

OBSERVATION AND PROPERTIES OF THE HIGGS-LIKE BOSON IN H \rightarrow ZZ \rightarrow 4L DECAYS WITH CMS DETECTOR

Higgs Hunting 2013, Orsay, France

Predrag Milenović

(University of Florida) on behalf of the CMS collaboration

Prelude...

- On July 4th 2012 the ATLAS and CMS collaborations announced the discovery of a new boson!
- Followed by several updates of results by two experiments with focus on answering:
 - if the new boson is "the Standard Model Higgs boson" and

- if there are any hints for the physics beyond SM?
- Example: Study of mass and spin-parity in $H \rightarrow ZZ \rightarrow 4I$ (Dec 2012)
- In general answers provided as experimental:
 - measurements of the properties of the new boson and
 - searches for additional Higgs-like boson in a wide m_H range
- CMS analyzed full set of 7 TeV and 8 TeV data and updated several public results in March 2013
 - including study of the Higgs-Like boson in its $H \rightarrow ZZ \rightarrow 4I$ decay mode (PAS HIG-13-002)

Phys. Rev. Lett. 110, 081803 (2013)

Data taking and detector performance

Extraordinary performance of LHC enabled significant physics results!

Luminosity @ CMS

CMS data available for physics: ~25 fb⁻¹ (5 fb⁻¹ at 7 TeV, 20 fb⁻¹ at 8 TeV) fraction of the total delivered data: ~90%

Higgs production and decay modes

Production

9 10000 W, ZLHC Higgs XS WG: arXiv:1101.0593, arXiv:1201.3084, arXiv:1209.0040

common inputs to experiments

$H \rightarrow ZZ \rightarrow 4I$

Golden channel - clean experimental signature

benefits from excellent lepton resolution

process $H \rightarrow ZZ \rightarrow 4I$

- Crucial aspects of the analysis
 - Highly efficient lepton reconstruction/ID
 - Excellent precision in lepton measurement
 - Good background estimation
 - Optimal use of kinematic information

irreducible background (qq \rightarrow Z γ^* , qq \rightarrow ZZ, gg \rightarrow ZZ)

instrumental background ("Z+X")

$H \rightarrow ZZ \rightarrow 4I$

Golden channel - clean experimental signature

benefits from excellent lepton resolution

process $H \rightarrow ZZ \rightarrow 4I$

- Crucial aspects of the analysis
 - Highly efficient lepton reconstruction/ID
 - Excellent precision in lepton measurement
 - Good background estimation
 - Optimal use of kinematic information

Narrow resonance in 4 lepton mass spectrum

$H \rightarrow ZZ \rightarrow 4I$

Golden channel - clean experimental signature

benefits from excellent lepton resolution

process $H \rightarrow ZZ \rightarrow 4I$

- Crucial aspects of the analysis
 - Highly efficient lepton reconstruction/ID
 - Excellent precision in lepton measurement
 - Good background estimation
 - Optimal use of kinematic information

Narrow resonance in 4 lepton mass spectrum

Lepton reconstruction and identification

- Electron reconstruction and identification from the Tracker and ECAL information
 - momentum from E-p combination (MVA regression),
 - MVA identification,
 - Calibration of residual differences in scale and resolution,
 - p_T > 7 GeV, |eta| < 2.5
 - validated using Z, J/Ψ , $\Upsilon \rightarrow e^+e^-$ (data/MC)
 - uncertainty on m₄₁ scale 0.3% (0.1%) for 4e (2e2µ)
 - uncertainty on m₄₁ resolution ~20%

- Calibration of residual differences in scale and resolution,
- p_T > 5 GeV, |eta| < 2.4
- validated using Z, J/ Ψ , Y $\rightarrow \mu^+\mu^-$ (data/MC)
- uncertainty on m₄₁ scale 0.1%
- uncertainty on m₄₁ resolution ~20%

s = 8 TeV. L = 19.6 fb electron ∆ m/m (data - sim.) 0 0000 0 0 0000 0 0.01 Z, J/Ψ , $\Upsilon \rightarrow$ ete S -0.005 cale Z. ml<0.8 -0.01 0 8<ml<1 48 validation -0.015 1S |n| < 1.48-0.02¹ 10 20 30 0 50 60 electron p_ (GeV) 60

Event selection

- Trigger:
 - di(tri)-lepton signatures (ee, eµ or µµ)
- Leptons
 - **muons**: p_T > 5 GeV, isolated, compatible with PV
 - **electrons**: p_T > 7 GeV, isolated, compatible with PV
 - at least one lepton pair with pT > 20/10 GeV
- First Z candidate (Z₁)
 - built from OSSF lepton pair with m₂₁ closest to m_Z
 - require: 40 < m₂₁ < 120 GeV
- Second Z candidate (Z₂)
 - built from remaining OSSF highest pT lepton pair
 - require: 12 < m₂₁ < 120 GeV
- FSR correction for all three channels
 - FSR photons removed from isolation cones of all leptons
- m₂₁ > 4 GeV for OSAF pairs (QCD rejection)
- Mass selection: m₄₁ > 100 GeV

selection efficiency for 4e, 4µ, 2e2µ

Signal and background models

a.u.

- Signal model
 - Empirical param. shapes from simulation
 - Corrected for data/simulation scale
- Irreducible background
 - Empirical param. shapes from simulation
 - Corrected for data/simulation scale
- Instrumental backgrounds estimated from data
 - Extrapolation from samples enriched with misidentified leptons (iso+ID) 2 independent methods
 AA) 2P+2F (2 pass + 2 fail) sample, dedicated correction for γ conversions in Z+γ+jets
 A) 2P+2F & 3P+IF (3 pass + 1 fail) sample, measures contributions from Z+γ+jets & WZ+jets
 - Total uncertainty ~40% (statistics, systematics of method/shape)

Validation in data (Z+SS/SF)

Predrag Milenović, University of Florida

 $aa \rightarrow ZZ \rightarrow 2e2u$

 $aa \rightarrow 77 \rightarrow 2e2u$

$\mathbf{q}\mathbf{q} \rightarrow \mathbf{H} \rightarrow \mathbf{Z}\mathbf{Z} \rightarrow 2\mathbf{e}2\mu$

CMS Simulation

 $2e2\mu$, m₁ = 126 GeV

 $\sigma_{dCB} = 1.7 \text{ GeV}$ RMS_{aff} = 2.4 GeV

Simulation

Parametric Mode

110 115 120 125

130

135

m, (GeV)

600

400

200

4 lepton mass spectrum

High-mass range

Good agreement with SM expectations
 Good agreement for the near-by

resonance $Z \rightarrow 4l$ (normalization, shape)

121.5 < m ₄₁	< 30.5 GeV
H (126 GeV)	18.6
ZZ	7.4
Z+X	2.0
Total expected	28.0
Data	25

Low-mass range

Predrag Milenović, University of Florida

Expected S/B

22

2.0

Kinematic Discriminants

- Use the ratio of LO matrix elements to build kinematic discriminants
 - do not use system $\mathbf{p}_{\mathbf{T}}$ and rapidity \mathbf{Y} (NLO effects, PDFs)

Discriminator KD to separate SM Higgs from backgrounds:

$$KD = \left[1 + \frac{\mathcal{P}_{\text{BKG}}(\vec{p}_i)}{\mathcal{P}_{\text{Higgs}}(\vec{p}_i)}\right]^{-1}$$

Probabilities \mathcal{P} defined by the LO matrix elements for each value of m_{4l} .

Matrix elements computed using MELA (JHUGen & MCFM)

ZZ background

CMS preliminary vs = 7 TeV, L = 5.1 fb⁻¹ vs = 8 TeV, L = 19.6 fb⁻¹ $\boldsymbol{\lambda}_{\scriptscriptstyle D}$ 0.9 ⊦2e2u 0.8 0.8 0.7 0.6 0.6 0.5 0.4 0.4 0.3 0.2 0.2 0 100 110 120 130 140 150 160 170 180 m₄₁ (GeV)

Use kinematics of 4I system

arXiv 1001.3396 arXiv 1108.2274 arXiv 1208.4018 arXiv 1210.0896 arXiv 1211.1959

Predrag Milenović, University of Florida

•

Event categories in the analysis

- The event sample is split into two categories:
 - Category I: Events with NJETS < 2. (5% VBF)
 - Category II: Events with NJETS ≥ 2. (20% VBF)
- Discriminate production mechanisms (fermion- vs. vector-boson-induced):
 - Cat. I: using discriminant: pT/M41
 - **Cat. II**: using linear discriminant: $V_D = \alpha \Delta \eta_{jj} + \beta m_{jj}$
- Analysis based on correlated 3D distributions:
 - Cat. I: $\mathcal{P}(\mathbf{m}_{41}) \ge \mathcal{P}(\mathbf{KD} \mid \mathbf{m}_{41}) \ge \mathcal{P}(\mathbf{p}_T/\mathbf{m}_{41} \mid \mathbf{m}_{41})$
 - Cat. II: $\mathcal{P}(\mathbf{m}_{41}) \ge \mathcal{P}(\mathbf{KD} \mid \mathbf{m}_{41}) \ge \mathcal{P}(\mathbf{V}_{\mathbf{D}} \mid \mathbf{m}_{41})$

V_D distribution

Higgs Hunting 2013, Orsay-France, July 2013

Excess characterization

High-mass region

Observed and expected stat. significance for excess at 125.8 GeV

@ m _{4l} = 125.8 GeV	m 41	\mathbf{m}_{41} , \mathbf{K}_{D}	\mathbf{m}_{41} , \mathbf{K}_{D} , $\mathbf{p}_{T}/\mathbf{m}_{41}$ or \mathbf{V}_{D}	
p-value (observed/expected)	4.7σ / 5.6σ	6.6σ / 6.9σ	6.7σ / 7.2σ	

Sensitivity improved significantly by exploiting full kinematics

Predrag Milenović, University of Florida

Low-mass region

Excess characterization

High-mass region

Observed and expected stat. significance for excess at 125.8 GeV

@ m _{4l} = 125.8 GeV	m41 m41, K		\mathbf{m}_{41} , \mathbf{K}_{D} , $\mathbf{p}_{T}/\mathbf{m}_{41}$ or \mathbf{V}_{D}		
p-value (observed/expected)	4.7σ / 5.6σ	6.6σ / 6.9σ	6.7σ / 7.2σ		

Sensitivity improved significantly by exploiting full kinematics

Excluded SM Higgs hypothesis @95% CL: [130, 827] GeV (41 + 212)

Predrag Milenović, University of Florida

Low-mass region

Even-by-event mass uncertainties

- Weight individual events in the mass fit according to their mass uncertainties δm_{41}
- Estimate per-event m₄₁ uncertainties from individual lepton momentum errors:
 - **muons:** using the full error matrix obtained from the muon track fit,
 - electrons: estimated from the combination of the ECAL and tracker measurements.
 - calibrated in data, validated using $Z \rightarrow 2e$, $Z \rightarrow 2\mu$ and $Z \rightarrow 4l$ (assigned **20% uncertainty**)

average expected improvement of 8% on the measured mass uncertainty.

Mass measurement validation with $Z \rightarrow 4I$

- Perform the mass measurement of the near-by $Z \rightarrow 4I$ resonance
 - identical procedure as for the new boson mass measurement (without δm_{41} and KD),
 - relaxed phase space due to the limited statistics ($m_{Z2} > 4 \text{ GeV}$)

likelihood scans for 4e, 4µ, 2e2µ

Compatible with the PDG values within uncertainties.

Mass measurement

- Mass measurement performed with a **3D fit** using for each event:
 - four-lepton invariant mass **m**41,
 - associated per-event mass uncertainty δm4I,
 - kinematic discriminant **KD**.

profiled likelihoods for 4e, 4µ, 2e2µ

Mass of the newly observed boson: $m_{41} = 125.8 \pm 0.5_{stat} \pm 0.2_{syst}$ GeV

Signal strengths and production mechanisms

 Signal strength measured for each of the two categories (relative to the SM expectation) signal strengths (modifiers): μ₁ = 0.85 ± 0.32 (Cat. 1) μ₁₁ = 1.22 ± 0.84 (Cat. 11)

total: $\mu = 0.91 \pm 0.30$

• Signal strength modifiers for classes of V-induced and F-induced production mechanisms: signal strengths (modifiers): $\mu_V = 1.0 \pm 2.4$ (VBF, VH) $\mu_F = 0.9 \pm 0.5$ (ggH, ttH)

Alternative J^{CP} hypotheses testing

- Perform the test of the compatibility of the new boson with alternative hypotheses
 - test a few reasonably well motivated J^P hypotheses ("pure" states only)
 - no full consensus on the choice of models in the TH community

J^P	production	description
0^{+}	$gg \to X$	SM Higgs boson
0^{-}	$gg \to X$	pseudoscalar
0_h^+	$gg \to X$	BSM scalar with higher dim operators in decay amplitude
2^{+}_{mqq}	$gg \to X$	KK Graviton-like with minimal couplings
$2^{+}_{mq\bar{q}}$	$q\bar{q} \to X$	KK Graviton-like with minimal couplings
1- 1	$q\bar{q} \to X$	exotic vector
1^{+}	$q\bar{q} \to X$	exotic pseudovector

• Fit for the fractional presence of CP-odd contribution in case of the scalar hypothesis

Kinematic Discriminants

• Use the ratio of **LO** matrix elements to build kinematic discriminants

Discriminator D_{IP} to separate SM from an alternative J^P hypothesis:

$$D_{J^P} = \left[1 + \frac{\mathcal{P}_{J^P}(\vec{p_i})}{\mathcal{P}_{\text{Higgs}}(\vec{p_i})}\right]^{-1}$$

Discriminator D_{BKG} to separate SM Higgs from backgrounds:

 $D_{\rm BKG} = \left[1 + \frac{\mathcal{P}_{\rm BKG}(\vec{p_i}) \cdot \mathcal{P}(m_{4\ell}|\rm BKG)}{\mathcal{P}_{\rm Higgs}(\vec{p_i}) \cdot \mathcal{P}(m_{4\ell}|\rm Higgs)}\right]^{-1}$

Probabilities \mathcal{P} defined by the LO matrix elements for each value of m_{4l} .

Combined kinematics and m_{41} information into one discriminant

Statistical analysis based on 2D distributions *P*(D_{IP}, D_{BKG})

106 < m₄₁ < 141 GeV

Alternative J^{CP} hypotheses testing

• Test statistics for the separation between J^P hypotheses (expected and observed):

• Expected separation between J^P hypotheses and the observed results with the data:

J^p	production	comment	expect (µ=1)	obs. 0+	obs. J^p	CLs
0-	$gg \rightarrow X$	pseudoscalar	2.6 σ (2.8σ)	0.5σ	3.3σ	0.16%
0_h^+	$gg \rightarrow X$	higher dim operators	1.7σ (1.8σ)	0.0σ	1.7σ	8.1%
2^{+}_{mgg}	$gg \rightarrow X$	minimal couplings	1.8σ (1.9σ)	0.8σ	2.7σ	1.5%
$2^+_{mq\bar{q}}$	$q\bar{q} ightarrow X$	minimal couplings	1.7σ (1.9σ)	1.8σ	4.0σ	<0.1%
1- ''	$q\bar{q} \rightarrow X$	exotic vector	2.8σ (3.1σ)	1.4σ	$>4.0\sigma$	<0.1%
1+	$q\bar{q} \to X$	exotic pseudovector	2.3σ (2.6 σ)	1.7σ	$>4.0\sigma$	<0.1%

in case a hypothesis is disfavoured with large confidence we quote > 4.0σ ,

All tested alternative hypotheses (except 0_h⁺) excluded with at least 95% C.L.

Fraction of a CP-odd contribution

• Asses a fractional presence of the CP-odd contribution (0⁻) in the scalar decays:

$$f_{a3} = \frac{\sigma_{0^-}}{\sigma_{0_m^+} + \sigma_{0^-}} \qquad A(X \to VV) = v^{-1} \epsilon_1^{*\mu} \epsilon_2^{*\nu} \left(a_1 g_{\mu\nu} m_H^2 + a_2 q_\mu q_\nu + a_3 \epsilon_{\mu\nu\alpha\beta} q_1^\alpha q_2^\beta \right) = A_1 + A_2 + A_3$$

- $\mathbf{0}_{m}^{+}$ decays governed by the \mathbf{A}_{I} amplitude (cross-section $\boldsymbol{\sigma}_{0-}$),
- **0**⁻ decays governed by the A_3 amplitude (cross-section σ_{0m+}),
- Take separate 2D templates for SM Higgs (0_m⁺) and 0⁻ states and fit the data for their relative presence (total events yields taken from data)

• Measurement of the f_{a3} fraction in data: $f_{a3} = 0.00^{+0.23} - 0.00$, $f_{a3} < 0.56$ (@95%CL)

Predrag Milenović, University of Florida

 A_2 contribution assumed to be 0

Conclusions

- LHC and its experiments delivered impressive results on a short timescale!
- CMS established presence of the Higgs-like boson in H → ZZ → 4l decay mode with local stat. significance 6.7σ
- Boson mass measured at the 4 per mil level:
 125.8 ± 0.5_{stat} ± 0.2_{syst} GeV
- The observed boson is consistent with the SM:
 - Signal strength, production mechanisms,
 - its scalar nature,
 - Additional SM Higgs-like boson excluded in [130, 827] GeV.
- Legacy paper with reanalyzed 25 fb⁻¹ of 7+8 TeV data to be published soon
- A new era is opening in front of us with the LHC in 2015 and beyond:
 - Precise measurements of boson properties with increased ECM and higher luminosity...
 - ...and challenging of the SM predictions!

Backup slides

Compact Muon Solenoid

Precise SM (EWK) measurements

Good understanding of the detector & accurate SM predictions:

Precise measurements of the SM processes

Good understanding of the background for Higgs searches

A "**H** \rightarrow **ZZ** \rightarrow 4µ" event

Final State Radiation recovery (CMS)

- Recovery algorithm
 - Applied on each Z for photons near the leptons (isolated photons, $E_T > 2 \text{ GeV}$)
 - Associates photon with Z if:

 $M_{2I+\gamma} < 100 \text{ GeV}$

 $|M_{2I+\gamma} - M_Z| < |M_{2I} - M_Z|$

- Removes associated photons from lepton isolation calculation
- Expected Performance for Higgs at I26 GeV
 - 6% of events affected
 - Average purity of 80%

Dilepton masses

Distributions of di-lepton masses for events with 121.5 < m₄₁ < 130.5 GeV

Masses m_{Z1} and m_{Z2} for candidate events around 125/126 GeV according to the SM expectations

Excess characterization

High-mass region

Observed (expected) excess at 125.8 GeV corresponding stat. significance: ~6.7σ (~7.2σ)

Compatible/complementary excesses at 7 TeV and 8 TeV

Low-mass region

Discriminator Djp (DBKG >0.5)

CMS preliminary $\sqrt{s} = 7$ TeV. L = 5.1 fb⁻¹ $\sqrt{s} = 8$ TeV. L = 19.6 fb⁻¹

qq

• D_{BKG} > 0.5 cut is just for illustration

 $gg \rightarrow 0$

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Predrag Milenović, University of Florida

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

 $D(1^{\dagger})$

οĿ

 $D_{0_{r}^{+}}$

Higgs Hunting 2013, Orsay-France, July 2013

Alternative J^{CP} hypotheses testing

• Expected separation between J^P hypotheses and the observed results with the data:

