

High Mass Higgs to WW or ZZ

Jian Wang (Univ. Libre de Bruxelles) On behalf of ATLAS and CMS collaborations

Higgs Hunting 2013

Introduction

- A light Higgs boson of mass around 126 GeV discovered in 2012
- Compulsory to complete search for SM-like heavy Higgs boson
 - Legacy results for SM Higgs exclusion up to 1TeV; to conclude the SM chapter
- BSM scenarios predict existence of additional resonance at high mass, with couplings similar to SM Higgs
 - Re-interpretation of high mass search in light of h(126) discovery
- Most recent results from ATLAS and CMS reported here
 - Up to 5 fb⁻¹ @ 7 TeV and 20 fb⁻¹ @ 8 TeV

Differences from low mass search

3

- Large SM Higgs width
 - Narrow width approximation breaks down; Higgs lineshape is corrected to match results from complex-pole scheme approach
 - Interference between signal and continuum background is large

- SM Higgs predominantly decays into WW or ZZ in high mass region
 - Cross section decreases with m_H; high BR channels favored in high mass search
 - VBF cross section becomes comparable with ggF

Interference

Estimated using MC which include interference (MCFM, gg2VV, aMC@NLO); Effects to both total cross sections and distributions

Fully reconstructed mass with excellent resolution; Clean signature, good sensitivity over wide mass range; Limited by statistics at high mass

5

7

CMS-PAS-HIG-13-014 (5.0+19.6fb⁻¹)

- Competitive branching fraction
- Required a pair of isolated e or μ (p_T>20 GeV) from Z boson decay + large E_T^{miss}; no mass peak
- Challenge: Z+jets background fake E_T^{miss} from jet mis-measurement
- Event categories: VBF, ggF(0jet, ≥1jet)
 - Optimized separately for VBF and ggF
 - m_H dependent E_T^{miss} cut in ggF category

Friday, July 26, 2013

CMS H->ZZ combination

Combination of H->ZZ->2l2l'(4l+2l2T), H->ZZ->2l2v and H->ZZ->2l2q (Observed limits for individual channels superimposed) 2l2l' is the most sensitive at below 500 GeV; 2l2nu dominates at above 500 GeV

$H \rightarrow W \rightarrow v'$

ATLAS-CONF-2013-067 (20.7fb⁻¹)

- Two isolated, opposite charged leptons (p_T>40 GeV) and E_T^{miss}; no mass peak
- Only different lepton-flavor (evµv) used
- Event categories: 0jet, 1jet, ≥2jet(VBF)
- Top and WW backgrounds normalized to data control regions
- M_T is used as the discriminating variable

 $H \rightarrow W \rightarrow v' v'$

Analysis performed using two different assumptions on Higgs width:

Friday, July 26, 2013

H->WW->lvqq'

- Analysis performed for mass range [600-1000] GeV; large branching ratio due to hadronic decay of W
- Single isolated $\mu(e)$ with $p_T>30(35)$ GeV, large E_T^{miss}
- A jet containing the entire hadronic decay of W
 - W bosons are highly boosted (required p_T>200 GeV)
 - Jet substructure techniques are used in identifying the hadronic W

CMS-PAS-HIG-13-008 (19.3fb⁻¹)

The highest p_T jet by Cambridge-Aachen clustering algorithm (R=0.8) selected as hadronic W.

Jet pruning algorithm improves separation between signal and background.

M(IvJ) reconstructable

1.1(4.2) times SM for 600(1000)GeV

h(126) mixing with EW singlet

- Generic BSM benchmark to start with: minimal extension of SM
- A new, heavy Higgs boson mixes with h(126)
 - Reduction of the h(126) couplings wrt SM by C
 - Heavy Higgs couplings wrt SM: **C**'
 - Unitarity implies: C²+C'²=1
- The heavy Higgs may decay to new states: **BR**_{new} (e.g. H->hh)
- Signal strength and width of the heavy Higgs
 - $\mu' = C'^2 (1-BR_{new}); \Gamma' = C'^2 \Gamma_{SM} / (1-BR_{new})$
 - Current studies focus on the case $\Gamma' \leq \Gamma_{SM}$

CMS-PAS-HIG-13-014 (5.0+19.6fb⁻¹)

mH=400GeV

Limits on signal strength as a function of width vs BR_{new} (left) or C'² vs BR_{new} (right)

H->WW->lvqq'

CMS-PAS-HIG-13-008 (19.3fb⁻¹)

Limits on cross sections for various values of C'^2 as a function of mH (left) or BR_{new} (right)

Summary

- Searches for heavy SM-like Higgs boson in H->ZZ and H->WW decay channels have been presented
- The analyses use up to 25 fb⁻¹ *pp* collision data recorded by ATLAS and CMS at LHC in 2011 and 2012
- No excess above SM background expectations is observed
- Presence of a SM Higgs boson is excluded up to *O*(1) TeV
- Results are also re-interpreted as a search for a heavy narrow EW singlet; a sizable region of parameter space has been excluded

Phys. Lett. B 718 (2012) 391-410

Phys. Lett. B 717 (2012) 29-48

$$dS_{\text{NNLO}} = K(m) \, dS$$
$$dS_{\text{corr}} = dS_{\text{NNLO}} + (K(m))^n \, dI, n = 0, 0.5, 1$$

NNLO K factors from G. Passarino

ATLAS H->WW->|v|'v'

Table 2: Event selection used in the analysis. The preselection applies to all final states. In the $N_{jet} \ge 2$ final state, the rapidity gap is the *y* range spanned by the two leading jets.

Category	0-jet	1-jet	>=2-jet
Preselection	An isolated electron and an isolated muon, with opposite charge, each with $p_T > 40$ GeV, $m_{\ell\ell} > 10$ GeV		
Missing transverse momentum	$E_{\rm T,rel}^{\rm miss} > 25 {\rm ~GeV}$	$E_{\rm T,rel}^{\rm miss} > 25 { m GeV}$	$E_{\rm T}^{\rm miss} > 20 { m ~GeV}$
General selection	$- \Delta \phi_{\ell\ell, E_{\rm T}^{\rm miss}} > \pi/2$ $p_{\rm T}^{\ell\ell} > 30 {\rm GeV}$	$N_{b-jet} = 0$ - $Z/\gamma^* \rightarrow \tau \tau$ veto	$N_{b-jet} = 0$ $p_{T}^{tot} < 45 \text{ GeV}$ $Z/\gamma^* \rightarrow \tau\tau \text{ veto}$
VBF topology	- - -	- - -	$m_{jj} > 500 \text{ GeV}$ $ \Delta y_{jj} > 2.8$ No jets ($p_T > 20 \text{ GeV}$) in the rapidity gap; require both ℓ in the rapidity gap
$H \rightarrow WW \rightarrow \ell \nu \ell \nu$ topology	$m_{\ell\ell} > 50 \text{ GeV}$ $\Delta \eta_{\ell\ell} < 1.0$	$\begin{array}{l} m_{\ell\ell} > 50 \; {\rm GeV} \\ \Delta \eta_{\ell\ell} < 1.0 \end{array}$	$m_{\ell\ell} > 50 \text{ GeV}$ $\Delta \eta_{\ell\ell} < 1.0$

Higgs experimental mass resolution

Channel H →	mH resolution
ZZ→4I	1-2%
ZZ→2l2v	~10%
ZZ→2l2q	3%
WW→lvlv	~20%
WW→lvqq	~15%