

Searches for the Higgs Boson Decaying to Bottom Quarks in the CMS Detector

Seth Zenz Princeton University On Behalf of the CMS Collaboration

Higgs Hunting 2013 Orsay, France 26 July 2013

Overview

- $H \rightarrow bb$ in the Standard Model
 - VH \rightarrow Vbb (5+19 fb⁻¹)
 - VBF H \rightarrow bb (19 fb⁻¹)
 - ttH \rightarrow ttbb (5 + New 19 fb⁻¹)
- ... And Beyond
 - bH+X, $H \rightarrow bb (2.7 4.8 \text{ fb}^{-1})$

B-Tagging in CMS

- Jets: particle flow inputs to anti-kT algorithm, R = 0.5
- B-tagging: Combined Secondary Vertex (CSV) discriminant
 - Explicitly reconstructed secondary vertex information
 - "Pseudovertex": tracks with high impact parameter significance
 - Individual track IP's, jet and track kinematics

VR NVMINE

Analysis Strategy: VH \rightarrow Vbb

- Categorize by vector boson (V) decay: Z(vv), Z($\ell\ell$), W(ℓ v), W(τ v)
- Require 2 b-tagged jets, leptons & MET as appropriate
- Bin in pT(V): signal-to-background increases at high pT
- Multivariate b-jet regression to improve bb mass resolution
- Boosted Decision Tree (BDT) trained for each Higgs mass
 - Additional specialized BDT's for background rejection
- Likelihood fit to BDT distributions
- Backgrounds: tt, V+bb, V+b, V+udscg, QCD, single top, VZ
- Dominant systematics: btagging, MC statistics, data-driven background normalization

B-Jet Regression

- Additional correction of b jet to parton energy, using BDT, to improve mass resolution
- Trained on simulated $H \rightarrow bb$ events
- Variables used:
 - Jet kinematics
 - Charged/neutral fraction, lead track pT, etc.
 - Vertex properties
 - Soft lepton properties
 - MET Z(II) only
- Improves Higgs mass resolution by ~15%
 - \rightarrow analysis sensitivity improved by 10-15%

Boosted Decision Tree

- Trained for each channel and each Higgs mass
- Inputs
 - Higgs candidate jet pT and CSV
 - Dijet properties: *m(jj)*, pT(jj), dEta(jj), dR(jj), color pull angle
 - Additional jets: Naj, max CSV, closest dR to Higgs candidate
 - dPhi(V,H), dPhi(E_τ^{miss},j)
 - Angular variables of VH system

Signal Extraction

$VH \rightarrow Vbb$ Results

 $\sqrt{s} = 7$ TeV, L = 5.0 fb⁻¹ $\sqrt{s} = 8$ TeV, L = 19.0 fb⁻¹ 10-4 VH(bb), combined Observed 10⁻⁵ - Expected from SM Higgs 10⁻⁶ L 115 130 120 125 135 m_µ [GeV] **CMS Preliminary** Ļ 4.5 $\sqrt{s} = 7$ TeV. L = 5.0 fb⁻¹ $\check{}$ $\sqrt{s} = 8$ TeV, L = 19.0 fb⁻¹ VHbb mBDT combination 3.5 Observed 3 ······ Expected H(125) 2.5 2 1.5 0.5 nt 130 120 125 115 135 110 m_H [GeV]

CMS Preliminary

 $\sqrt{s} = 8$ TeV, L = 19.0 fb⁻¹

Results of BDT likelihood fit for 125 GeV Higgs:

 $\mu = \sigma / \sigma_{_{SM}} = 1.00 \pm 0.49$

 $\sqrt{s} = 7$ TeV, L = 5.0 fb⁻¹

- Observed (expected) 95% CL limit: 0.95 (1.89)
- Observed (expected) significance: 2.10
- In combination with $H \rightarrow \tau \tau$: **3.4** σ

Validation with VZ \rightarrow Vbb

• Method gives correct SM result!

DEI

VIGET

- Tighten selection of BDT input variables
- To visualize: weight each category by S/(S+B)

- Results of fit in M_{bb} for 125 GeV Higgs:
 - $\mu = 0.76^{+0.68}$ -0.66
 - Observed (expected) 95% CL Limit: 2.0 (1.4)
 - Similar to latest ATLAS results! (ATLAS-CONF-2013-079)

VB NVMINE

Analysis Strategy: VBF H \rightarrow

11

- Jet pT > (85,70,60,40) GeV
- Quark jets from VBF required to have $\Delta \eta_{qq} > 2.5$, $m_{qq} > 300$ GeV
- Higgs candidate jets: $d\phi_{bb} < 2$
- Construct Artificial Neural Network (ANN) to separate QCDdominated background from VBF qqH → qqbb events
- Separate into categories and fit for background in each
 - Polynomial for QCD, templates for SM backgrounds

ANN Training and Inputs

- Input variables no strong correlations with m
 - $\Delta \eta_{aa}$, $\delta \Delta \eta_{aa}$: separation b/w qq jets, difference from b-jets
 - Mass and pseudorapidity of qq pair system, η of 3^{rd} jet
 - CSVs of b-tagged jets
 - Quark/gluon discriminant of q jets (constituent kinematics)
 - H₁ scalar sum of soft track jets in the event
 - Kinematics of bb system w.r.t. qq system (H/g separation)

Events / 2.5 GeV

Events / 2.5 GeV

Data-Fit

Signal Extraction

S. Zenz - Higgs to Bottom quarks - Higgs Hunting 2013

VBF Results

CMS

Results of fit for 125 GeV Higgs:

- $\mu = \sigma / \sigma_{_{\rm SM}} = 0.7 \pm 1.4$
- Observed (expected) 95% CL limit: 3.6 (3.0)
- Observed (expected) significance: 0.5σ (0.7σ)

- Uncertainty dominated by background statistics
- All systematic uncertainties combined worsen limit by ~15%

- Lepton+Jets (IvIvbb), Dilepton (Ivqqbb)
 - Subcategories: number of jets and b-tags (CSVM, $p_{\tau} > 30$ GeV)

	Lepton+Jets						Dilepton		
Jets	≥6	4	5	≥6	4	5	≥6	2	≥3
Tags	2	3	3	3	4	≥ 4	≥ 4	2	≥3

- BDT tuned in each subcategory
 - Inputs: kinematics of single or combined objects, "best Higgs mass", event shape, CSV discriminants of jets
- Global fit of BDT distributions
 - Includes $ttH \rightarrow tt\tau\tau$ for 8 TeV
- Systematic uncertainties
 - Experimental: b-tag efficiency and fake rate, Jet Energy Scale, ...
 - Theoretical: Q² on tt+jets, extra 50% on tt+HF, ...

- Training and variable selection separate for each channel
 - Up to 10 variables with highest 1D signal/background separation
- Specialized BDT trained against ttbb used as input for event-wide discriminant in most sensitive categories: 13% overall improvement

S. Zenz - Higgs to Bottom quarks - Higgs Hunting 2013

Signal Extraction

- Simultaneous fit in all categories, including tau
- Visualize fit by summing bins by log(S/B)

DEI

VIGET

$ttH \rightarrow ttbb Results$

- Observed (expected) 95% CL limit for 8 TeV at 125 GeV:
 - Combined [ττ,bb]: 5.2 (4.1)
 - Lepton+Jets: 4.9 (4.7)
 - Dilepton: 9.1 (8.2)
- Combined 7+8 TeV ttH(bb) + 8 TeV ttH(ττ,γγ): 3.3 (3.9)

VIGET

- All-Hadronic analysis
 - 3 reconstructed jets with |eta| < 2.2
 - 2 online b-tags required for trigger
 - Low-mass: pT(j1,j2,j3) > (46,38,20) GeV − 2.7 fb⁻¹
 - Medium-mass: pT(j1,j2,j3) > (60,53,20) GeV 4.0 fb⁻¹
- Semi-leptonic analysis
 - Require muon (pT > 15 GeV) from semi-leptonic b decay
 - Reduce trigger rate, allow jet pT(j1,j2,j3) < (30,30,20)
- Derive QCD background in 3 b-tag signal sample using events with 1-2 b-tags
- Dominant systematics: trigger and b-tagging efficiency, jet energy scale, factorization/renormalization QCD scale

All-Hadronic Background

- Construct 2 variables for fits:
 - Dijet mass of 2 leading jets
 - Event Btag variable X₁₂₃
 - Defined based on masses of reconstructed b-vertices
 - Sufficient statistics in all bins
- In 2 b-tag sample, define templates using assumed flavor of untagged jet
 - B-tagging efficiency from MC
 - Function of (p_{τ},η)
 - Data/MC scale factors
 - Additional simulation-derived corrections for non-bb contribution (3-4%), online btagging

Semi-Leptonic Background

- Templates derived using two methods using disjoint samples: bbj, bjj
- Likelihood ratio to differentiate background-like from signal-like events
 - Jet pT, separation of lead jets in (η,φ), and separation from 3rd jet
- Matrix Method: template from bbj events; b-tagging probabilities for 3rd jet
- Nearest Neighbor method: use kinematically-similar background events in control region to predict bjj → bbb probability
- Good agreement between methods!

All-Hadronic Signal Extraction

- Low-mass fit in $M_{_{bb}}$ and $X_{_{123}}$

High-mass fit in Mbb

- No signal left
- With signal right

VIGET

Semi-Leptonic Signal Extraction

$bH \rightarrow bbb$ Results

- Limits placed on cross section for bH+X cross section times H
 → bb branching ratio
- Interpreted as limits on parameters in the MSSM m^{max}_h

Conclusions

- Broad, well-developed CMS $H \rightarrow bb$ Program
 - All possible SM production mechanisms exploited
 - Multivariate techniques maximize kinematic information
- Everything consistent with Standard Model so far!

Extras

26 July 2013

		Yield uncertainty (%)	Contribution to	Removal effect on
Source	Туре	range	uncertainty (%)	total uncertainty (%)
Luminosity	normalization	2.2-4.4	< 2	< 0.1
Lepton efficiency and trigger (per lepton)	normalization	3	< 2	< 0.1
$Z(\nu\nu)H$ triggers	shape	3	< 2	< 0.1
Jet energy scale	shape	2–3	5.0	0.5
Jet energy resolution	shape	3–6	5.9	0.7
Missing transverse energy	shape	3	3.2	0.2
b-tagging	shape	3–15	10.2	2.1
Signal cross section (scale and PDF)	normalization	4	3.9	0.3
Signal cross section (p_T boost, EWK/QCD)	normalization	2/5	3.9	0.3
Signal Monte Carlo statistics	shape	1–5	13.3	3.6
Backgrounds (data estimate)	normlization	10	15.9	5.2
Single-top (simulation estimate)	normalization	15	5.0	0.5
Dibosons (simulation estimate)	normalization	15	5.0	0.5
MC modeling (V+jets and tt)	shape	10	7.4	1.1

VBF Systematic Uncertainties

Source	Uncertainty			
Background fit	depending on the statistics of each category			
Z+jets cross section	±20%			
top cross section	$\pm 20\%$			
Signal and Z peak position (JES)	$\pm 1.5\%$			
Signal and Z resolution	$\pm 10\%$			
Luminosity	$\pm 4.4\%$			
Trigger efficiency	$\pm 5-8\%$			
Signal acceptance due to JES	$\pm 10\%$			
Signal acceptance due to JER	±2%			
VBF cross section	$\pm 3\%$			
VBF Monte Carlo acceptance	$\pm 10\%$			
PDF	$\pm 5\%$			
VBF ANN shape due to b-tag	$\pm 2\%$			
VBF ANN shape due to quark-gluon discriminator	$\pm 2\%$			
VBF ANN shape due to UE modeling	-8-+2%			
GF cross section	$\pm 15\%$			
GF Monte Carlo acceptance	$\pm 50\%$			
GF ANN shape	$\pm 50\%$			

ttH Systematic Uncertainties

Source	Shape	Remarks
Luminosity	No	Signal and all backgrounds
Lepton ID/Trig	No	Signal and all backgrounds
Piloup	No	Signal and all backgrounds
Ton n reveabling	Vee	Only the alconour d
top <i>p</i> _T reweighting	ies	Circler dell heckeround
Jet Energy Resolution	NO	Signal and all backgrounds
Jet Energy Scale	Yes	Signal and all backgrounds
b-lag hf fraction	Yes	Signal and all backgrounds
b-Tag hf stats (linear)	Yes	Signal and all backgrounds
b-Tag hf stats (quadratic)	Yes	Signal and all backgrounds
b-Tag lf fraction	Yes	Signal and all backgrounds
b-Tag lf stats (linear)	Yes	Signal and all backgrounds
b-Tag lf stats (quadratic)	Yes	Signal and all backgrounds
b-Tag Charm (linear)	Yes	Signal and all backgrounds
b-Tag Charm (quadratic)	Yes	Signal and all backgrounds
QCD Scale (ttH)	No	Scale uncertainty for NLO tTH prediction
QCD Scale (tt)	No	Scale uncertainty for NLO tt and single top predictions
QCD Scale (V)	No	Scale uncertainty for NNLO W and Z prediction
QCD Scale (VV)	No	Scale uncertainty for NLO diboson prediction
pdf (gg)	No	Pdf uncertainty for gg initiated processes (tt, ttZ, ttH)
pdf (qq)	No	Pdf uncertainty for $q\bar{q}$ initiated processes (t $\bar{t}W$, W, Z).
pdf (qg)	No	Pdf uncertainty for qg initiated processes (single top)
Madgraph Q^2 Scale (tt+0p,1p,2p)	Yes	Madgraph Q ² scale uncertainty for tt+jets split
		by parton number. There is one nuisance parameter per parton
		multiplicity and they are uncorrelated.
Madgraph Q^2 Scale (tt+b/bb/cc)	Yes	Madgraph Q^2 scale uncertainty for $t\bar{t}+b/b\bar{b}/c\bar{c}$.
Madgraph Q^2 Scale (V)	No	Varies by jet bin.
Extra tt+hf rate uncertainty	No	A 50% uncertainty on the rate of $t\bar{t}+b$, $t\bar{t}+b\bar{b}$, $t\bar{t}+c\bar{c}$.

26 July 2013

Source	all-hadronic	semi-leptonic	type
Trigger efficiency	10%	3 - 5%	rate
Online b-tagging efficiency	32%	-	rate
b-tagging efficiency	$10 - 13\%^{\dagger}$	12%	shape/rate
b-tagging efficiency dependence on topology	6%	-	rate
Jet Energy Scale	1.4 - 6.8%	$^{+2.5}_{-3.1}$	shape/rate
Jet Energy Resolution	0.6 - 1.3%	1.9%	shape/rate
Muon momentum scale	-	0.2%	rate
Muon momentum resolution	-	0.6%	rate
Signal Monte Carlo statistics	1.1 –	rate	
Integrated luminosity	2.2%		rate
<i>PDF</i> and α_s uncertainties [*]	3 - 6%	$+(2.5-4.7)_{0/0}$ -(2.7-4.4)	rate
Renormalisation and fragmentation QCD scale*	6-	28%	rate
Underlying event and parton showering*		rate	