi \; \Phi^{\dagger} (D^{\mu} \Phi) \; , \qquad \mathcal{O}_{\Phi,2} &= \frac{1}{2} \partial^{\mu} \left(\Phi^{\dagger} \Phi \right) \partial_{\mu} \left(\Phi^{\dagger} \Phi \right) \; , \qquad \mathcal{O}_{\Phi,4} &= (D_{\mu} \Phi)^{\dagger} (D^{\mu} \Phi) \left(\Phi^{\dagger} \Phi \right) \end{split}$$

Higgs interactions with fermions:

$$\begin{split} \mathcal{O}_{e\Phi,33} &= (\Phi^{\dagger}\Phi)(\bar{L}_{3}\Phi e_{R_{3}}) \quad \mathcal{O}_{\Phi L,ij}^{(1)} &= \Phi^{\dagger}(\mathcal{D}_{\mu}\Phi)(\bar{L}_{i}\gamma^{\mu}L_{j}) \qquad \mathcal{O}_{\Phi L,ij}^{(3)} &= \Phi^{\dagger}(\mathcal{D}_{a}^{\mu}\Phi)(\bar{L}_{i}\gamma^{\mu}\sigma_{a}L_{j}) \\ \mathcal{O}_{u\Phi,ij} &= (\Phi^{\dagger}\Phi)(\bar{Q}_{i}\bar{\Phi}u_{R_{j}}) \qquad \mathcal{O}_{\Phi Q,ij}^{(1)} &= \Phi^{\dagger}(\mathcal{D}_{\mu}\Phi)(\bar{Q}_{i}\gamma^{\mu}Q_{j}) \qquad \mathcal{O}_{\Phi Q,ij}^{(3)} &= \Phi^{\dagger}(\mathcal{D}_{a}^{a}\Phi)(\bar{Q}_{i}\gamma^{\mu}\sigma_{a}Q_{j}) \\ \mathcal{O}_{d\Phi,33} &= (\Phi^{\dagger}\Phi)(\bar{Q}_{3}\Phi d_{R3}) \qquad \mathcal{O}_{\Phi e_{i},ij}^{(1)} &= \Phi^{\dagger}(\mathcal{D}_{\mu}\Phi)(\bar{e}_{R_{i}}\gamma^{\mu}e_{R_{j}}) \\ & \qquad \mathcal{O}_{\Phi d_{i},ij}^{(1)} &= \Phi^{\dagger}(\mathcal{D}_{\mu}\Phi)(\bar{u}_{R_{i}}\gamma^{\mu}u_{R_{j}}) \\ \mathcal{O}_{\Phi d_{i},ij}^{(1)} &= \Phi^{\dagger}(\mathcal{D}_{\mu}\Phi)(\bar{d}_{R_{i}}\gamma^{\mu}d_{R_{j}}) \\ & \qquad \mathcal{O}_{\Phi u,d,ij}^{(1)} &= \Phi^{\dagger}(\mathcal{D}_{\mu}\Phi)(\bar{u}_{R_{i}}\gamma^{\mu}d_{R_{j}}) \end{split}$$

In the absence of theoretical prejudice chose a basis where the operators are more directly related to the existing data

Z properties, W decays, low energy ν scattering, atomic P, FCNC, Moller scattering P and $e^+e^- \rightarrow f\bar{f}$ at LEP2.

Effective Lagrangian for Higgs Interactions

+
$$g_{HZZ}^{(1)} Z_{\mu\nu} Z^{\mu} \partial^{\nu} H + g_{HZZ}^{(2)} H Z_{\mu\nu} Z^{\mu\nu} + g_{HWW}^{(1)} \left(W_{\mu\nu}^{+} W^{-\mu} \partial^{\nu} H + \text{h.c.} \right)$$

+ $g_{HWW}^{(2)} H W_{\mu\nu}^{+} W^{-\mu\nu}$

$$\mathcal{L}_{\rm eff}^{Hff} \quad = \quad g_{Hij}^f \bar{f}_L' f_R' H + {\rm h.c.}$$

$$\begin{split} g_{Hgg} &= -\frac{\alpha_s}{8\pi} \frac{f_g v}{\Lambda^2} \qquad , g_{H\gamma\gamma} = -\left(\frac{g^2 v s^2}{2\Lambda^2}\right) \frac{f_{WW} + f_{BB}}{2} \ , \\ g_{HZ\gamma}^{(1)} &= \left(\frac{g^2 v}{2\Lambda^2}\right) \frac{s(f_W - f_B)}{2c} \qquad , g_{HZ\gamma}^{(2)} = \left(\frac{g^2 v}{2\Lambda^2}\right) \frac{s[2s^2 f_{BB} - 2c^2 f_{WW}]}{2c} \ , \\ g_{HZZ}^{(1)} &= \left(\frac{g^2 v}{2\Lambda^2}\right) \frac{c^2 f_W + s^2 f_B}{2c^2} \qquad , g_{HZZ}^{(2)} = -\left(\frac{g^2 v}{2\Lambda^2}\right) \frac{s^4 f_{BB} + c^4 f_{WW}}{2c^2} \ , \\ g_{HWW}^{(1)} &= \left(\frac{g^2 v}{2\Lambda^2}\right) \frac{f_W}{2} \qquad , g_{HWW}^{(2)} = -\left(\frac{g^2 v}{2\Lambda^2}\right) f_{WW} \\ g_{Hij}^f &= -\frac{m_i^f}{v} \delta_{ij} + \frac{v^2}{\sqrt{2\Lambda^2}} f'_{f\Phi,ij} \\ \end{split}$$

Juan González Fraile (UB)

Higgs Hunting 2013

Orsay, July 26th 2013

ヨ▶ ∢ ヨ▶ ヨー ∽ ९ ()

5 / 11

Effective Lagrangian for Higgs Interactions

Unitary gauge:

$$\begin{split} \mathcal{L}_{\text{eff}}^{\text{HVV}} &= g_{Hgg} \; H G^{a}_{\mu\nu} G^{a\mu\nu} + g_{H\gamma\gamma} \; H A_{\mu\nu} A^{\mu\nu} + g^{(1)}_{HZ\gamma} \; A_{\mu\nu} Z^{\mu} \partial^{\nu} H + g^{(2)}_{HZ\gamma} \; H A_{\mu\nu} Z^{\mu\nu} \\ &+ \; g^{(1)}_{HZZ} \; Z_{\mu\nu} Z^{\mu} \partial^{\nu} H + g^{(2)}_{HZZ} \; H Z_{\mu\nu} Z^{\mu\nu} + g^{(1)}_{HWW} \left(W^{+}_{\mu\nu} W^{-\mu} \partial^{\nu} H + \text{h.c.} \right) \\ &+ \; g^{(2)}_{HWW} \; H W^{+}_{\mu\nu} W^{-\mu\nu} \end{split}$$

$$\mathcal{L}_{\rm eff}^{Hff} \quad = \quad g_{Hij}^f \bar{f}_L' f_R' H + {\rm h.c.} \label{eq:left}$$

$$\begin{split} g_{Hgg} &= -\frac{\alpha_s}{8\pi} \frac{fgv}{\Lambda^2} \qquad , g_{H\gamma\gamma} = -\left(\frac{g^2vs^2}{2\Lambda^2}\right) \frac{f_{WW} + f_{BB}}{2} \ , \\ g_{HZ\gamma}^{(1)} &= \left(\frac{g^2v}{2\Lambda^2}\right) \frac{s(f_W - f_B)}{2c} \qquad , g_{HZ\gamma}^{(2)} = \left(\frac{g^2v}{2\Lambda^2}\right) \frac{s[2s^2f_{BB} - 2c^2f_{WW}]}{2c} \ , \\ g_{HZZ}^{(1)} &= \left(\frac{g^2v}{2\Lambda^2}\right) \frac{c^2f_W + s^2f_B}{2c^2} \qquad , g_{HZZ}^{(2)} = -\left(\frac{g^2v}{2\Lambda^2}\right) \frac{s^4f_{BB} + c^4f_{WW}}{2c^2} \ , \\ g_{HWW}^{(1)} &= \left(\frac{g^2v}{2\Lambda^2}\right) \frac{f_W}{2} \qquad , g_{HWW}^{(2)} = -\left(\frac{g^2v}{2\Lambda^2}\right) f_{WW} \\ g_{Hij}^f &= -\frac{m_i^f}{v} \delta_{ij} + \frac{v^2}{\sqrt{2}\Lambda^2} f'_{f\Phi,ij} \\ &= \sqrt{2} \zeta^{(2)} \\ \end{split}$$

Juan González Fraile (UB)

Higgs Hunting 2013

Orsay, July 26th 2013 5 / 11

The statistical analysis

Adding TGV and EWPD

Data on triple electroweak gauge boson vertices:

$$\begin{split} \mathcal{L}_{WWV} &= -ig_{WWV} \Biggl\{ g_1^V \left(W_{\mu\nu}^+ W^{-\,\mu} V^{\nu} - W_{\mu}^+ V_{\nu} W^{-\,\mu\nu} \right) + \kappa_V W_{\mu}^+ W_{\nu}^- V^{\mu\nu} + \frac{\lambda_V}{m_W^2} W_{\mu\nu}^+ W^{-\,\nu\rho} V_{\rho}^{\,\,\mu} \Biggr\} \\ \text{with} & \Delta g_1^Z &= g_1^Z - 1 = -\frac{g^2 v^2}{8c^2 \Lambda^2} f_W \ , \\ & \Delta \kappa_\gamma &= \kappa_\gamma - 1 = -\frac{g^2 v^2}{8\Lambda^2} \left(f_W + f_B \right) \ , \\ & \Delta \kappa_Z &= \kappa_Z - 1 = -\frac{g^2 v^2}{8c^2 \Lambda^2} \left(c^2 f_W - s^2 f_B \right) \ . \end{split}$$

LEP data:

$$g_1^Z = 0.984^{+0.049}_{-0.049}$$

$$\kappa_\gamma = 1.004^{+0.024}_{-0.025}$$

with a correlation factor $\rho = 0.11$.

Data on EWPD in terms of the S,T,U parameters:

$$\begin{split} \Delta S &= 0.00 \pm 0.10 & \Delta T = 0.02 \pm 0.11 & \Delta U = 0.03 \pm 0.09 \\ \rho &= \begin{pmatrix} 1 & 0.89 & -0.55 \\ 0.89 & 1 & -0.8 \\ -0.55 & -0.8 & 1 \end{pmatrix} \end{split}$$

Juan González Fraile (UB)

Higgs Hunting 2013

<□▶ < □▶ < □▶ < □▶ < □▶ < □▶ Orsay, July 26th 2013

200

7 / 11

Present Status

 $\Delta \chi^2$ vrs f_X

BRs and production CS

arXiv:1207.1344, 1211.4580 http://hep.if.usp.br/Higgs

Juan González Fraile (UB)

Orsay, July 26th 2013

→ E → < E →</p>

< D > < P >

ックへで 9 / 11

3

Determining TGV from Higgs data

- Gauge Invariance \rightarrow TGV and Higgs couplings related: \mathcal{O}_W and \mathcal{O}_B
- Complementarity in experimental searches: Higgs data bounds on $f_W \otimes f_B \equiv \Delta \kappa_\gamma \otimes \Delta g_1^Z$

arxiv:1304.1151

Discussion and Conclusions

• Model independent analysis where the effects of new physics in the Higgs couplings are parametrized in \mathcal{L}_{eff} . $SU(2)_L$ doublet $\rightarrow SU(2)_L \times U(1)_Y$ gauge symmetry linearly realized:

$$\mathcal{L}_{\text{eff}} = \sum_{n} \frac{f_n}{\Lambda^2} \mathcal{O}_n \quad ,$$

So far observations consistent with Higgs boson.

- Choice of basis: **Power to the data** \rightarrow operators whose coefficients are more easily related to existing data.
- Exploit interesting complementarity between experimental searches: TGV and Higgs data

arXiv:1207.1344, 1211.4580, 1304.1151 http://hep.if.usp.br/Higgs

Juan González Fraile (UB)

Higgs Hunting 2013

Orsay, July 26th 2013 11 / 11

◆□▶ ◆□▶ ◆□▶ ◆□▶ = □ - つくで

Discussion and Conclusions

• Model independent analysis where the effects of new physics in the Higgs couplings are parametrized in \mathcal{L}_{eff} . $SU(2)_L$ doublet $\rightarrow SU(2)_L \times U(1)_Y$ gauge symmetry linearly realized:

$$\mathcal{L}_{\text{eff}} = \sum_{n} \frac{f_n}{\Lambda^2} \mathcal{O}_n \quad ,$$

So far observations consistent with Higgs boson.

- Choice of basis:
 Power to the data → operators whose coefficients are more easily related to existing data.
- Exploit interesting **complementarity between experimental searches**: TGV and Higgs data

 $\label{eq:arXiv:1207.1344, 1211.4580, 1304.1151} \\ & {\rm http://hep.if.usp.br/Higgs} \\$

Juan González Fraile (UB)

Higgs Hunting 2013

Orsay, July 26th 2013

◆□▶ ◆□▶ ◆□▶ ◆□▶ = □ - つくで

CMS vrs ATLAS

Juan González Fraile (UB)

Higgs Hunting 2013

Orsay, July 26th 2013

2d correlations

Juan González Fraile (UB)

Higgs Hunting 2013

2d correlations

Juan González Fraile (UB)

Orsay, July 26th 2013

< □ ト < 同

3 14 / 11

990

 $\leftarrow \equiv \rightarrow$

Best fit and ranges

	Fit with $f_{bot} = f_{\tau} = 0$		Fit with f_{bot} and f_{τ}	
	Best fit	90% CL allowed range	Best fit	90% CL allowed range
$f_g/\Lambda^2 (\text{TeV}^{-2})$	0.64, 22.1	$[-1.8, 2.7] \cup [20, 25]$	0.71, 22.0	$[-6.2, 4.4] \cup [18, 29]$
$f_{WW}/\Lambda^2 (\text{TeV}^{-2})$	-0.083	$[-0.35, 0.15] \cup [2.6, 3.05]$	-0.095	[-0.39, 0.19]
$f_W/\Lambda^2 (\text{TeV}^{-2})$	0.35	[-6.2, 8.4]	-0.46	[-7.1, 6.5]
$f_B/\Lambda^2 (\text{TeV}^{-2})$	-5.9	[-22, 6.7]	-0.46	[-7.1, 6.5]
$f_{bot}/\Lambda^2 (\text{TeV}^{-2})$	—	—	0.01, 0.89	$[-0.34, 0.23] \cup [0.67, 1.2]$
$f_{\tau}/\Lambda^2 (\text{TeV}^{-2})$			-0.01, 0.34	$[-0.07, 0.05] \cup [0.28, 0.40]$
$BR^{ano}_{\gamma\gamma}/BR^{SM}_{\gamma\gamma}$	1.13	[0.78, 1.62]	1.18	[0.51, 1.9]
$BR_{WW}^{ano}/BR_{WW}^{SM}$	1.00	[0.9, 1.12]	1.04	[0.43, 2.0]
$BR_{ZZ}^{ano}/BR_{ZZ}^{SM}$	1.10	[0.9, 1.4]	1.04	[0.43, 2.0]
$BR_{bb}^{ano}/BR_{bb}^{SM}$	1.01	[0.95, 1.05]	0.99	[0.48, 1.3]
$BR_{\tau\tau}^{ano}/BR_{\tau\tau}^{SM}$	1.01	[0.9, 1.1]	1.11	[0.42, 2.6]
$\sigma_{gg}^{ano}/\sigma_{gg}^{SM}$	0.90	[0.58, 1.35]	0.88	[0.37, 2.4]
$\sigma_{VBF}^{ano}/\sigma_{VBF}^{SM}$	1.01	[0.9, 1.15]	0.99	[0.9, 1.1]
$\sigma_{VH}^{ano}/\sigma_{VH}^{SM}$	1.0	[0.56, 1.5]	1.03	[0.79, 1.6]

Best fit values and 90% CL allowed ranges for the combination of all available Tevatron and LHC Higgs data as well as TGV.

Juan González Fraile (UB)

Higgs Hunting 2013

Orsay, July 26th 2013

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ̄豆 _ のへで

2013 15 / 11