Imperial College London

Higgs Boson Studies at the Tevatron

Gavin Davies

On behalf of the CDF and DØ Collaborations

Outline

Introduction

- Context
- Higgs searches @ Tevatron

• SM Higgs results

- Overall
- Couplings
- Spin

Conclusions

Reminder: Tevatron stopped in fall 2011

~ 10fb⁻¹ per experiment after data quality

Imperial College London

Context

• July 12

- New boson discovered at LHC using bosonic decay modes
- Evidence for $H \rightarrow bb$ decay from Tevatron

• Since

- Focus on studying the new boson
- Tevatron: Complementary as exploiting primarily fermionic (H \rightarrow bb) decays

Search strategy

Imperial College London

90 < m_H < 102 GeV 149 < m_H < 172 GeV

Imperial College

London

157 < m_н < 178 GeV

95% CL limit @ m_H = 125 GeV: 1.06 x σ (SM) expected, 2.44 x σ (SM) observed

Imperial College London

• Log-likelihood ratio (LLR)

- Relative agreement of B-only and S+B hypotheses
- Throw pseudo-data to populate
 B-only and S+B models
 - Compare to observed

- Expected S+B shows good sensitivity up to ~185 GeV
- ~3 σ excess at 120-125 GeV
 - Consistent with SM Higgs

Imperial College London

Quantifying the excess

Accepted PRD arXiv:1303.6346

• Compatibility with B-only prediction (left)

- Minimum local p-value at $m_H = 120 \text{ GeV}$: 3.1 σ (2.0 σ expected)

p-value at $m_H = 125 \text{ GeV}$: 3.0 σ (1.9 σ expected)

- Compatibility with S+B prediction (right)
 - Maximum likelihood fit with Higgs cross section as a free parameter

• $\mu = \sigma / \sigma_{SM} = 1.4 \pm 0.6 @ 125 \text{ GeV}$

Imperial College London

Tevatron cross section fits

Measure deviations of couplings from SM prediction using
 LHCHXSWG framework (arXiv:1209:0040)
 Vukawa

$$\sigma \cdot BR(ii \to H \to ff) = \sigma_{SM} \cdot BR_{SM} \frac{\kappa_i^2 \cdot \kappa_f^2}{\kappa_H^2}$$

- Assume all signals near 126 GeV from
- Additionally: no additional invisible or undetected Higgs decay modes - e.g. $\sigma(WH) \cdot BR(H \rightarrow bb) = \sigma(WH)_{SM} \cdot BR(H \rightarrow bb)_{SM} \frac{\kappa_W^2 \cdot \kappa_b^2}{\kappa_H^2}$ $\kappa_v = 1.28\kappa_W - 0.28\kappa_f$
- Study fermion coupling, κ_{f} and boson couplings $\kappa_{W},\,\kappa_{Z}$ and κ_{V}

• 1D fits: Vary each of $\kappa_{\text{W}},\,\kappa_{\text{Z}}$ and κ_{f} independently in turn

• Probe custodial symmetry ie $\lambda_{WZ} = \kappa_W / \kappa_Z \approx 1$ (SM)

- Scale all fermion couplings by a common factor κ_{f}
- Measure κ_{W} and κ_{Z} independently

Extract :
$$\lambda_{wz} = 1.24^{+2.34}_{-0.42}$$

\bullet Independent common vector ($\kappa_{v})$ and fermion ($\kappa_{f})$ couplings

Imperial College London

DØ Note 6387-CONF

- SM predicts JP=0⁺, but 0⁻ and 2⁺ possible
- LHC confirms 0⁺ with bosonic decay modes
- Tevatron sensitive in bb final states
 - Visible mass of Vbb system very sensitive to JP assignment
 - e.g. Ellis et al., JHEP 1211 134 (2012)

- Today: 2^+ vs 0^+ from DØ. 0^- and combination with CDF to come

Imperial College London

ZH→vvbb, TT Strategy Events **220** DØ Preliminary, 9.5 fb⁻¹ 200 Data Multijet - Re-use published VH \rightarrow Vbb analyses **180** V+lf **160**E V+hf With same selections 140 tŦ 120 VV - 2⁺: RS graviton model from madgraph 100 O⁺ Signal 2⁺ Signal 80 (Signals ×10) Normalised to (σ x Br)_{SM} 60 40 - Use dijet mass or SM MVA to improve s/b **20**[†] 0^L 100 200 300 400 Final discriminant: Visible mass **Dijet Mass (GeV)** DØ Note 6387-CONF WH→lvbb, 2T HP ZH→vvbb, TT HP ZH→IIbb, DT HP **40** Events 45 Events Events DØ Preliminary, 9.5 fb⁻¹ DØ Preliminary, 9.7 fb⁻¹ DØ Preliminary, 9.7 fb⁻¹ 220 40 35 Data Data Data 200 Multijet Multijet Multijet 35 180 30 V+lf V+lf V+If V+hf 160 30 V+hf V+hf 25 **140** tŦ tī single t 25 120 20 VV VV VV 20 □0⁺ Signal □0⁺ Signal 100 0⁺ Signal 15 2⁺ Signal 2⁺ Signal 2⁺ Signal 80 15 (Signals ×10) (Signals ×10) (Signals ×5) 60 **10** 10 40 5 5 20 0[.]0 0 0 **0**L 100 200 300 400 500 600 100 200 300 400 500 600 100 200 300 400 500 600 M^{Vbb}₊ (GeV) M^{Vbb}₊ (GeV) IIbb Mass (GeV)

Imperial College London

• Use CLs

- LLR = $-2\log[L(H1)/L(H0)]$ with H1 = (2⁺ + bkg) and H0 = (0⁺ + bkg)
 - Compute $\mu x (\sigma x BR)_{SM}$ for $\mu = 1.0$ and 1.23 (DØ measured value)

- Clear preference for 0⁺

• Use CLs

- LLR = $-2\log[L(H1)/L(H0)]$ with H1 = $(2^+ + bkg)$ and H0 = $(0^+ + bkg)$
 - Compute $\mu x (\sigma x BR)_{SM}$ for $\mu = 1.0$ and 1.23 (DØ measured value)

		Combined Result
- $CL_s = CL_{H1} / CL_{H0}$ - $CL_x = P(LLR \ge LLR_{obs} x)$	1 - CL _s Exp. (μ=1.00)	0.9995
 1-CL_s: Exclusion of 2⁺ in favour of 0⁺ 	1 - CL _s Obs. (μ=1.00)	0.992
	1 - CL _s Exp. (μ=1.23)	0.9999
- Exclude 2 ⁺	1 - CL _s Obs. (μ=1.23)	0.999

- At 99.9% CL obs (μ=1.23)
- At 99.9% CL exp (μ=1.0)

- Consider both 2⁺ and 0⁺ signal in data
 - Vary fraction, f_{2+} , of 2^+ from $0 \rightarrow 1$
 - H1 = $\mu x (\sigma x BR)_{SM} x ([2^+ x f_{2+}] + [0^+ x (1-f_{2+})]) + background$
 - H0 = μ x (σ x BR)_{SM} x 0⁺ (pure 0⁺) + background

Exclude at 95% CL $f_{2+} > 0.42 ~(\mu=1.23)$

-og-Likelihood Ratic

30

20 F

10

0

-10

¥

100

2

0

-2

-4

LLR_b ± 1 s.d.

LLR_b ± 2 s.d.

--- LLR_b ____ LLR_{Obs} -- LLR_{s+b} --- LLR_{m,=125 GeV/c²}

120

Local maxima

68% C.L.

Tevatron Run II, L_{i→} ≤ 10 fb⁻¹

140

🔺 SM

95% C.L.

1.5

2

κ_v

λ_{wz}=1

160

Tevatron

- SM sensitivity over most of accessible mass range
- Excess from $115 < m_H < 140 \text{ GeV}$
 - 3σ significance at 125 GeV
- Coupling & DØ spin results consistent with SM

- Consistent Higgs boson picture forming
- 0.5 • Tevatron: continue to provide valuable information on nature of the observed boson despite rapid progress on $H \rightarrow bb$ at LHC
 - Look forward to combination

Imperial College London

SM Higgs Combination

180

m_u(GeV/c²)

200

Imperial College London

Final publications

DØ	Luminosity (fb ⁻¹)	M_H (GeV)	Reference
$WH \rightarrow \ell \nu bb$	9.7	90 - 150	Phys. Rev. Lett. 109, 121804 (2012)
			and Acc by PRD arXiv:1301.6122
$ZH \rightarrow \ell\ell b\bar{b}$	9.7	90 - 150	Phys. Rev. Lett. 109, 121803 (2012)
			and Acc by PRD arXiv:1303.3276
$ZH \rightarrow \nu \bar{\nu} b \bar{b}$	9.5	100 - 150	Phys. Lett. B 716, 285 (2012)
$H \to W^+ W^- \to \ell^+ \nu \ell^- \bar{\nu}$	9.7	100 - 200	Acc by PRD arXiv:1301.1243
$H + X \to WW \to \mu^{\pm} \tau_h^{\mp} + \le 1$ jet	7.3	155 - 200	Phys. Lett. B 714, 237 (2012)
$H \rightarrow W^+W^- \rightarrow \ell \nu q' \bar{q}$	9.7	100 - 200	Acc by PRD arXiv:1301.6122
$VH \rightarrow ee\mu/\mu\mu e+X$	9.7	100 - 200	Acc by PRD arXiv:1302.5723
$VH \rightarrow e^{\pm}\mu^{\pm} + X$	9.7	100 - 200	Acc by PRD arXiv:1302.5723
$VH \rightarrow \ell \nu q' \bar{q} q' \bar{q}$	9.7	100 - 200	Acc by PRD arXiv:1301.6122
$VH \rightarrow \tau_h \tau_h \mu + X$	8.6	100 - 150	Acc by PRD arXiv:1302.5723
$H + X \rightarrow \ell \tau_h j j$	9.7	105 - 150	Acc by PRD arXiv:1211.6993
$H \rightarrow \gamma \gamma$	9.7	100 - 150	Acc by PRD, arXiv:1301.5358
CDF			
$WH \rightarrow \ell \nu bb$	9.45	90 - 150	Phys. Rev. Lett. 109, 111804 (2012)
$ZH \rightarrow \ell\ell b\bar{b}$	9.45	90 - 150	Phys. Rev. Lett. 109, 111803 (2012)
$ZH \rightarrow \nu \bar{\nu} b \bar{b}$	9.45	90 - 150	Phys. Rev. Lett. 109, 111805 (2012)
			and Phys. Rev. D 87, 052008 (2013)
$H \rightarrow W^+W^- \rightarrow \ell^+ \nu \ell^- \bar{\nu}$	9.7	110 - 200	Sub to PRD, arXiv: 1306.0023
$H \to WW \to e\tau_h \mu \tau_h$	9.7	130 - 200	Sub to PRD, arXiv: 1306.0023
$VH \rightarrow ee\mu/\mu\mu e+X$	9.7	110 - 200	Sub to PRD, arXiv: 1306.0023
$H \rightarrow \tau \tau$	6.0	100 - 150	Phys. Rev. Lett. 108, 181804 (2012)
$H \rightarrow \gamma \gamma$	10.0	100 - 150	Phys. Lett. B 717, 173 (2012)
$H \to ZZ \to llll$	9.7	120 - 200	Phys. Rev. D 86 (2012) 072012
$t\bar{t}H ightarrow WWb\bar{b}b\bar{b}$	9.45	100 - 150	Phys. Rev. Lett. 109 (2012) 181802
$VH \rightarrow jjb\bar{b}$	9.45	100-150	JHEP 1302 (2013) 004

Imperial College London

Final publications

DØ	Luminosity (fb^{-1})	M_H (GeV)	Reference
$WH \to \ell \nu bb$	9.7	90 - 150	Phys. Rev. Lett. 109, 121804 (2012)
			and Acc by PRD arXiv:1301.6122
$ZH \to \ell\ell bb$	9.7	90 - 150	Phys. Rev. Lett. 109, 121803 (2012)
			and Acc by PRD arXiv:1303.3276
$ZH \rightarrow \nu\bar{\nu}$	DØ Comb	ination	(2012)
$H \to W^+$			1.1243
$H + \Lambda \rightarrow U \rightarrow W + V$	Acc. by PRD ar	X1V:130	3.0823
$H \rightarrow W^{+}V$			1.0122
$V H \rightarrow ee_{\mu}$			12.5723
$VH \rightarrow \ell \nu \ell$	CDF Com	oinatior	• 11.6122
$VH \rightarrow \tau_{h}\tau$			2.5723
$H + X \rightarrow$	Acc. by PRD ar	Xiv:130	1.6668
$H \to \gamma \gamma$			01.5358
CDF			
$WH \to \ell \nu$	Tevatron Co	mbinat	on: 804 (2012)
$ZH \to \ell\ell b$		V:	803 (2012)
$ZH \rightarrow \nu \bar{\nu} i$	ACC. DY PRD ar	XIV: I 3U	3.0340 805 (2012)
			and Phys. Rev. D 87, 052008 (2013)
$H \to W^+ W^- \to \ell^+ \nu \ell^- \bar{\nu}$	9.7	110 - 200	Sub to PRD, arXiv: 1306.0023
$H \to WW \to e\tau_h \mu \tau_h$	9.7	130 - 200	Sub to PRD, arXiv: 1306.0023
$V H \rightarrow ee\mu/\mu\mu e + X$	9.7	110-200	Sub to PRD, arXiv: 1306.0023
$H \to \tau \tau$	6.0	100 - 150	Phys. Rev. Lett. 108, 181804 (2012)
$H \rightarrow \gamma \gamma$	10.0	100-150	Phys. Lett. B 717, 173 (2012)
$H \to ZZ \to llll$	9.7	120-200	Phys. Rev. D 86 (2012) 072012
$ttH \rightarrow WWbbbb$	9.45	100-150	Phys. Rev. Lett. 109 (2012) 181802
$V H \rightarrow jjbb$	9.45	100 - 150	JHEP 1302 (2013) 004

Imperial College London

Imperial College London

Visualising the excess

London

Quantifying the excess: sub-channels

Limits: By channel

Tevatron Run II Preliminary $H \rightarrow b\bar{b}$, $L \le 10 \text{ fb}^{-1}$ Tevatron Run II Preliminary H \rightarrow WW, L \leq 10 fb⁻¹ 95% CL Limit/SM 95% CL Limit/SM Observed Observed Expected w/o Higgs Expected if m_H=125 GeV/c² Expected w/o Higgs 10 10 Expected if $m_{H}=125 \text{ GeV/c}^2$ ±1 s.d. Expected ±2 s.d. Expected Expected ±1 s.d. Expected ±2 s.d. 1 SM=1 1 2010 - Colored A. SM=1 100 110 120 140 120 130 140 190 90 130 150 160 170 150 110 180 200 m_{H} (GeV/c²) $m_{\rm H}$ (GeV/c²) 2 95% C.L. Limit/SM 0 95% C.L. Limit/SM D 2 10 10 Tevatron Run II, $L_{int} \leq 10 \text{ fb}^{-1}$ Expected w/o Higgs Tevatron Run II, $L_{int} \leq 10 \text{ fb}^{-1}$ Expected w/o Higgs SM H $\rightarrow\gamma\gamma$ combination SM $H \rightarrow \tau^+ \tau^-$ combination Observed Observed Expected ±1 s.d. Expected ±1 s.d. Expected ±2 s.d. Expected ±2 s.d. SM=1 SM=1 1 1 105 110 115 120 125 130 135 140 145 150 100 140 145 150 100 105 110 115 120 125 130 135 m_{μ} (GeV/c²) $m_{\rm H}$ (GeV/c²)

Imperial College London

Cross section fits

TABLE VII: Best-fit values of $R = (\sigma \times \mathcal{B})/SM$ using the Bayesian method for all SM Higgs boson decay modes combined and the combinations of CDF and D0's Higgs boson search channels focusing on the $H \to W^+W^-$, $H \to b\bar{b}$, $H \to \gamma\gamma$, and $H \to \tau^+\tau^-$ decay modes as a function of Higgs boson mass over the range $115 < m_H < 140 \text{ GeV}/c^2$. The quoted uncertainties bound the smallest interval containing 68% of the integral of the posterior probability density.

$m_H \; ({\rm GeV}/c^2)$	115	120	125	130	135	140
$R_{\rm fit}({ m SM})$	$0.82\substack{+0.43 \\ -0.46}$	$1.42_{-0.52}^{+0.53}$	$1.44_{-0.56}^{+0.59}$	$1.13\substack{+0.60\\-0.60}$	$0.99\substack{+0.58\\-0.57}$	$1.15\substack{+0.57\\-0.52}$
$R_{\rm fit}(H \to W^+ W^-)$	$2.22^{+1.65}_{-1.59}$	$1.59^{+1.20}_{-1.15}$	$0.94\substack{+0.85\\-0.83}$	$0.49\substack{+0.69\\-0.63}$	$0.54\substack{+0.53 \\ -0.52}$	$0.97\substack{+0.58\\-0.53}$
$R_{\rm fit}(H \to b\bar{b})$	$0.72\substack{+0.47 \\ -0.44}$	$1.26\substack{+0.62\\-0.55}$	$1.59^{+0.69}_{-0.72}$	$1.82^{+0.91}_{-0.91}$	$2.62^{+1.22}_{-1.21}$	$3.23^{+1.61}_{-1.74}$
$R_{\rm fit}(H \to \gamma \gamma)$	$0.65\substack{+2.66\\-0.54}$	$5.34_{-2.76}^{+3.20}$	$5.97\substack{+3.39 \\ -3.12}$	$3.17^{+2.69}_{-2.81}$	$0.00\substack{+4.04 \\ -0.00}$	$3.31\substack{+3.30 \\ -3.13}$
$R_{\rm fit}(H \to \tau^+ \tau^-)$ 1.70 ^{+2.20} _{-1.70}		$2.00^{+2.22}_{-1.90}$	$1.68^{+2.28}_{-1.68}$	$0.00\substack{+2.88\\-0.00}$	$0.00\substack{+2.83\\-0.00}$	$1.25\substack{+2.62\\-1.15}$

Cross section fits

Imperial College London

• Probe custodial symmetry ie $\lambda_{WZ} = k_W/k_Z \approx 1(SM)$

- Scale all fermion couplings by a common factor $\boldsymbol{k}_{\rm f}$
- Compute posterior probability for

 $\theta_{WZ} = \tan^{-1}(K_Z/K_W).$

Imperial College London

• Use CLs

- LLR = $-2\log[L(H1)/L(H0)]$ with H1 = (2⁺ + bkg) and H0 = (0⁺ + bkg)

Channel	$WH ightarrow \ell u bb$	$ZH ightarrow \ell\ell bb$	ZH ightarrow u u bb	Combined
		$J^P = 2^+$ vs	$J^P = 0^+$	
Exp. Lim. σ^{2+}/σ_{SM}	1.01	1.59	1.15	0.49
Obs. Lim. σ^{2+}/σ_{SM}	1.56	1.76	1.02	0.73

TABLE I: 95% C.L. upper limits on $J^P = 2^+$ associated production as a ratio to the SM Higgs associated production cross section times $H \to b\bar{b}$ branching fraction, taking the null hypothesis H_0 to be SM Higgs boson signal plus background, and test hypothesis H_1 to be $J^P = 2^+$ signal plus background.

- Exclude at 95% CL

- $\sigma_{2+} / \sigma_{SM} = 0.73 \text{ obs}$
- $\sigma_{2+} / \sigma_{SM} = 0.49 \text{ exp}$

• Use CLs: LLR = -2log[L(H1)/L(H0)] with H1 = (2⁺ + bkg) and H0 = (0⁺ + bkg)

Imperial College London

• Use CLs: $LLR = -2\log[L(H1)/L(H0)]$ with $H1 = (2^+ + bkg)$ and $H0 = (0^+ + bkg)$

Imperial College London

- Consider both 2⁺ and 0⁺ signal in data
 - Vary fraction, f_{2+} , of 2^+ from $0 \rightarrow 1$
 - H1 = $\mu x (\sigma x BR)_{SM} x ([2^+ x f_{2^+}] + [0^+ x (1-f_{2^+})]) + background$
 - H0 = μ x (σ x BR)_{SM} x 0⁺ (pure 0⁺) + background

 $SM: \sigma_{VH} = 0.12 \pm 0.01 \,\mathrm{pb}$

- Results consistent

Imperial College London

• ~12fb⁻¹ delivered, ~11fb⁻¹ recorded, ~10fb⁻¹ after data quality per expt

Many thanks to Accelerator Division

Imperial College London

Higgs production

Imperial College London

Search strategy

Leave no stone unturned

- Maximise 'inclusive' acceptance
- Separate into sub-channels with different s/b
- Use multivariate techniques

Modeling

- Check modeling in control regions & validate analyses by measuring
 SM diboson signals
- Derive systematics on both normalisation
- & shape from independent measurements

Combination

- Bayesian and CL_s techniques used
- Systematics introduced as nuisance parameters
 - Impact of these mitigated with constraints from data

Background Composition

 σ (VZ) = (0.7 ± 0.2) σ (SM)

Imperial College London

- eg CDF

CDF Run II Preliminary, m_H=115 GeV

Low mass: $H \rightarrow bb$

• Lepton from W/Z, MET, b-tagged jets - Dominant bkgds: Multijet, W/Z+jets, diboson, top • Mass resoln & b-tagging critical • Use MVA b-tag classifiers - 50-80% b-tag efficiency, 0.5-10% mis-tag rate CDF Run II Preliminary 9.45/fb CDF Run II Preliminary 9.45/fb data 000 . All Sub-Channels All Sub-Channels Events/(5 Gc. Events/(5 Ge Z+lf After b-tagging Before b-tagging 60 ZH→llbb Z+bb

Imperial College London

Search validation

• Validate analyses by measuring SM diboson signal

- Train MVAs with diboson signal rather than Higgs
 - Performed with same sub-division of channels as H search
- $H \rightarrow WW \rightarrow l_V l_V$: Measure $WW \rightarrow l_V l_V$ production
- VH \rightarrow Vbb analyses: Measure WZ/ZZ with Z \rightarrow bb

Search validation: $VH \rightarrow Vbb$

M _H = 125 GeV	VH→Vbb [fb]	VZ→Vbb [fb]
ZX→vvbb	9	73
WX→lvbb	16	105
ZX→llbb	3	24
Total:	28	202

Differences:

- Cross section for diboson production is 7x larger than for W/ZH.
- There is relatively more signal contribution from Z \rightarrow cc than from H \rightarrow cc.
- Diboson signal sits at low mass where there is a significant peaking background from WW→lvcs and systematic uncertainties are larger.

All the detail..

	Channel		Luminosity (fb^{-1})	m_H range (GeV/c^2)	Reference
CDF	$WH \rightarrow \ell\nu bb$ 2-jet channels $4 \times (5 b\text{-tag categories})$		9.45	90-150	[48]
	$WH \rightarrow \ell \nu b \bar{b}$ 3-jet channels $3 \times (2 b\text{-tag categories})$		9.45	90 - 150	[48]
	$ZH \rightarrow \nu \bar{\nu} b \bar{b}$ (3 b-tag categories)		9.45	90 - 150	[49]
	$ZH \rightarrow \ell^+ \ell^- b\bar{b}$ 2-jet channels $2 \times (4 \ b\text{-tag categories})$	$H \rightarrow b\bar{b}$	9.45	90 - 150	50
	$ZH \rightarrow \ell^+ \ell^- b\bar{b}$ 3-jet channels $2 \times (4 b\text{-tag categories})$		9.45	90 - 150	50
	$WH + ZH \rightarrow jjb\bar{b}$ (2 b-tag categories)		9.45	100 - 150	51
	$t\bar{t}H \rightarrow W^+ bW^- \bar{b}b\bar{b}$ (4 jets,5 jets, ≥ 6 jets)×(5 <i>b</i> -tag categories)		9.45	100 - 150	[52]
	$H \to W^+W^- = 2 \times (0 \text{ jets}) + 2 \times (1 \text{ jet}) + 1 \times (\geq 2 \text{ jets}) + 1 \times (\text{low} - m_{\ell\ell})$)	9.7	110 - 200	53
	$H \to W^+W^ (e - \tau_{\rm had}) + (\mu - \tau_{\rm had})$		9.7	130 - 200	[53]
	$WH \rightarrow WW^+W^-$ (same-sign leptons)+(tri-leptons)	$H \rightarrow W^+W^-$	9.7	110 - 200	[53]
	$WH \to WW^+W^-$ (tri-leptons with 1 τ_{had})		9.7	130 - 200	53
	$ZH \to ZW^+W^-$ (tri-leptons with 1 jet, ≥ 2 jets)		9.7	110 - 200	[53]
	$H \to \tau^+ \tau^-$ (1 jet)+(≥ 2 jets)	$H \to \tau^+ \tau^-$	6.0	100 - 150	[54]
	$H \to \gamma\gamma 1 \times (0 \text{ jet}) + 1 \times (\geq 1 \text{ jet}) + 3 \times (\text{all jets})$	$H \rightarrow \gamma \gamma$	10.0	100 - 150	55
	$H \to ZZ$ (four leptons)	$H \rightarrow ZZ$	9.7	120 - 200	56
	Channel		Luminosity	Reference	
DØ			(fb^{-1})	(GeV/c^2)	
	$WH \rightarrow \ell \nu b \bar{b}$ 2-jet channels $2 \times (4 \ b\text{-tag categories})$		9.7	90-150	[57, 58]
	$WH \rightarrow \ell \nu b \bar{b}$ 3-jet channels $2 \times (4 b$ -tag categories)		0.7		[E7 E0]
			9.1	90 - 150	57, 58
	$ZH \rightarrow \nu \bar{\nu} b \bar{b}$ (2 <i>b</i> -tag categories)	$H \rightarrow b \bar{b}$	9.7 9.5	90-150 100-150	$[\underline{57}, \underline{58}]$
	$\begin{array}{l} ZH \to \nu \bar{\nu} b\bar{b} & (2 \ b\text{-tag categories}) \\ ZH \to \ell^+ \ell^- b\bar{b} & 2 \times (2 \ b\text{-tag}) \times (4 \ \text{lepton categories}) \end{array}$	$H ightarrow b ar{b}$	9.5 9.7	90-150 100-150 90-150	$[\underline{57}, \underline{58}]$ $[\underline{45}]$ $[\underline{59}, \underline{60}]$
	$\begin{array}{l} ZH \to \nu \bar{\nu} b\bar{b} & (2 \ b\text{-tag categories}) \\ ZH \to \ell^+ \ell^- b\bar{b} & 2 \times (2 \ b\text{-tag}) \times (4 \ \text{lepton categories}) \\ H \to W^+ W^- \to \ell^\pm \nu \ell^\mp \nu & 2 \times (0 \ \text{jets}, 1 \ \text{jet}, \geq 2 \ \text{jets}) \end{array}$	$H \to b\bar{b}$	Luminosity m_H range Reference (fb^{-1}) (GeV/c^2) 9.45 90–150 [48] 9.45 90–150 [49] 9.45 90–150 [50] 9.45 90–150 [50] 9.45 90–150 [50] 9.45 90–150 [50] 9.45 90–150 [50] 9.45 90–150 [51] 9.45 100–150 [52] 9.7 110–200 [53] 9.7 130–200 [53] 9.7 130–200 [53] 9.7 130–200 [53] 9.7 130–200 [53] 9.7 130–200 [53] 9.7 130–200 [53] 9.7 130–200 [54] 10.0 100–150 [54] 10.0 100–150 [55] 9.7 90–150 [57, 58] 9.7 90–150 [57, 58] 9.7 90–150 [59, 60] 9.7 105–200 [61] 7.3 115–200 [61]		
	$\begin{array}{l} ZH \to \nu \bar{\nu} b\bar{b} & (2 \ b\text{-tag categories}) \\ ZH \to \ell^+ \ell^- b\bar{b} & 2 \times (2 \ b\text{-tag}) \times (4 \ \text{lepton categories}) \\ \hline H \to W^+ W^- \to \ell^\pm \nu \ell^\mp \nu & 2 \times (0 \ \text{jets}, 1 \ \text{jet}, \geq 2 \ \text{jets}) \\ H + X \to W^+ W^- \to \mu^\mp \nu \tau^\pm_{\text{had}} \nu & (3 \ \tau \ \text{categories}) \end{array}$	$H \rightarrow b \bar{b}$	9.7 9.5 9.7 9.7 7.3	$90-150 \\ 100-150 \\ 90-150 \\ 115-20$	$ \begin{bmatrix} 57, 58\\ [45] \\ [59, 60] \\ [61] \\ [62] $
	$\begin{array}{l} ZH \to \nu \bar{\nu} b\bar{b} & (2 \ b\text{-tag categories}) \\ ZH \to \ell^+ \ell^- b\bar{b} & 2 \times (2 \ b\text{-tag}) \times (4 \ \text{lepton categories}) \\ \hline H \to W^+ W^- \to \ell^\pm \nu \ell^\mp \nu & 2 \times (0 \ \text{jets}, 1 \ \text{jet}, \ge 2 \ \text{jets}) \\ H + X \to W^+ W^- \to \mu^\mp \nu \tau^\pm_{\text{had}} \nu & (3 \ \tau \ \text{categories}) \\ H \to W^+ W^- \to \ell \bar{\nu} j j & 2 \times (2 \ b\text{-tag categories}) \times (2 \ \text{jets}, 3 \ \text{jets}) \end{array}$	$H \rightarrow b\bar{b}$	9.7 9.5 9.7 9.7 7.3 9.7	$\begin{array}{r} 90-150\\ 100-150\\ 90-150\\ 115-200\\ 115-200\\ 100-200\\ \end{array}$	$ \begin{bmatrix} 57, 58\\ [45]\\ [59, 60]\\ [61]\\ [62]\\ [58] $
	$\begin{array}{l} ZH \rightarrow \nu \bar{\nu} b\bar{b} & (2 \ b\text{-tag categories}) \\ ZH \rightarrow \ell^+ \ell^- b\bar{b} & 2 \times (2 \ b\text{-tag}) \times (4 \ \text{lepton categories}) \\ \hline H \rightarrow W^+ W^- \rightarrow \ell^\pm \nu \ell^\mp \nu & 2 \times (0 \ \text{jets}, 1 \ \text{jet}, \geq 2 \ \text{jets}) \\ H + X \rightarrow W^+ W^- \rightarrow \mu^\mp \nu \tau^\pm_{\text{had}} \nu & (3 \ \tau \ \text{categories}) \\ H \rightarrow W^+ W^- \rightarrow \ell \bar{\nu} j j & 2 \times (2 \ b\text{-tag categories}) \times (2 \ \text{jets}, 3 \ \text{jets}) \\ VH \rightarrow e^\pm \mu^\pm + X \end{array}$	$H \rightarrow b\bar{b}$ $H \rightarrow W^+W^-$	9.7 9.5 9.7 9.7 7.3 9.7 9.7 9.7	$\begin{array}{r} 90-150\\ 100-150\\ 90-150\\ \hline 115-200\\ 115-200\\ 100-200\\ 100-200\\ \end{array}$	$ \begin{bmatrix} 57, 58\\ [45]\\ [59, 60]\\ [61]\\ [62]\\ [58]\\ [63] $
	$\begin{array}{l} ZH \rightarrow \nu \bar{\nu} b\bar{b} & (2 \ b\text{-tag categories}) \\ ZH \rightarrow \ell^+ \ell^- b\bar{b} & 2 \times (2 \ b\text{-tag}) \times (4 \ \text{lepton categories}) \\ \hline H \rightarrow W^+ W^- \rightarrow \ell^\pm \nu \ell^\mp \nu & 2 \times (0 \ \text{jets}, 1 \ \text{jet}, \geq 2 \ \text{jets}) \\ H + X \rightarrow W^+ W^- \rightarrow \mu^\mp \nu \tau^\pm_{\text{had}} \nu & (3 \ \tau \ \text{categories}) \\ H \rightarrow W^+ W^- \rightarrow \ell \bar{\nu} j j & 2 \times (2 \ b\text{-tag categories}) \times (2 \ \text{jets}, 3 \ \text{jets}) \\ VH \rightarrow \ell \ell \ell \ell + X & (\mu \mu e, 3 \times e \mu \mu) \end{array}$	$H \to b\bar{b}$ $H \to W^+W^-$	9.7 9.5 9.7 9.7 7.3 9.7 9.7 9.7 9.7	$\begin{array}{r} 90-150\\ 100-150\\ 90-150\\ \hline 115-200\\ 115-200\\ 100-200\\ 100-200\\ 100-200\\ 100-200\\ \end{array}$	$ \begin{bmatrix} 57, 58 \\ [45] \\ [59, 60] \\ [61] \\ [62] \\ [58] \\ [63] \\ [63] [6$
	$\begin{array}{l} ZH \rightarrow \nu \bar{\nu} b \bar{b} & (2 \ b\text{-tag categories}) \\ \overline{ZH} \rightarrow \ell^+ \ell^- b \bar{b} & 2 \times (2 \ b\text{-tag}) \times (4 \ \text{lepton categories}) \\ \hline H \rightarrow W^+ W^- \rightarrow \ell^\pm \nu \ell^\mp \nu & 2 \times (0 \ \text{jets}, 1 \ \text{jet}, \geq 2 \ \text{jets}) \\ H + X \rightarrow W^+ W^- \rightarrow \mu^\mp \nu \tau^\pm_{\text{had}} \nu & (3 \ \tau \ \text{categories}) \\ H \rightarrow W^+ W^- \rightarrow \ell \bar{\nu} j j & 2 \times (2 \ b\text{-tag categories}) \times (2 \ \text{jets}, 3 \ \text{jets}) \\ VH \rightarrow e^\pm \mu^\pm + X \\ VH \rightarrow \ell \ell \ell + X \ (\mu \mu e, 3 \times e \mu \mu) \\ VH \rightarrow \ell \bar{\nu} j j j j & 2 \times (\geq 4 \ \text{jets}) \end{array}$	$H \to b\bar{b}$ $H \to W^+W^-$	9.7 9.5 9.7 9.7 7.3 9.7 9.7 9.7 9.7 9.7	$\begin{array}{r} 90-150\\ 100-150\\ 90-150\\ \hline 115-200\\ 115-200\\ 100-200\\ 100-200\\ 100-200\\ 100-200\\ 100-200\\ \end{array}$	$ \begin{bmatrix} 57, 58 \\ 45 \\ 59, 60 \\ \hline 61 \\ 62 \\ 58 \\ 63 \\ 63 \\ 58 \\ 58 \\ 5 5 \\ 5 \\ 5 \\ 5 5 $
	$\begin{array}{l} ZH \rightarrow \nu \bar{\nu} b\bar{b} & (2 \ b\text{-tag categories}) \\ ZH \rightarrow \ell^+ \ell^- b\bar{b} & 2 \times (2 \ b\text{-tag}) \times (4 \ \text{lepton categories}) \\ \hline H \rightarrow W^+ W^- \rightarrow \ell^\pm \nu \ell^\mp \nu & 2 \times (0 \ \text{jets}, 1 \ \text{jet}, \geq 2 \ \text{jets}) \\ H + X \rightarrow W^+ W^- \rightarrow \mu^\mp \nu \tau^\pm_{\text{had}} \nu & (3 \ \tau \ \text{categories}) \\ H \rightarrow W^+ W^- \rightarrow \ell \bar{\nu} j j & 2 \times (2 \ b\text{-tag categories}) \times (2 \ \text{jets}, 3 \ \text{jets}) \\ VH \rightarrow \ell \ell \ell \ell + X & (\mu \mu e, 3 \times e \mu \mu) \\ VH \rightarrow \ell \bar{\nu} j j j & 2 \times (\geq 4 \ \text{jets}) \\ \hline VH \rightarrow \tau_{\text{had}} \tau_{\text{had}} \mu + X & (3 \ \tau \ \text{categories}) \end{array}$	$H \to b\bar{b}$ $H \to W^+W^-$ $H \to \tau^+\tau^-$	9.7 9.5 9.7 9.7 7.3 9.7 9.7 9.7 9.7 9.7 8.6	$\begin{array}{r} 90-150\\ 100-150\\ 90-150\\ 115-200\\ 115-200\\ 100-200\\ 100-200\\ 100-200\\ 100-200\\ 100-200\\ 100-150\\ \end{array}$	$ \begin{bmatrix} 57, 58 \\ [45] \\ [59, 60] \\ [62] \\ [62] \\ [63] \\ [63] \\ [58] \\ [63] \\ [58] \\ [63] \\ [58] \\ [63] \\ [58] \\ [63$
	$\begin{array}{l} ZH \rightarrow \nu \bar{\nu} b\bar{b} & (2 \ b\text{-tag categories}) \\ ZH \rightarrow \ell^+ \ell^- b\bar{b} & 2 \times (2 \ b\text{-tag}) \times (4 \ \text{lepton categories}) \\ \hline H \rightarrow W^+ W^- \rightarrow \ell^\pm \nu \ell^\mp \nu & 2 \times (0 \ \text{jets}, 1 \ \text{jet}, \geq 2 \ \text{jets}) \\ H + X \rightarrow W^+ W^- \rightarrow \mu^\mp \nu \tau_{\text{had}}^\pm \nu & (3 \ \tau \ \text{categories}) \\ H \rightarrow W^+ W^- \rightarrow \ell \bar{\nu} j j & 2 \times (2 \ b\text{-tag categories}) \times (2 \ \text{jets}, 3 \ \text{jets}) \\ VH \rightarrow e^\pm \mu^\pm + X \\ VH \rightarrow \ell \ell \ell + X \ (\mu \mu e, 3 \times e \mu \mu) \\ VH \rightarrow \ell \ell \ell j j j j & 2 \times (\geq 4 \ \text{jets}) \\ \hline VH \rightarrow \tau_{\text{had}} \tau_{\text{had}} \mu + X & (3 \ \tau \ \text{categories}) \\ H + X \rightarrow \ell^\pm \tau_{\text{had}}^\mp j j & 2 \times (3 \ \tau \ \text{categories}) \end{array}$	$H \to b\bar{b}$ $H \to W^+W^-$ $H \to \tau^+\tau^-$	9.7 9.5 9.7 9.7 7.3 9.7 9.7 9.7 9.7 9.7 8.6 9.7	$\begin{array}{r} 90-150\\ 100-150\\ 90-150\\ 115-200\\ 115-200\\ 100-200\\ 100-200\\ 100-200\\ 100-200\\ 100-200\\ 100-150\\ 105-150\\ \end{array}$	$ \begin{bmatrix} 57, 58 \\ [45] \\ [59, 60] \\ [61] \\ [62] \\ [58] \\ [63] \\ [63] \\ [58] \\ [63] \\ [63] \\ [64] \\ [64] \end{bmatrix} $

46

Two statistical approaches used

- Better than 10% agreement over whole mass range (~2% on average)
- Bayesian
 - Flat signal prior, credibility intervals
- Modified frequentist
 - Log-likelihood test statistic, $CL_s = CL_{s+b}/CL_b$

$$-2\ln Q = LLR = -2\ln\left(\frac{L(\operatorname{data}|s+b,\hat{\theta})}{L(\operatorname{data}|b,\hat{\theta})}\right)$$

- Operate on binned, final discriminants
 - Poisson statistics assumed for each bin
- Systematics introduced as nuisance parameters
 - Impact of these mitigated with constraints from data

Cross Section & BR

m_H	$\sigma_{gg \to H}$	σ_{WH}	σ_{ZH}	σ_{VBF}	$\sigma_{tar{t}H}$	$B(H \rightarrow bb)$	$B(H \to c\bar{c})$	$B(H \to \tau^+ \tau^-)$	$B(H \rightarrow W^+W^-)$	$ B(H \rightarrow ZZ) $	$ B(H ightarrow \gamma \gamma) $
$({ m GeV}/c^2)$	(fb)	(fb)	(fb)	(fb)	(fb)	(%)	(%)	(%)	(%)	(%)	(%)
100	1821.8	281.1	162.7	97.3	8.000	79.1	3.68	8.36	1.11	0.113	0.159
105	1584.7	238.7	139.5	89.8	7.062	77.3	3.59	8.25	2.43	0.215	0.178
110	1385.0	203.7	120.2	82.8	6.233	74.5	3.46	8.03	4.82	0.439	0.197
115	1215.9	174.5	103.9	76.5	5.502	70.5	3.27	7.65	8.67	0.873	0.213
120	1072.3	150.1	90.2	70.7	4.857	64.9	3.01	7.11	14.3	1.60	0.225
125	949.3	129.5	78.5	65.3	4.279	57.8	2.68	6.37	21.6	2.67	0.230
130	842.9	112.0	68.5	60.5	3.769	49.4	2.29	5.49	30.5	4.02	0.226
135	750.8	97.2	60.0	56.0	3.320	40.4	1.87	4.52	40.3	5.51	0.214
140	670.6	84.6	52.7	51.9	2.925	31.4	1.46	3.54	50.4	6.92	0.194
145	600.6	73.7	46.3	48.0	2.593	23.1	1.07	2.62	60.3	7.96	0.168
150	539.1	64.4	40.8	44.5	2.298	15.7	0.725	1.79	69.9	8.28	0.137
155	484.0	56.2	35.9	41.3	2.037	9.18	0.425	1.06	79.6	7.36	0.100
160	432.3	48.5	31.4	38.2	1.806	3.44	0.159	0.397	90.9	4.16	0.0533
165	383.7	43.6	28.4	36.0	1.607	1.19	0.0549	0.138	96.0	2.22	0.0230
170	344.0	38.5	25.3	33.4	1.430	0.787	0.0364	0.0920	96.5	2.36	0.0158
175	309.7	34.0	22.5	31.0	1.272	0.612	0.0283	0.0719	95.8	3.23	0.0123
180	279.2	30.1	20.0	28.7	1.132	0.497	0.0230	0.0587	93.2	6.02	0.0102
185	252.1	26.9	17.9	26.9	1.004	0.385	0.0178	0.0457	84.4	15.0	0.00809
190	228.0	24.0	16.1	25.1	0.890	0.315	0.0146	0.0376	78.6	20.9	0.00674
195	207.2	21.4	14.4	23.3	0.789	0.270	0.0125	0.0324	75.7	23.9	0.00589
200	189.1	19.1	13.0	21.7	0.700	0.238	0.0110	0.0287	74.1	25.6	0.00526

Cross section & BR

We use the following references for our cross sections and branching ratios. The citations below include only those papers which contain numbers that we use. Further citations are available in our conference note.

- The WH and ZH cross sections are from Baglio and Djouadi: <u>arXiv:1003.4266v2</u>, which is published as JHEP 1010:064 (2010). We have obtained from the authors an extension of Table 3 to include test mass range down to 100 GeV and predictions with more digits. The VBF production cross sections were computed with <u>VBF@NNLO</u>, and we multiply these by (1+δ_{EW}) from the <u>HAWK</u> program, which amounts to a roughly 2% to 3% downward correction.
- The gg → H production cross section is calculated at NNLL in QCD and also includes two-loop electroweak effects. For details, see C. Anastasiou, R. Boughezal and F. Petriello, "Mixed QCD-electroweak corrections to Higgs boson production in gluon fusion", arXiv:0811.3458 [hep-ph] (2008), which is published as JHEP 0904:003 (2009), and D. de Florian and M. Grazzini, "Higgs production through gluon fusion: updated cross sections at the Tevatron and the LHC", arXiv: 0901.2427v1 [hep-ph] (2009), which is published as Phys.Lett.B674:291-294 (2009). These cross were updated with the full mtop dependence in the calculation.
- We follow the BNL Accord to assign scale uncertainties separately in the 0, 1, and 2 or more jet bins. Details can be found in <u>arXiv:1107.2117</u>.
- PDF uncertainties follow the prescription of the PDF4LHC working group.
- The Higgs boson decay branching ratios are those reported in the Handbook of LHC Cross Sections: 1. Inclusive observables, <u>arXiv:1101.0593v2</u>.
- Higgs boson decay branching ratio uncertainties from m_b, m_c, and α_s are computed by Baglio and Djouadi in <u>arXiv:1012.0530</u>, which is published as JHEP 1103:055 (2011).

S.Z. Shalhout [UC Davis] ICHEP 2012

Imperial College London

49