

Higgs to gamma gamma at CMS Higgs Hunting Orsay 2013

Matthew Kenzie On Behalf of the CMS Collaboration

CMS Experiment at LHC, CERN Data recorded: Mon Sep 26 20:18:07 2011 CEST Run/Event: 177201 / 625786854 Lumi section: 450

Matthew Kenzie

24/07/2013

1

Introduction

Low BR ~0.2%

Imperial College

ondon

- Clean final state
- Can reconstruct mass with good precision

$$m_{\gamma\gamma} = \sqrt{2E_1E_2(1-\cos\alpha)}$$

Overview

- Main result as presented at Moriond CMS-PAS-HIG-13-001
 - Multivariate (MVA) approach
 - Cut-based approach
- Properties and spin analysis CMS-PAS HIG-13-016 • Uses the cut-based selection
- ttH specific analysis **CMS-PAG-HIG-13-015**
- $H \rightarrow Z\gamma$ analysis **CMS-PAG-HIG-13-006**
- Use full dataset available 2011 (5.1fb⁻¹) + 2012 (19.6fb⁻¹) • Spin analysis uses just 2012
- *Legacy* paper towards end of the year

ondon

CMS Integrated Luminosity, pp, 2012, $\sqrt{s}=$ 8 TeV

Data included from 2012-04-04 22:37 to 2012-12-16 20:49 UTC

- Looking for a small peaking signal on a large falling background
 - MC only used for cut and MVA optimisation
 - Background for analysis is data driven
- Background composition
 - o prompt-prompt (irreducible) pp → $\gamma\gamma$ ~70%
 - prompt-fake (reducible) pp→γ+jet ~30%
 - o fake-fake (reducible) pp→jet+jet <1%

Matthew Kenzie

Analysis Strategy

- Select events with two high energy, isolated photons
- Separate events into non-overlapping categories with different S/B and different resolution
 - Particular exclusive tagged categories
 - Improve S/B in certain categories
 - Separate production modes for coupling measurements
- Background estimated in data
 o Fit γγ invariant mass distribution to data
- Two analyses
 - Multivariate approach \rightarrow main result, couplings, second Higgs
 - Cut based approach \rightarrow cross check, spin analysis

ECAL

clusters

Photon

energy

Vertex ID

Photon

ID

Diphoton

Selection + Cats

Statistical

analysis

Photon Energy

Imperial College

ondon

ECAL barrel

RMS

0.0009

CMS Preliminary 2012

√s = 8 TeV L = 19.6 fb

Matthew Kenzie

ondon

24/07/2013

6

1.3m

Photon ID BDT

• Used to reject fakes

 $\circ \quad \mbox{Neutral mesons (mainly π^0) decay} \\ \mbox{into two ~collinear photons (look} \\ \mbox{similar to single high E_T γ)} \\$

Input variables

- Several shower shape variables (MC corrected to match data)
- Isolation
 - Particle-flow energy around photon candidate
- Average energy density per event (ρ)
 - Correlated to PU
- Photon position η (to exploit correlations)
- Output

Imperial College

ondon

- Validated with $Z \rightarrow ee$ and $Z \rightarrow \mu \mu \gamma$
- Shape corrections derived with $Z \rightarrow ee$

Diphoton BDT

- Event kinematics
 - $p_T(\gamma_1)/m_{\gamma\gamma'} p_T(\gamma_2)/m_{\gamma\gamma'} \Delta \phi_{\gamma\gamma}$
- Event resolution
 - mass resolution (right vertex), mass resolution (wrong vertex), vertex probability
- Photon quality
 - photon ID MVA output for each γ
- Mass blind!

Imperial College

ondon

- Optimise four category boundaries to increase signal sensitivity
- Validated with $Z \rightarrow ee$
 - systematics propagated through

24/07/2013

8

Cut Based Analysis

- Photon selection is optimised in four categories
 ο photon in barrel (EB) or endcap (EE) |η|<1.444
 - photon is flagged as converted or unconverted $R_9 > 0.94$
- Efficiency corrections derived from Z→ee events in data/MC
- Split diphoton events into 4 natural categories with
 - Cat0 both photons in barrel AND both photons unconverted
 - Cat1 both photons in barrel AND at least one conversion
 - Cat2 at least one photon in endcap AND both photons unconverted
 - Cat3 at least one photon in endcap AND at least one conversion

Lepton/MET tag

- Tagging leptonic decays of associated W, Z or top in Higgs production
- 3 additional analysis categories for 2012 only
 o muon, electron, MET
- On top of standard diphoton selection:
 - require high energy electron or muon (p_T>20 GeV)
 - or large MET (>70 GeV)
- High S/B but very low yield

London

Photon ID

Diphoton

Selection + Cats

Statistical

analysis

Dijet tag

- Tagging two high p_T jets with characteristic topology from VBF **Higgs production**
 - Two forward high p_T jets
 - Large m_{ii}
 - high Δη(jj)
 - $\Delta \phi(jj-\gamma\gamma)$

Cut-based analysis uses a cut based selection

Imperial College ondon

Matthew Kenzie

Signal and Background Models

analysis

•

Background - 3 rd -5 th order
polynomial in each cat
• Chosen such that systematic is negligible

Signal - sum of Gaussians in each category for each process

1. 11.

- σ/m for all events ~1.6% 0
- σ/m for best events ~1% 0

Expected signal and estimated background										
Event classes		SM Higgs boson expected signal ($m_{\rm H}$ =125 GeV)						Background		
ĽV	ent classes						$\sigma_{ m eff}$	FWHM/2.35	$m_{\gamma\gamma} = 125 \text{GeV}$	
		Total	ggH	VBF	VH	ttH	(GeV)	(GeV)	(ev./0	GeV)
-1	Untagged 0	3.2	61.4%	16.8%	18.7%	3.1%	1.21	1.14	3.3	± 0.4
1 fb	Untagged 1	16.3	87.6%	6.2%	5.6%	0.5%	1.26	1.08	37.5	± 1.3
5.	Untagged 2	21.5	91.3%	4.4%	3.9%	0.3%	1.59	1.32	74.8	± 1.9
7 TeV	Untagged 3	32.8	91.3%	4.4%	4.1%	0.2%	2.47	2.07	193.6	± 3.0
	Dijet tag	2.9	26.8%	72.5%	0.6%	-	1.73	1.37	1.7	± 0.2
-1	Untagged 0	17.0	72.9%	11.6%	12.9%	2.6%	1.36	1.27	22.1	± 0.5
-df	Untagged 1	37.8	83.5%	8.4%	7.1%	1.0%	1.50	1.39	94.3	± 1.0
9.6	Untagged 2	150.2	91.6%	4.5%	3.6%	0.4%	1.77	1.54	570.5	± 2.6
V 1	Untagged 3	159.9	92.5%	3.9%	3.3%	0.3%	2.61	2.14	1060.9	\pm 3.5
8 Te	Dijet tight	9.2	20.7%	78.9%	0.3%	0.1%	1.79	1.50	3.4	± 0.2
	Dijet loose	11.5	47.0%	50.9%	1.7%	0.5%	1.87	1.60	12.4	± 0.4
	Muon tag	1.4	0.0%	0.2%	79.0%	20.8%	1.85	1.52	0.7	± 0.1
	Electron tag	0.9	1.1%	0.4%	78.7%	19.8%	1.88	1.54	0.7	± 0.1
	$E_{\rm T}^{\rm miss}$ tag	1.7	22.0%	2.6%	63.7%	11.7%	1.79	1.64	1.8	± 0.1

Imperial College ondon

Matthew Kenzie

Invariant Mass Spectra

Results I

Results II

15

Results III - Properties

Imperial College

ondon

- Upper limit on natural width
 - Observed <6.9 GeV at 95%CL
 - Expected <5.9 GeV at 95% CL
- Limit on second SM-like Higgs
 - assume state at 125 is SM like and is part of the background
 - Set limit on second SM like state elsewhere
 - $\circ \quad \begin{array}{l} \text{Local p-value of excess at 136.5 GeV} \\ \sim 2.9\sigma \end{array}$

Results V - Spin

Summary

- Results from the H $\rightarrow \gamma \gamma$ search at CMS have been presented
 - Excess with an observed significance of
 - Best fit signal strength (at m_H=125GeV) $\sigma/\sigma_{SM} = 0.78^{+0.28}_{-0.26}$
 - Mass measurement:
 - Couplings measurement:

3.2 σ (expected 4.2 σ) $\sigma/\sigma_{SM} = 0.78^{+0.28}_{-0.26}$ m_H = 125.4±0.5(stat)±0.6(syst) compatible with SM at < 1 σ

- Properties of the new state investigated
 - Exclusion limits set on second Higgs
 - Upper limit on natural width
 - Spin analysis
 - Unable to exclude spin-2 graviton with minimal couplings
 - ttH specific analysis
 - Observed (expected) upper limit at 95% 5.4 (5.3) x SM

BACK UP

Matthew Kenzie

24/07/2013

20

CMS detector

SuperClustering

• ECAL-barrel = "Hybrid algorithm"

• ECAL-endcap = "Multi-5x5"

n

A crystal included in a cluster which cannot seed other clusters

The seed crystal of the nth cluster

Tracker material

- About 40% of photons convert in tracker
 - ~2/3 of diphoton events contain at least one conversion

Matthew Kenzie

Analysis Flow

Pileup (PU)

- Beam condition yield multiple collisions per event
 - \circ <PU₂₀₁₂> = 20
 - Beam spot with ~6cm

Event classification

- Separate events into classes to improve sensitivity
- Tag exclusive modes in this order:

- Untagged events
 - use diphoton MVA to classify further into 4 categories
 - \circ use cut based selection and classify in η , R_9

Energy scale

- Important input to mass measurement
- Use Z→ee where electrons are reconstructed *exactly* the same as photons
- Add fully correlated error which considers:
 - imperfect MC simulations of the difference between electrons and photons
 - the need to extrapolate the scale from m_Z to m_H

Jackknife resampling

- Given an estimator (an observable in this case μ) of a dataset you can obtain the expected variance of the estimator
- Cut (jackknife) the sample into multiple exclusive subsets and reevaluate the estimator
- If you start with *n* events you remove exclusive sets of *d* events
- Thus you have *g*=*n*/*d* samples of *n*-*d* events on which you recalculate μ
- Analogous to the familiar undergraduate method of splitting a sample in two to estimate the statistical uncertainty

Matthew Kenzie (IC London)

ondon

24/07/2013

30

Jackknife resampling Given two analyses there are three datasets

- - Events selected by Analysis A (CutBased) \bigcirc
 - Events selected by Analysis B (MVA) \bigcirc
 - Events selected by either A or B (i.e. A U B) of which the majority are in common
- Use the jackknife to estimate
 - $\circ \sigma(\mu_{\rm A}), \sigma(\mu_{\rm B}) \text{ and } \sigma(\delta\mu) = \sigma(\mu_{\rm A}-\mu_{\rm B})$

Jack-knife Resampling

Estimate the best fit of the signal strength modifier of the Hgg analysis: method 1 : $0.78 + 0.28_{-0.26}$ method 2 : $1.1 + 0.32_{-0.30}$

One sample of data, two methods to extract one parameter. The results are correlated because they share the same dataset. Are the two results compatible ?

$$\rho_{X,Y} = \operatorname{corr}(X,Y) = \frac{\operatorname{cov}(X,Y)}{\sigma_X \sigma_Y} = \frac{E[(X - \mu_X)(Y - \mu_Y)]}{\sigma_X \sigma_Y}$$

1) Get the correlation coefficient:

i.e. calculate the variance of the first and the second measurement and the variance of the overlapping events

2) Calculate the difference between the two results using

$$\sigma_x^2 + \sigma_y^2 - 2\rho\sigma_x\sigma_y$$

Use resampling techniques (in this case a Jackknife) to get the variances

Jack-knife Resampling II

Remove one (or N) point from the sample distribution

and calculate the new sample average:

$$\bar{x}_{(i)} = \frac{n\bar{x} - x_i}{n-1} = \frac{1}{n-1} \sum_{j \neq i} x_j$$

(here trivially $\bar{x}_{(.)} = \bar{x}$)

The jackknife estimate of the standard error is defined as:

Matthew Kenzie

Jack-knife Resampling III

	MVA analysis	cut-based analysis
	(at <i>m</i> _H =125 GeV)	(at <i>m</i> _H =124.5 GeV)
7 TeV	$1.69\substack{+0.65\\-0.59}$	$2.27^{+0.80}_{-0.74}$
8 TeV	$0.55\substack{+0.29\\-0.27}$	$0.93\substack{+0.34 \\ -0.32}$
7 + 8 TeV	$0.78\substack{+0.28 \\ -0.26}$	$1.11\substack{+0.32 \\ -0.30}$

Matthew Kenzie

Diphoton MVA Validation

- Inputs are validated with
 - $Z \rightarrow$ ee (electrons reconstructed as photons)
 - Ζ->μμγ

.ondon

- Empirical corrections derived for inputs
 - o use Drell-Yan data/MC comparison
 - correct resolution and photonID
- Systematic uncertainties propagated through BDT
 - resolution and photonID
 - implemented as category migration

MVA-CiC comparison

• MVA output for data events which pass CiC selection

MVA-CiC comparison II

- Events which pass MVA selection
 - Events which also pass CiC are shaded

Matthew Kenzie

Background Model Choice

- For each category fit with different functional forms
 - o exponentials sums, power laws, laurent series, polynomials
- Choose the lowest order of each which fits the data well
 - G.O.F test with unbinned like F-test p(N+1)<0.05
 - Determines "truth" functions \bigcirc
- Throw toy MC from the truth functions
- Choose the lowest order functional form such that
 - bias on signal strength < 20% statistical 0 uncertainty on background
 - neglect any systematics on background \bigcirc
 - choices are 3rd-5th order polynomails 0

London

Matthew Kenzie

24/07/2013

39

Matthew Kenzie

24/07/2013

40

Signal Strength

Cut Based

Matthew Kenzie

Channel Compatibility MVA Cut Based

24/07/2013

42

Second Higgs has ggH and ttH coupling only

Second Higgs has qqH and VH coupling only

Matthew Kenzie

Results III - ttH analysis

$Z\gamma$ Result

CMS-PAG-HIG-13-006

ondon

- Strategy similar to $H \rightarrow \gamma \gamma$ (signal/background modelling)
- 4 event classes based on lepton/ photon η and high/low R_9

Matthew Kenzie