

Search for the bb decay of the Standard Model Higgs boson in ATLAS

Higgs Hunting, 26th July 2013

Jason Sang Hun Lee, Osaka University On behalf of the ATLAS Collaboration

Introduction

Full 2011 (4.7 fb⁻¹ @ 7 TeV) and 2012 (20.3 fb⁻¹ @ 8TeV) ATLAS-CONF-2013-079

talk outline:

- Event Selection
- Background Modeling
- Diboson fit results
- Higgs fit results
- ➡ ttH, H to bb summary

See Inês Ochoa talk for more on details about the VH analysis

Analysis strategy

Events categorised by V p_{T} to boost sensitivity

Additional categories used to determine backgrounds

- ➡ number of leptons (0, 1, 2)
- ➡ number of jets (2, 3)
- ➡ number of b-tagged jets (1, 2)
- → p_T^V bins (at 0, 90,120,160, 200 GeV intervals)

The main backgrounds are determined in the following regions

Event Selections - 2 lepton

Trigger - single and di-lepton Leptons - 1 medium and 1 loose leptons Missing Transverse Momentum < 60 GeV Mass cut on Z boson - $83 < m_{\rm H} < 99$ reduce tt

boson p_T^V is vector sum of the two leptons

Analysis Selections of Jets

- → p_T > 20 GeV & |η| < 2.5
 </p>
- ➡ at least 2 jets
- ➡ leading jet p_T > 45 GeV
- 2 b-tagged jets (70% efficiency each jet, event efficiency is ~50%)

electrons - more stringent quality requirements

3 types of lepton identification increasing in purity

- ➡ Loose
 - p_T > 10 GeV
 - electrons $|\eta| < 2.47$ & muons $|\eta| < 2.7$
 - impact parameter
 - basic quality requirements
 - track isolation
- Medium
 - p_T > 25 GeV
 - electrons additional track quality and the shower shape
 - muons $|\eta| < 2.5$
- ➡ Tight
 - tighter track isolation

Event Selections - 1 lepton

Event Selections - 0 lepton

B-tagging and m_{bb} mass resolution Arbitrary Unit ATLAS Simulation

Resolutions

16.6 GeV (14.4%)

14.7 GeV (12%)

ZH→ II bb

EM+JES

p₇^Z<90 GeV

100 120 140 160 180 200

EM+JES+µ+p^{reco}

m_{bb} [GeV]

2.5

1.5

0.5

60

80

Jet Reconstruction

- Anti-kt R=0.4
- Pile-up correction jet-area based
- Calibrated using p_T and η dependent factors
- Corrections applied for muons in jet
- B-tagging is neural network-based
 - inputs: 3 different b-tagging methods
 - efficiency: 70% for b, ~20% for c, ~0.6% for light
 - ~2% precision achieved in the calibration analysis (intermediate p_T region)

Further Optimisations

 $\Delta R(b,b)$ optimisations

- max cuts reduces background
- min cuts reduces V+jets background
- 1 lepton channel
 - Missing E_T cut increase at highest bin
 - Min Transverse Mass cut removed in higher bins

	$p_{\rm T}^V$ [GeV]	0-90	90-120	120-160	160-200	>200
All Channels	$\Delta R(b, \bar{b})$	0.7-3.4	0.7-3.0	0.7-2.3	0.7-1.8	<1.4
1 lonton	$E_{\rm T}^{\rm miss}$ [GeV]		>50			
1-lepton	$m_{\rm T}^W$ [GeV]		40-120	<120		

After object ID and kinematic selection, the main discriminator is mbb

tt Background

Normalisation determined by fit to data Mismodeling $\ensuremath{p_{\text{T}}}$

- PowHeg predicts too hard a p_T distribution
- correction applied at generator level

Systematic uncertainties

- 3-to-2 jet ratio: 5%
- m_{bb} shape: 5%
- top p_T correction

V+jets Background

Normalisation determined by fit to data

Mismodeling of $\Delta \phi(j,j)$:

- 0 b-tag control
- subtract from data all other background (except Z+jets)
- divide by MC Z+jets
- linear parametrisation
- p_T^V distributions are affected
- treated as uncorrelated
 - W+jets and Z+jets
 - no. of b jets
 - no. of jet

Systematics uncertainties:

- flavour composition
- 3-to-2 jet ratio
- m_{bb} shape

Systematics

Experimental systematic uncertainties

- lepton reconstruction and PID
- Jet Energy Scale
- B-tagging
- Missing E_T
- Multijet background:
 - normalisation uncertainties 100% for the 0- and 2-lepton channels
 - 1 lepton freely floating in global fit, independently of no. of jets and tags
 - рт^v
- ➡ Luminosity: 2.8% for 2012, 1.8% for the 2011
- ➡ Pile-up

Simulated background systematic uncertainties

- ➡ single top
 - σ: 4-7%
 - 3-to-2 jet ratio: 5-15%
 - p_T^V shape: 5%
 - m_{bb} shape: 5-10%
- ➡ diboson
 - σ: 5-7%
 - 3-jet to 2-jet ratios
 - p_T^V : 5-60%

pTV 3/2 jet ratio Δφ mbb tt MC MC data W+jets MC MC data data MC Z+jets data data single top MC MC MC MC MC MC Diboson _

Signal systematic uncertainties

- cross sections: 5-7%, calculated at NNLO in QCD, applying electroweak corrections at NLO
- ➡ NLO EW corrections: ~2%, differential cross sections applied as function of p_T^V on the LO WH and ZH signals (pythia8)
- Higgs boson BR to bb: 3.3% for $m_H = 125$ GeV
- Signal Acceptance: 10% comparing pythia8, pythia6 and herwig

Global Fit

2 jet 2 tag 3 jet 2 tag top e-µ CR 2 jet 1 tag 3 jet 1 tag 0 lepton \times 3 pTV bins admixture admixture admixture admixture W+c W+c Top Top V+h Top Z+c Z+b Z+b Z+c Top Norm. Shape Norm

250

The fit also adjusts the shapes of the dijet mass distributions within the constraints from the systematic uncertainties:

- \rightarrow Multijet: determined in data before final fit
- ➡ Diboson, single top,V+light: Normalisation constrained by theoretical uncertainties
- ➡ tt,Vb,Vcl: Normalisation completely determined by fit to data

Post-fit mbb distributions

Good agreement between data and signal+background expectation

After global fit, uncertainties on the background and signal yields are 3% and 12% (Before fit, 10-13% and 13-14%)

Dominant systematic uncertainties include:

- ➡ tt modeling (m_{bb} shape, 2-3-jet ratio, p_T^V)
- tagging efficiency for c jets
- multijet normalisation 1 lepton
- ➡ signal acceptance

rest of p_T^V bins in backups

Fitting Cross Check - Diboson

Diboson decay, VZ, Z→bb

- very similar decay signature
- softer p_T spectrum & lower m_{bb}
- cross section ~5 times larger

Fit to diboson peak, fixing Higgs peak to SM expectation

 σ_{meas} signal strength parameter: μ $\sigma_{
m SM}$ ATLAS Prelim. 🗕 σ(stat) Total uncertainty \pm 1 σ on μ_{VZ} σ(sys) σ(theo) ±0.3 VZ(bb), 7 TeV $= 0.7^{+0.5}_{-0.5} \begin{vmatrix} \pm 0.4 \\ < 0.4 \end{vmatrix}$ $= 1.1^{+0.8}_{-0.7}$ VZ. 0 lepton ±0.5 $_{-0.7} = 0.7^{+0.8}_{-0.7}$ VZ, 1 lepton ±0.8 $\mu_{\rm uz} = 0.3^{+0.8}_{-0.8} \pm 0.5$ VZ, 2 leptons ±0.1 VZ(bb), 8 TeV ±0.2 $\mu_{VZ} = 1.0^{+0.2}_{-0.2}$ <0.1 $\mu_{VZ} = 1.2^{+0.4}_{-0.3}$ VZ, 0 lepton ±0.2 = 0.9 VZ, 1 lepton ±0.2 $\mu_{VZ} = 0.9^{+0.4}_{-0.4} \pm 0.2$ VZ, 2 leptons

Fit summary for each channel and both years

 $\mu vz = 0.9 \pm 0.2$ agrees with SM expectation of 1, corresponds to 4.8 σ observed significance (5.1 σ expected)

20% uncertainties with run 1 dataset

Observed (expected) limits for $m_H = 125$ GeV: ma

- 7 TeV: 2.0 (3.3) x SM
- 8 TeV: 1.9 (1.3) x SM
- Combined: 1.4 (1.3) x SM

No significant excess is observed

Observed local p0 as a function of the Higgs boson mass (the black shows the combined results):

- 0.36 (0.36o) in the absence of signal
- 0.05 (1.64σ) in the presence of signal

Probability to obtain a result at most as signal-like as observed if a SM Higgs boson with $m_H = 125$ GeV is present: 0.11

This expected limit represents a 35% improvement in the analysis sensitivity

Fit to Higgs Cross Section

Fit summary for each channel and both years

 $\sigma_{
m meas}$ signal strength parameter: $\mu =$ $\sigma_{\rm SM}$

The fitted value of the signal strength parameter is:

 $\mu = 0.2 \pm 0.5$ (stat.) ± 0.4 (syst.)

ttH

2011 (4.7 fb⁻¹ @ 7 TeV) ATLAS-CONF-2012-135

tt semileptonic decay: ttH \rightarrow Wb Wb bb \rightarrow Ivb jjb bb

Selections

- single lepton trigger
- High jet multiplicity: 4 b-jets + 2 jets
 - p_T > 25 GeV
 - |η| < 2.5 •
 - b-tagging 70% efficiency •
 - 1 isolated high p_T lepton
 - electron $p_T > 25 \text{ GeV}$
 - muon $p_T > 20 \text{ GeV}$
- high missing E_T
 - e channel: missing $E_T > 30$ GeV, $m_T > 30$ GeV
 - μ channel: missing E_T > 20 GeV, missing E_T + m_T > 60 GeV

Direct measurement of the $H \rightarrow tt$ coupling

ttH fit distributions

- Signal categories:
 - 5 or ≥ 6 jets; 3 or ≥ 4 b-jets
- Background categories:
 - 4 jets; 0 or 1 or ≥ 2 b-jets
 - 5 or 6 jets; 2 b-tags

After selections; fit to data constraining systematics

Main background: tt

Main systematics: b/c tagging, tt modeling

ttH results

Cross section upper limits, normalised to the SM Higgs boson production cross section

Observed (expected) limits for $m_H = 125$ GeV:

• 13.1 (10.5) x SM

No significant excess is observed

Conclusions

- ➡ Results on the search for VH, H to bb on full 2011 and 2012 data
- ➡ Results on the search for ttH, H to bb on 2011 data
- ➡ 35% gain in significance on top of the luminosity:
 - ΔR(b,b) optimisation
 - background modeling
 - experimental systematics
- ➡ Fit to diboson peak consistent with SM expectation.
- ➡ No significant excess is observed.
- → Observed (expected) limit for $m_H = 125$ GeV is 1.4 (1.3) xSM @ 95% CL
- ➡ The corresponding limit expected in the absence of signal is 1.3.
- ➡ The ratio of the measured Higgs-boson production strength to the SM expectation is found to be µ = 0.2 ± 0.5(stat.) ± 0.4(syst.)
- → ttH, Observed (expected) limit for $m_H = 125$ GeV is 13.1 (10.5) xSM @ 95% CL

Backups

Signal Acceptance

$m_H = 125 \text{ at } 7 \text{ TeV}$										
$(W/Z)(H \rightarrow b\overline{b})$	Cross sastion V DD [fh]	Acceptance [%]								
	Closs-section × BK [10]	0-lepton	1-lepton	2-lepton						
$Z \rightarrow \ell \ell$	12.3	0.0	0.7	8.2						
$W \to \ell \nu$	107.1	0.2	3.5	-						
$Z \rightarrow \nu \nu$	36.4	2.2	-	-						
$m_H = 125 \text{ at } 8 \text{ TeV}$										
(W/7)(H , h)	Cross section × BP [fb]	Acceptance [%]								
$(W/Z)(H \rightarrow bb)$	Closs-section × BK [10]	0-lepton	1-lepton	2-lepton						
$Z \rightarrow \ell \ell$	15.3	0.0	0.9	8.4						
$W \to \ell \nu$	130.2	0.2	3.3	-						
$Z \rightarrow \nu \nu$	45.5	2.5	1.0-1							

Model of the Fit

Likelihood of Poisson probabilities:

$$L(\mu, heta) = \prod_{j=1}^{N} rac{(\mu s_j + b_j)^{n_j}}{n_j!} e^{-(\mu s_j + b_j)} \prod_{k=1}^{M} rac{u_k^{m_k}}{m_k!} e^{-u_k}$$

signal and background parameterisations:

$$s_i = s_{tot} \int_{bin i} f_s(x; \theta_s) dx$$
 $b_i = b_{tot} \int_{bin i} f_b(x; \theta_b) dx$

test hypothesised values of μ with a test statistics:

$$\Lambda(\mu) = rac{L(\mu, \hat{\hat{ heta}}(\mu))}{L(\hat{\mu}, \hat{ heta})}$$

7 and 8 TeV Limits

2 jet, 2 tag fitted numbers of signal and background events and the observed numbers of events

					2-jet	, 2-tag sa	mple						
	0	-lepton		1-lepton				2-lepton					
Process	E _T ^{miss} [GeV]			$p_{T}^{W}[GeV]$					$p_{\rm T}^{\rm Z}[{\rm GeV}]$				
	120-160	160-200	>200	0-90	90-120	120-160	160-200	> 200	0-90	90-120	120-160	160-200	>200
$Z \rightarrow \nu \nu$	1.6	0.9	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
$Z \to \ell \ell$	0.0	0.0	0.0	0.2	0.0	0.0	0.0	0.0	2.1	0.5	0.4	0.2	0.2
$W \to \ell \nu$	0.4	0.2	0.0	7.6	1.7	0.0	1.0	1.1	0.0	0.0	0.0	0.0	0.0
VH total	2.0	1.1	1.1	7.8	1.8	1.2	1.1	1.1	2.1	0.5	0.4	0.2	0.2
VH expected	11	5.8	6.1	42	9.5	6.6	5.6	6.1	11	2.7	2.2	1.1	1.1
Тор	159	33	8	2763	729	359	113	40	166	32	8.0	0.5	0.0
W+c, light	22	5.5	2.8	623	67	28	13	8.9	0.0	0.0	0.0	0.0	0.0
W+b	30	10	6.1	909	106	49	25	19	0.0	0.0	0.0	0.0	0.0
Z+c, light	24	8.1	5.2	22	2.2	0.6	0.3	0.1	93	13	6.0	1.8	1.2
Z+b	226	71	39	97	13	3.9	1.8	0.5	938	146	64	14	8.3
WW	0.5	0.1	0.1	11	1.0	0.7	0.3	0.2	0.0	0.0	0.0	0.0	0.0
VZ	26	11	10.3	145	20	12	7.6	6.5	60	8.6	4.5	2.2	2.0
Multijet	4.8	1.1	0.7	1306	45.6	8.7	4.8	0.4	0.0	0.0	0.0	0.0	0.0
Total Bkg.	491	141	72	5869	981	460	165	74	1255	199	82	18	11
	± 10	± 3	±2	± 64	± 16	± 9	± 4	± 3	± 24	±4	± 2	± 1	±0
Data	502	143	90	5916	990	458	162	79	1282	204	70	22	6
S/B	0.004	0.008	0.02	0.001	0.002	0.003	0.006	0.01	0.002	0.003	0.005	0.01	0.02

3 jet, 2 tag fitted numbers of signal and background events and the observed numbers of events

	181	80 == .			3-jet	, 2-tag sa	mple							
	0	-lepton		1-lepton				2-lepton						
Process	E ^{miss} [GeV]				$p_{T}^{W}[GeV]$					$p_{\rm T}^{\rm Z}[{\rm GeV}]$				
	120-160	160-200	>200	0-90	90-120	120-160	160-200	> 200	0-90	90-120	120-160	160-200	>200	
$Z \rightarrow \nu \nu$	0.4	0.2	0.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
$Z \rightarrow \ell \ell$	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.9	0.3	0.2	0.1	0.1	
$W \to \ell \nu$	0.1	0.1	0.0	2.1	0.6	0.0	0.5	0.6	0.0	0.0	0.0	0.0	0.0	
VH total	0.5	0.3	0.4	2.2	0.6	0.5	0.5	0.6	0.9	0.3	0.2	0.1	0.1	
VH expected	2.7	1.6	1.9	12	3.2	2.6	2.8	3.4	4.9	1.4	1.1	0.6	0.7	
Тор	169	44	13	4444	1171	592	238	121	114	22	5.5	0.3	0.0	
W+c, light	7.2	2.2	1.3	191	24	12.2	7.3	6.0	0.0	0.0	0.0	0.0	0.0	
W+b	12	4.7	3.3	318	36	22	14.2	12	0.0	0.0	0.0	0.0	0.0	
Z+c, light	6.3	2.8	2.5	8.9	0.9	0.5	0.2	0.1	54	9.8	4.7	1.5	1.3	
Z+b	59	26	17	56	6.9	2.5	1.4	0.7	509	91	45	12	7.6	
WW	0.2	0.1	0.1	4.0	0.5	0.3	0.1	0.1	0.0	0.0	0.0	0.0	0.0	
VZ	3.7	1.8	2.3	31	4.7	3.1	2.5	3.7	20.1	3.1	1.6	0.8	1.1	
Multijet	3.1	0.6	0.3	425	17	5.5	3.0	0.8	0.0	0.0	0.0	0.0	0.0	
Tetal Dies	260	82	40	5476	1260	637	266	143	696	125	57	15	10	
Iotal Bkg.	± 6	± 2	± 1	± 57	± 17	± 11	± 7	± 5	± 16	± 3	± 2	± 1	±1	
Data	287	59	40	5523	1233	639	249	154	734	119	56	13	9	
S/B	0.002	0.004	0.009	0.0004	0.0005	0.008	0.002	0.004	0.001	0.002	0.004	0.008	0.01	

0 lepton, 2 jet 2 tag

1 lepton, 2 jet 2 tag

2 lepton, 2 jet 2 tag

0 lepton, 3 jet 2 tag

1 lepton, 3 jet 2 tag

2 lepton, 3 jet 2 tag

ttH Signal

ttH Backgrounds

34