

CLIC: physics and detectors at a future TeV-scale e+e- linear collider

Lucie Linssen, CERN

on behalf of the CLIC detector and physics study (CLICdp) Lucie Linssen, seminar LAL Orsay, 8 April 2014

Outline

- Introduction to the CLIC accelerator
- Overall Physics scope and Vs energy staging
- Detector requirements and experimental conditions
- CLIC experiment, sub-detectors and R&D
- Example physics capabilities
 - Higgs
 - Тор
 - New Physics
- Summary

CLIC detector and physics (CLICdp)

Australia	Australian Collaboration for Accelerator Science (ACAS), University of Melbourne		
Belarus	National Scientific and Educational Centre of Particle and High Energy Physics (NC-PHEP), Belarusian State University, Minsk		
Chile	Pontificia Universidad Católica de Chile, Santiago		
Czech Republic	Institute of Physics of the Academy of Sciences of the Czech Republic, Prague		
Denmark	Department of Physics and Astronomy, Aarhus University		
France	Laboratoire d'Annecy-le-Vieux de Physique des Particules (LAPP), Annecy		
Germany	Max-Plack-Institut für Physik, Munich		
Israel	Department of Physics, Faculty of Exact Sciences, Tel Aviv University		
Norway	Department of Physics and Technology, University of Bergen		
Poland	The <u>Henryk Niewodniczanski</u> Institute of Nuclear Physics, Polish Academy of Sciences, Cracow		
Poland	Faculty of Physics and Applied Computer Science. AGH University of Science and Technology, Cracow		
Romania	Institute of Space Science, Bucharest-Magurele		
Serbia	Vinca Institute for Nuclear Sciences, Belgrade		
Spain	Spanish Network for Future Linear Colliders		
Switzerland	CERN		
United Kingdom	The School of Physics and Astronomy, University of Birmingham		
United Kingdom	University of Bristol		
United Kingdom	University of Cambridge		
United Kingdom	University of Glasgow		
United Kingdom	The Department of Physics of the University of Liverpool		
United Kingdom	Oxford University		
USA	Argonne National Laboratory, High Energy Physics Division		
USA	University of Michigan, Physics Department		

Light-weight cooperation structure No engagements, on best-effort basis With strong collaborative links to ILC

http://clicdp.web.cern.ch/

CLICdp: 23 institutes

Focus of CLIC-specific studies on:

- Physics prospects and simulation studies
- Detector optimisation + R&D for CLIC

• Introduction to the CLIC accelerator

ILC and CLIC in just a few words

CLIC

Linear e⁺e⁻ colliders Luminosities: few 10³⁴ cm⁻²s⁻¹

ILC

•2-beam acceleration scheme, at room temperature
•Gradient 100 MV/m
•√s up to 3 TeV
•Physics + Detector studies for 350 GeV - 3 TeV

CLIC focus is on energy frontier reach !

Superconducting RF cavities
Gradient 32 MV/m
√s ≤ 500 GeV (1 TeV upgrade option)
Focus on ≤ 500 GeV, physics studies also for 1 TeV

CLIC two-beam acceleration scheme

Two Beam Scheme:

CLIC layout at 3 TeV

Fig. 3.1: Overview of the CLIC layout at $\sqrt{s} = 3$ TeV.

Lucie Linssen, seminar LAL Orsay, 8 April 2014

CLIC strategy and objectives

2013-18 Development Phase

Develop a Project Plan for a staged implementation in agreement with LHC findings; further technical developments with industry, performance studies for accelerator parts and systems, as well as for detectors.

On the basis of LHC data and Project Plans (for CLIC and other potential projects), take decisions about next project(s) at the Energy Frontier.

4-5 year Preparation Phase

Finalise implementation parameters, Drive Beam Facility and other system verifications, site authorisation and preparation for industrial procurement.

Prepare detailed Technical Proposals for the detector-systems.

2024-25 Construction Start

Ready for full construction and main tunnel excavation.

Construction Phase

Stage 1 construction of CLIC, in parallel with detector construction.

Preparation for implementation of further stages.

Commissioning Becoming ready for datataking as the LHC programme reaches completion.

• Overall Physics scope and Vs energy staging

hadron vs. lepton colliders

p-p collisions	e ⁺ e ⁻ collisions
 Proton is compound object → Initial state not known event-by-event → Limits achievable precision 	 e⁺/e⁻ are point-like → Initial state well defined (Vs / polarization) → High-precision measurements
Circular colliders feasible	Linear Colliders (avoid synchrotron rad.)
 High rates of QCD backgrounds → Complex triggering schemes → High levels of radiation 	 Cleaner experimental environment → trigger-less readout → Low radiation levels
High cross-sections for colored-states	Superior sensitivity for electro-weak states

Physics at CLIC

clc

CLIC: e⁺e⁻ collider, staged approach

- 500 fb⁻¹ @ 350 375 GeV : precision Higgs and top physics
- 1.5 ab⁻¹ @ ~1.5 TeV : precision Higgs, precision SUSY, BSM reach, ...
- 2 ab⁻¹ @ ~ 3 TeV : Higgs self-coupling, precision SUSY, BSM reach,
 Exact energies of TeV stages would depend on LHC results

Lucie Linssen, seminar LAL Orsay, 8 April 2014

Physics at CLIC

clc

CLIC: e⁺e⁻ collider, staged approach

- 500 fb⁻¹ @ 350 375 GeV : precision Higgs and top physics
- 1.5 ab⁻¹ @ ~1.5 TeV : precision Higgs, precision SUSY, BSM reach, ...
- 2 ab⁻¹ @ ~ 3 TeV : Higgs self-coupling, precision SUSY, BSM reach,
 Exact energies of TeV stages would depend on LHC results

Lucie Linssen, seminar LAL Orsay, 8 April 2014

• Detector requirements and experimental conditions

CLIC physics aims => detector needs

+ requirements from CLIC beam structure and beam-induced background

Lucie Linssen, seminar LAL Orsay, 8 April 2014

CLIC machine environment

	CLIC at 3 TeV	
L (cm ⁻² s ⁻¹)	5.9×10 ³⁴	
BX separation	0.5 ns	Crives timin
#BX / train	312	requirements
Train duration (ns)	156	for CLIC dete
Rep. rate	50 Hz	
Duty cycle	0.00078%	
σ _x / σ _y (nm)	≈ 45 / 1	very small beam size
σ _z (μm)	44	

- 1 train = 312 bunches, 0.5 ns apart
- not to scale -

CLIC machine environment

H0.02 **Beamstrahlung** \rightarrow important energy losses right at the interaction point 3 TeV 0.015 E.g. full luminosity at 3 TeV: Vs $5.9 \times 10^{34} \text{ cm}^{-2}\text{s}^{-1}$ energy spectrum 0.01 Of which in the 1% most energetic part: $2.0 \times 10^{34} \text{ cm}^{-2}\text{s}^{-1}$ 0.005 Most physics processes are studied well above production threshold => profit from full luminosity 0 2000 3000 1000 0 [GeV]

Lucie Linssen, seminar LAL Orsa

CLIC conditions => impact on detector

clc

CLIC conditions => impact on detector technologies:

- High tracker occupancies => need small cell sizes (beyond what is needed for resolution)
 - Small vertex pixels
 - Large pixels in intermediate regions
 - Limited strip length in tracker
- Bkg energy => need high-granularity calorimetry
- Bkg suppression => overall need for precise hit timing
 - ~10 ns hit time-stamping in tracking
 - 1 ns accuracy for calorimeter hits
- Low duty cycle 😃
 - Triggerless readout
 - Allows for power pulsing
 - => less mass and high precision in tracking
 - => high density for calorimetry

• A detector for CLIC

comparison CLIC <>> LHC detector

In a nutshell:

CLIC detector:

•High precision:

Jet energy resolution
=> fine-grained calorimetry
Momentum resolution
Impact parameter resolution

•Overlapping beam-induced background:

- •High background rates, medium energies
- •High occupancies
- •Cannot use vertex separation
- •Need very precise timing (1ns, 10ns)

•"No" issue of radiation damage (10⁻⁴ LHC)

- •Except small forward calorimeters
- •Beam crossings "sporadic"
- •No trigger, read-out of full 156 ns train

LHC detector:

•Medium-high precision:

•Very precise ECAL (CMS)•Very precise muon tracking (ATLAS)

•Overlapping minimum-bias events:

- High background rates, high energiesHigh occupancies
- •Can use vertex separation in z
- •Need precise time-stamping (25 ns)

•Severe challenge of radiation damage

•Continuous beam crossings

•Trigger has to achieve huge data reduction

• Vertex and tracking detectors

CLIC vertex detector

- ~25×25 μm pixel size => ~2 Giga-pixels
- 0.2% X₀ material per layer <= very thin !
 - Very thin materials/sensors
 - Low-power design, power pulsing, air cooling
 - Aim: 50 mW/cm²
- Time stamping 10 ns
- Radiation level $<10^{11} n_{eq} \text{cm}^{-2} \text{year}^{-1} \le 10^4 \text{ lower than LHC}$

CLIC vertex detector R&D roadmap

Hybrid approach pursued: (<= other options possible)

- Thin (~50 µm) silicon sensors
- Thinned high-density ASIC
 - R&D within Medipix/Timepix effort
- Low-mass interconnect
 - Micro-bump-bonding (Cu-pillar option)
 - Through-Silicon-Vias (R&D with CEA-Leti)
- Power pulsing
- Air cooling

CLICpix demonstrator 64×64 pixels, fully functional

- 65 nm technology
- 25×25 µm² pixels
- 4-bit ToA and ToT info
- Data compression
- Pulsed power: 50 mW/cm²

CLIC vertex detector: thin assemblies

Ultimate aim:

- 50 μm sensor on 50 μm ASIC
- Slim-edge sensors
- Through-Silicon Vias (TSV)
 - eliminates need for wire bonds
 - 4-side buttable chip/sensor assemblies
 - large active surfaces => less material

Medipix3RX with TSV by (CEA-LETI)

First successful picture using Medipix3RX with TSV

50 μm thin sensor on Timpix tested at test beam !

Hybrid vertex detector with HV-CMOS

Pursuing an alternative readout option

Hybrid option:

Capacitive Coupled Pixel Detector (CCPD)

- HV CMOS chip as integrated sensor+ amplifier
- Capacitive coupling to readout chip through layer of glue => no bump bonding

Ongoing R&D with FEI4, Timepix, CLICpix

BLUE: External Voltages

Lucie Linssen, seminar LAL Orsay, 8 April 2014

CCPDV3

CLIC vertex R&D: power pulsing

Controlled current source

Design for low mass !

- Power pulsing with local energy storage in Si capacitors and voltage regulation with Low-Dropout Regulators (LDO)
- FPGA-controlled current source provides small continuous current

Local material: now 0.1%X₀/layer, can be reduced to 0.04%X₀/layer (Si-capacitor technology)

Analog:

- Voltage drop ~16 mV
- Measured average power dissipation <10 mW/cm²
 Digital
- Voltage drop ~70 mV
- Measured average power dissipation <35 mW/cm²

Total dissipation <50 mW/cm²

Lucie Linssen, seminar LAL Orsay, 8 April 2014

CLIC vertex engineering

thermo-mechanical test bench Lucie Linssen, seminar LAL Orsay, 8 April 2014

Vertex det. geometry optimisation

Double-sided layers

Comparison of 5 single-sided layers and 3 double-sided layers

- Similar flavour tag performance for two considered layouts
- Increasing the material has a larger impact than the layout

Lucie Linssen, seminar LAL Orsay, 8 April 2014

7

CLIC_ILD w and CLIC_SiD >> tracker

all-silicon tracker in 5 Tesla field

• Calorimetry

calorimetry and PFA

Jet energy resolution and background rejection drive the overall detector design

=> => fine-grained calorimetry + Particle Flow Analysis (PFA)

PFA calorimetry at CLIC

technology simulated jet energy resolution 12 RMS₉₀(E_j)/mean₉₀(E_j) [%] **ECAL** CLIC SID Si or Scint. (active) + Tungsten (absorber) 10 🕁 E;=100 GeV cell sizes 13 mm² or 25 mm² 30 layers in depth 📥 E;=1500 GeV **HCAL** 6 Several technology options: scint. + gas ê Ā R 0 d Tungsten (barrel), steel (endcap) 8 8 8 cell sizes 9 cm² (analog) or 1 cm^2 (digital) 60-75 layers in depth (no jet clustering, no background overlay) Total depth 7.5 Λ_i 0.20.8 040.6lcos(0) **PFA Calorimeter** 68 ECAL HCAL Tungsten Iron Tungsten Calorimeter for ILC digital analog analog digital many technologies pursued Micro Scintillator MAPS RPC GEM Silicon Scintillator megas

Lucie Linssen, seminar LAL Orsay, 8 April 2014

ECAL: silicon-tungsten

30 layers in depth cell size 5.5x5.5mm² ~100 M ECAL channels at ILC (ILD) ~2000 m² silicon Successful beam tests

Currently: technological Si-ECAL prototype

Real-scale detector integration model

Analog HCAL: scintillator-tungsten

Lucie Linssen, seminar LAL Orsay, 8 April 2014

digital DHCAL: glass RPC's + tungsten

Steel DHCAL Tungsten DHCAL 500'000 readout channels

54 glass RPC chambers, ~1m² each PAD size 1×1 cm² Digital readout (1 threshold) Fully integrated electronics Total 500'000 readout channels

- 1m³ semi-digital HCAL with glass RPC's
- 4 large (~1m²) micromegas readout planes

• Forward calorimetry

Lucie Linssen, seminar LAL Orsay, 8 April 2014
CLIC forward calorimetry

2 forward calorimeters: Lumical + Beamcal

- e/γ acceptance to small angles
- Luminosity measurement
- Beam feedback

Tungsten thickness 1 X₀, 40 layers BeamCal sensors GaAs LumiCal sensors silicon

BeamCal angular coverage 10 - 40 mrad LumiCal coverage 38 – 110 mrad doses up to 1 Mgy neutron fluxes of up to 10¹⁴ per year

Very compact !

Active layer gap is 0.8 mm Moliere radius 11 mm

• CLIC physics capabilities

Examples of benchmark studies, Geant4-based full detector simulations with overlay of $\gamma\gamma$ background. Analyses include SM physics backgrounds.

• Higgs physics

Higgs physics at CLIC

Lucie Linssen, seminar LAL Orsay, 8 April 2014

Higgs physics at CLIC

Lucie Linssen, seminar LAL Orsay, 8 April 2014

Double Higgs production

21%

 $\Delta(\lambda)$ for p(e⁻) = 80%

← results

obtained for $m_{\rm H}$ =120 GeV

12%

Summary of Higgs measurements

			Statistical precision			
Channel	Measurement	Observable	350 GeV	1.4 TeV	3.0 TeV	
			$500 {\rm fb}^{-1}$	1.5 ab^{-1}	2.0 ab^{-1}	Summary of CLIC Higgs
ZH	Recoil mass distribution	m _H	120 MeV	_	_	henchmark simulations
ZH	$\sigma(HZ) \times BR(H \rightarrow invisible)$	Γ_{inv}	tbd	_	_	benefinar k sintalations
ZH	$H \rightarrow b \overline{b}$ mass distribution	m _H	tbd	_	_	
$Hv_e\overline{v}_e$	$H \to b \overline{b}$ mass distribution	$m_{ m H}$	_	40 MeV*	33 MeV*	http://arxiv.org/abs/1307.5288
ZH	$\sigma(\mathrm{HZ}) \times BR(\mathrm{Z} \to \ell^+ \ell^-)$	$g^2_{\rm HZZ}$	4.2%	_	_	
ZH	$\sigma(HZ) \times BR(H \rightarrow b\overline{b})$	$g_{\mathrm{HZZ}}^2 g_{\mathrm{Hbb}}^2 / \Gamma_{\mathrm{H}}$	1%†	-	_	and the second second second
ZH	$\sigma(\mathrm{HZ}) \times BR(\mathrm{H} \rightarrow \mathrm{c}\overline{\mathrm{c}})$	$g_{\rm HZZ}^2 g_{\rm Hcc}^2 / \Gamma_{\rm H}$	$5\%^{\dagger}$	_	_ 1	to be combined with recent result:
ZH	$\sigma(HZ) \times BR(H \rightarrow gg)$		$6\%^{\dagger}$	_	_	$\Delta(\sigma(HZ) \times BR(Z - > qq)) \simeq 2.2\%$
ZH	$\sigma(\mathrm{HZ}) \times BR(\mathrm{H} \to \tau^+ \tau^-)$	$g^2_{ m HZZ} g^2_{ m H\tau\tau}/\Gamma_{ m H}$	5.7%	_	_	$\sigma(HZ) \times BR(Z - > qq)$
ZH	$\sigma(HZ) \times BR(H \rightarrow WW^*)$	$g_{\rm HZZ}^2 g_{\rm HWW}^2 / \Gamma_{\rm H}$	$2\%^\dagger$	_	_	
ZH	$\sigma(HZ) \times BR(H \rightarrow ZZ^*)$	$g_{\rm HZZ}^2 g_{\rm HZZ}^2 / \Gamma_{\rm H}$	🔵 tbd	_	_	
$Hv_e\overline{v}_e$	$\sigma(Hv_e\overline{v}_e) \times BR(H \rightarrow b\overline{b})$	$g_{\rm HWW}^2 g_{\rm Hbb}^2 / \Gamma_{\rm H}$	$3\%^{\dagger}$	0.3%	0.2%	
$Hv_e\overline{v}_e$	$\sigma(\mathrm{Hv}_{\mathrm{e}}\overline{\mathrm{v}}_{\mathrm{e}}) \times \mathit{BR}(\mathrm{H} \rightarrow \mathrm{c}\overline{\mathrm{c}})$	$g_{\rm HWW}^2 g_{\rm Hcc}^2 / \Gamma_{\rm H}$	_	2.9%	2.7%	
$Hv_e\overline{v}_e$	$\sigma(Hv_e\overline{v}_e) \times BR(H \rightarrow gg)$		_	1.8%	1.8%	
$Hv_e \overline{v}_e$	$\sigma(\mathrm{Hv}_{\mathrm{e}}\overline{\mathrm{v}}_{\mathrm{e}}) \times \mathit{BR}(\mathrm{H} \rightarrow \tau^{+}\tau^{-})$	$g_{\rm HWW}^2 g_{\rm H\tau\tau}^2 / \Gamma_{\rm H}$	_	3.7%	tbd	Work in progress !
$Hv_e \overline{v}_e$	$\sigma(\mathrm{Hv}_{\mathrm{e}}\overline{\mathrm{v}}_{\mathrm{e}}) \times \mathit{BR}(\mathrm{H} \rightarrow \mu^{+}\mu^{-})$	$g_{\rm HWW}^2 g_{\rm Huu}^2 / \Gamma_{\rm H}$	_	29%*	16%	
$Hv_e \overline{v}_e$	$\sigma(\mathrm{Hv}_{\mathrm{e}}\overline{\mathrm{v}}_{\mathrm{e}}) \times \mathit{BR}(\mathrm{H} \to \gamma\gamma)$		_	15%*	tbd	
$Hv_e \overline{v}_e$	$\sigma(\mathrm{Hv}_{\mathrm{e}}\overline{\mathrm{v}}_{\mathrm{e}}) \times BR(\mathrm{H} \rightarrow \mathrm{Z}\gamma)$		_	tbd	tbd	
$Hv_e \overline{v}_e$	$\sigma(\mathrm{Hv}_{\mathrm{e}}\overline{\mathrm{v}}_{\mathrm{e}}) \times \mathit{BR}(\mathrm{H} \to \mathrm{WW}^{*})$	$g_{ m HWW}^4/\Gamma_{ m H}$	🔵 tbd	$1.1\%^{*}$	0.8%*	
$Hv_e \overline{v}_e$	$\sigma(Hv_e\overline{v}_e) \times BR(H \rightarrow ZZ^*)$	$g_{\rm HWW}^2 g_{\rm HZZ}^2 / \Gamma_{\rm H}$	_	$3\%^{\dagger}$	$2\%^\dagger$	
He ⁺ e ⁻	$\sigma({\rm He^+e^-}) \times {\it BR}({\rm H} \rightarrow {\rm b} \overline{\rm b})$	$g^2_{\rm HZZ} g^2_{\rm Hbb} / \Gamma_{\rm H}$	_	$1\%^\dagger$	$0.7\%^\dagger$	
tīH	$\sigma(t\overline{t}H) \times BR(H \rightarrow b\overline{b})$	$g_{\rm Htt}^2 g_{\rm Hbb}^2 / \Gamma_{\rm H}$	_	8%	tbd	
$HHv_e\overline{v}_e$	$\sigma(HHv_e\overline{v}_e)$	8HHWW	_	7%*	3%*	
HHv _e v _e	$\sigma(\mathrm{HHv}_{\mathrm{e}}\overline{\mathrm{v}}_{\mathrm{e}})$	λ	_	28%	16%	
$HHv_e\overline{v}_e$	with -80% e ⁻ polarization	λ	_	21%	12%	* Preliminary
						+ Estimate 44

CLIC Higgs global fits Work in progress !

Model-independent global fits ×

80% electron polarisation assumed above 1 TeV

Parameter	Mea	Measurement precision					
	350 GeV	350 GeV + 1.4 TeV		V +3.0 TeV			
	$500 {\rm ~fb}^{-1}$	$+1.5 \text{ ab}^{-1}$		$^{-1}$ +2.0 ab ⁻¹			
m _H	120.00 MeV	30	.00 Me`	V 20.00 MeV			
λ	_	2	21.00%	10.00%			
Γ _H [%]	5.47		4.23	4.11			
<i>g</i> hzz [%]	1.00		1.00	1.00			
<i>g</i> _{HWW} [%]	1.87		1.05	1.03			
g _{Hbb} [%]	2.06		1.11	1.05			
g _{Hcc} [%]	3.28		1.50	1.26			
g _{Htt} [%]	_		4.15	4.13			
g _{Hττ} [%]	3.55		1.68	1.64			
g _{Ημμ} [%]	_		11.03	5.37			
g _{Hgg} [%]	3.67		1.29	1.15			
$g_{\rm H\gamma\gamma}$ [%]	—		5.60	5.59			

~1 % precision on many couplings

limited by g_{HZZ} precision

- Constrained "LHC-style" fits
 - Assuming no invisible Higgs decays (model-dependent):

$\kappa_i^2 = rac{\Gamma_i}{\Gamma_i _{\mathrm{SM}}}$ $\Gamma_{\mathrm{H,md}} = \sum_i \kappa_i^2 BR_i$								
Parameter Measurement precision								
	350 GeV	+ 1.4 TeV	+3.0 TeV					
	500 fb^{-1}	$+1.5 \text{ ab}^{-1}$	$+2.0 \text{ ab}^{-1}$					
Γ _{H,model} [%]	1.62	0.29	0.22					
<i>к</i> _{HZZ} [%]	0.45	0.32	0.24					
<i>к</i> _{НWW} [%]	1.53	0.15	0.11					
к_{Нbb} [%]	1.69	0.33	0.21					
<i>к</i> _{Нtt} [%]	3.07	1.04	0.74					

1.35

0.79

5.52

sub-% precision for most couplings

3.45

3.62

*к*_{Нττ} [%]

*к*_{Hgg} [%] $\kappa_{\rm Hyy}$ [%] 1.31

0.56

5.51

• Top physics

Top physics at CLIC

Exploration of scope for top physics at CLIC is in an early stage:

- Existing studies concentrate on top mass measurements
- Coupling to the Higgs (as part of Higgs studies)

Plans for next studies include:

- Asymmetries to study couplings to γ, Z
- Measurement of couplings to W
- Sensitivity to CP violation
- Flavour-changing top decays

•

Results of top benchmark studies

Final result is dominated by systematic errors (theor. normalisation, beam-energy systematics, translation of 1S mass to \overline{MS} scheme) => 100 MeV error on top mass

• CLIC potential for New Physics

Sensitivity to Higgs partners

Higgs multiplet BSM → searches accessible up to √s/2

Example MSSM benchmark study at 3 TeV, 2 ab⁻¹

Multi-jet final states Full simulation studies with background overlay

SUSY => slepton study, 3 TeV

100

80

60

40

20

0

0

500

 $\mu_{R}^{+}+\mu_{R}^{-} \rightarrow \mu^{+}+\mu^{-}+\chi_{1}^{0}+\chi_{1}^{0}$ Fit:S+B(Data)-B(MC), events: 2845

1000

= 341.75 ± 6.38 , χ^2 / ndf 24.5 /45

smuon

1500

 $M \tilde{u} = 1014.29 \pm 5.57$

Slepton production at CLIC very clean SUSY "model II": slepton masses ~ 1 TeV Channels studied include

$$\begin{array}{l} \bullet \ e^+e^- \rightarrow \tilde{\mu}_R^+\tilde{\mu}_R^- \rightarrow \mu^+\mu^-\,\tilde{\chi}_1^0\,\tilde{\chi}_1^0 \\ \bullet \ e^+e^- \rightarrow \tilde{e}_R^+\tilde{e}_R^- \rightarrow e^+e^-\,\tilde{\chi}_1^0\,\tilde{\chi}_1^0 \\ \bullet \ e^+e^- \rightarrow \tilde{\nu}_e\tilde{\nu}_e \rightarrow e^+e^-W^+W^-\,\tilde{\chi}_1^0\,\tilde{\chi}_1^0 \end{array}$$

Leptons and missing energy Masses from analysis of endpoints of energy spectra

2000

Results of SUSY benchmarks

Table 8: Summary table of the CLIC SUSY benchmark analyses results obtained with full-detector simulations with background overlaid. All studies are performed at a center-of-mass energy of 3 TeV (1.4 TeV) and for an integrated luminosity of 2 ab^{-1} (1.5 ab^{-1}) [21, 22, 23, 24, 25, 26, 27].

\sqrt{s} (TeV)	Process	Decay mode	SUSY model	Measured quantity	Generator value (GeV)	Stat. uncertainty			
	Sleptons	$\widetilde{\mu}_{R}^{+} \widetilde{\mu}_{R}^{-} \rightarrow \mu^{+} \mu^{-} \widetilde{\chi}_{1}^{0} \widetilde{\chi}_{1}^{0}$	П	$\tilde{\ell} \text{ mass} \\ \widetilde{\chi}_1^0 \text{ mass}$	1010.8 340.3	0.6% 1.9%			
3.0		$\widetilde{e}^+_R \widetilde{e}^R \! \rightarrow e^+ e^- \widetilde{\chi}^0_1 \widetilde{\chi}^0_1$		ℓ mass	1010.8	0.3%			
				$\widetilde{\chi}_1^0$ mass	340.3	1.0%			
		$\widetilde{\nu}_{0}\widetilde{\nu}_{0} \rightarrow \widetilde{\gamma}_{1}^{0}\widetilde{\gamma}_{1}^{0}e^{+}e^{-}W^{+}W^{-}$		$\ell \text{ mass}$	1097.2	0.4%			
				$\widetilde{\chi}_1^{\perp}$ mass	643.2	0.6%			
2.0	Chargino	$\widetilde{\chi}_{1}^{+}\widetilde{\chi}_{1}^{-} ightarrow \widetilde{\chi}_{1}^{0}\widetilde{\chi}_{1}^{0}W^{+}W^{-}$	п	$\widetilde{\chi}_1^{\pm}$ mass	643.2	1.1%			
3.0	Neutralino	$\widetilde{\chi}_{2}^{0}\widetilde{\chi}_{2}^{0} \rightarrow h/Z^{0}h/Z^{0}\widetilde{\chi}_{1}^{0}\widetilde{\chi}_{1}^{0}$	Ш	$\widetilde{\chi}_2^0$ mass	643.1	1.5%			
3.0	Squarks	$\widetilde{q}_{R}\widetilde{q}_{R} \rightarrow q\overline{q}\widetilde{\chi}_{1}^{0}\widetilde{\chi}_{1}^{0}$	Ι	\widetilde{q}_{R} mass	1123.7	0.52%			
3.0	Heavy Higgs	$H^0A^0 \rightarrow b\overline{b}b\overline{b}$		H^0/A^0 mass	902.4/902.6	0.3%			
		${ m H^+H^-} ightarrow t \overline{ m b} b \overline{ m t}$	1	H^{\pm} mass	906.3	0.3%			
	Sleptons	$\widetilde{\mu}^+_R \widetilde{\mu}^R \to \mu^+ \mu^- \widetilde{\chi}^0_1 \widetilde{\chi}^0_1$	Ш	$\tilde{\ell}$ mass	560.8	0.1%			
				$\widetilde{\alpha}_{i}^{0}$ mass	357.8	0.1%			
		$\begin{split} & \widetilde{e}_R^+ \widetilde{e}_R^- \to e^+ e^- \widetilde{\chi}_1^0 \widetilde{\chi}_1^0 \\ & \widetilde{\nu}_e \widetilde{\nu}_e \to \widetilde{\chi}_1^0 \widetilde{\chi}_1^0 e^+ e^- W^+ W^- \end{split}$		$\tilde{\ell}$ mass	558.1	0.1%			
1.4				$\widetilde{\gamma}_{1}^{0}$ mass	357.1	0.1%			
				$\tilde{\ell}$ mass	644 3	2.5%			
				$\widetilde{\chi}_1^{\pm}$ mass	487.6	2.7%			
1.4	Stau	$\widetilde{\tau}_1^+ \widetilde{\tau}_1^- \to \tau^+ \tau^- \widetilde{\chi}_1^0 \widetilde{\chi}_1^0$	III	$\tilde{\tau}_1$ mass	517	2.0%			
	Chargino	$\widetilde{\chi}_1^+ \widetilde{\chi}_1^- ightarrow \widetilde{\chi}_1^0 \widetilde{\chi}_1^0 W^+ W^-$ $\widetilde{\chi}_2^0 \widetilde{\chi}_2^0 ightarrow h/Z^0 h/Z^0 \widetilde{\chi}_1^0 \widetilde{\chi}_1^0$	III	$\widetilde{\chi}_1^{\pm}$ mass	487	0.2%			
1.4	Neutralino			$\widetilde{\chi}_{2}^{0}$ mass	487	0.1%			
Large part of the SUSY spectrum measured at <1% level									

Indirect Z' search

Indirect Z' search in $e^+e^- \Rightarrow \mu^+\mu^-$

Fig. 14: 5σ limit for a $M_{Z'}$ discovery as function of the integrated luminosity for different values of the couplings g'_{Y} and g'_{BL} . The limits shown are determined from the combined observables σ and A_{FB} at $\sqrt{s} = 3$ TeV and 1.4 TeV.

CLIC reach for New Physics

			CLIC at 3	TeV	
New particle	LHC (14 TeV)	HL-LHC	CLIC3	-	
squarks [TeV]	2.5	3	≲1.5	Diroct	observation
sleptons [TeV]	0.3	-	$\lesssim 1.5$	Direct	
Z' (SM couplings) [TeV]	5	7	20		
2 extra dims M _D [TeV]	9	12	20-30		1
TGC (95%) (λ_{γ} coupling)	0.001	0.0006	0.0001	LOOP	/ tive operator
μ contact scale [TeV]	15	-	60	enec	
Higgs composite scale [TeV]	5–7	9-12	70		

Table 10: Discovery reach of various theory models for different colliders [5]. LHC at $\sqrt{s} = 14$ TeV assumes 100 fb⁻¹ of integrated luminosity, while HL-LHC is with 1 ab⁻¹, and CLIC3 is $\sqrt{s} = 3$ TeV with up to 2 ab⁻¹. TGC is short for Triple Gauge Coupling, and " μ contact scale" is short for LL μ contact interaction scale Λ with g = 1.

further reading

- CLIC CDR (#1), A Multi-TeV Linear Collider based on CLIC Technology, CERN-2012-007, <u>https://edms.cern.ch/document/1234244/</u>
- CLIC CDR (#2), Physics and Detectors at CLIC, CERN-2012-003, <u>arXiv:1202.5940</u>
- CLIC CDR (#3), The CLIC Programme: towards a staged e⁺e⁻ Linear Collider exploring the Terascale, CERN-2012-005, <u>http://arxiv.org/abs/1209.2543</u>
- Physics at the CLIC e+e- Linear Collider, Input to the Snowmass process 2013, <u>http://arxiv.org/abs/1307.5288</u>

summary

CLIC is the only mature option for a multi-TeV e⁺e⁻ collider Very active R&D projects for accelerator and physics/detector

- Energy staging → optimal physics exploration
 - With possible stages at 350 GeV, 1.4, and 3 TeV
- CLIC @ 350 GeV
 - Precision Higgs and top measurements
- CLIC @ 1.4 and 3 TeV
 - Improved precision of many observables and access to rare Higgs decays
 - Discovery machine for BSM physics at the energy frontier

Welcome to join !

http://clicdp.web.cern.ch/

SPARE SLIDES

The key results of the CDR studies

Drive beam scheme: - Generation tested, used to accelerate test beam above specifications, deceleration as expected - Improvements on operation, reliability, losses, more deceleration studies underway

Main Linac gradient: - Ongoing test close to or on target (BDR 10⁻⁷, 100 MV/m) - Uncertainty from beam loading being tested

Luminosity performance: Damping ring like an ambitious light source, no show stopper - Alignment system principle demonstrated - Stabilisation system developed, benchmarked, better system in pipeline - Simulations on or close to the target, plus verification studies in FACET and ATF on-going

- Consistent three stage implementation scenario defined - Schedules, cost and power developed and presented - Site and CE studies documented inssen, seminar LAL Orsay, 8 April 2014

CLIC timing structure demanding: - Detailed GEANT 4 simulations - Studied using full reconstruction with background - Make full use of timing and fine granularity to reconstruct the physics objects with very high precision

Main activities and goals for 2018

Physics studies related to energy frontier capabilities and potential new physics as it emerges from LHC Detector R&D compatible with CLIC specifications

A re-baselined staged project plan, cost and power optimisation, increased industrialisation effort for cost-drivers

High Gradient structure development and significantly increased test-capacity for X-band RF-structures

System-test programmes in CTF3, at ATF and FACET, as well as system-tests in collaborative programmes with light-source laboratories

Technical systems developments, related among others to complete modules, alignment/stability, instrumentation and power sources

Fig. 3.5: Simplified upgrade scheme for CLIC staging scenario A. The coloured lines indicate the required movement of the modules from one stage to the next.

CLIC layout at 500 GeV

Fig. 3.2: Overview of the CLIC layout at $\sqrt{s} = 500$ GeV. (scenario A)

Parameters, scenario A

Table 3.3: Parameters for the CLIC energy stages of scenario A.

Parameter	Symbol	Unit			
Centre-of-mass energy	\sqrt{s}	GeV	500	(1400)	3000
Repetition frequency	frep	Hz	50	50	50
Number of bunches per train	n_b		354	312	312
Bunch separation	Δ_t	ns	0.5	0.5	0.5
Accelerating gradient	G	MV/m	80	80/100	100
Total luminosity	L	$10^{34} \mathrm{cm}^{-2}\mathrm{s}^{-1}$	2.3	3.2	5.9
Luminosity above 99% of \sqrt{s}	$\mathscr{L}_{0.01}$	$10^{34} \mathrm{cm}^{-2}\mathrm{s}^{-1}$	1.4	1.3	2
Main tunnel length		km	13.2	27.2	48.3
Charge per bunch	Ν	10 ⁹	6.8	3.7	3.7
Bunch length	σ_z	μm	72	44	44
IP beam size	σ_x/σ_y	nm	200/2.6	pprox 60/1.5	pprox 40/1
Normalised emittance (end of linac)	$\varepsilon_x/\varepsilon_y$	nm	2350/20	660/20	660/20
Normalised emittance (IP)	$\varepsilon_x/\varepsilon_y$	nm	2400/25	_	_
Estimated power consumption	Pwall	MW	272	364	589

Parameters, scenario B

Table 3.4: Parameters for the CLIC energy stages of scenario B.

Parameter	Symbol	Unit			
Centre-of-mass energy	\sqrt{s}	GeV	500	(1500)	3000
Repetition frequency	frep	Hz	50	50	50
Number of bunches per train	n_b		312	312	312
Bunch separation	Δ_t	ns	0.5	0.5	0.5
Accelerating gradient	G	MV/m	100	100	100
Total luminosity	L	$10^{34} \mathrm{cm}^{-2}\mathrm{s}^{-1}$	1.3	(3.7)	5.9
Luminosity above 99% of \sqrt{s}	$\mathscr{L}_{0.01}$	$10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}$	0.7	1.4	2
Main tunnel length		km	11.4	27.2	48.3
Charge per bunch	Ν	10 ⁹	3.7	3.7	3.7
Bunch length	σ_z	μm	44	44	44
IP beam size	σ_x/σ_y	nm	100/2.6	pprox 60/1.5	pprox 40/1
Normalised emittance (end of linac)	$\varepsilon_x/\varepsilon_y$	nm		660/20	660/20
Normalised emittance	$\varepsilon_x/\varepsilon_y$	nm	660/25	_	_
Estimated power consumption	Pwall	MW	235	364	589

Integrated luminosity

Possible scenarios "A" and "B", these are "just examples"

Fig. 5.2: Integrated luminosity in the scenarios optimised for luminosity in the first energy stage (left) and optimised for entry costs (right). Years are counted from the start of beam commissioning. These figures include luminosity ramp-up of four years (5%, 25%, 50%, 75%) in the first stage and two years (25%, 50%) in subsequent stages.

Based on 200 days/year at 50% efficiency (accelerator + data taking combined)

=> CLIC can provide an evolving and rich physics program over several decades

CLIC, possible implementation

Fig. 7.2: CLIC footprints near CERN, showing various implementation stages [5].

CLIC_ILD and CLIC_SiD

Two general-purpose CLIC detector concepts Based on initial ILC concepts (ILD and SiD) Optimised and adapted to CLIC conditions

CLIC_ILD

7 m

CLIC_SiD

combined p_T and timing cuts

$e^+e^- \rightarrow H^+H^- \rightarrow t\bar{b}b\bar{t} \rightarrow 8 \text{ jets}$

1.2 TeV background in reconstruction time window

100 GeV background after tight cuts

ECAL: Scint-ECAL (CALICE)

Lucie Linssen, seminar LAL Orsay, 8 April 2014

Row of MPPC (SiPM)

SiPM with more pixels

1 cm

A-HCAL (CALICE)

AHCAL 2nd generation fully integrated prototype undergoing beam tests

3x3 cm² scintillator tiles with SiPMs
Integrated electronics (SPIROC chip)
LED SiPM calibration
Power-pulsing
220 cm long modules
Active layer thickness of 5.4 mm

CLIC machine environment (2)

Coherent e⁺e⁻ pairs

• 7 x 10⁸ per BX, very forward

Incoherent e⁺e⁻ pairs

• 3 x 10⁵ per BX, rather forward

$\gamma\gamma \rightarrow$ hadrons

- 3.2 events per BX
- main background in calorimeters
 - ~19 TeV in HCAL per bunch train

Simplified view: **Pair background**

Design issue (high occupancies)

$\gamma\gamma \rightarrow hadrons$

- Impacts on the physics
- Needs suppression in data

background suppression at CLIC

• Allows to protect high- p_T physics objects

┢

Use well-adapted jet clustering algorithms

• Making use of LHC experience (FastJet)

time window / time resolution

The event reconstruction software uses: hit resolution Subdetector Reconstruction window 10 ns ECAL 1 nsHCAL Endcaps 10 ns 1 nsHCAL Barrel 100 ns 1 ns $10/\sqrt{12}$ ns Silicon Detectors 10 ns TPC entire bunch train n/a \mathbf{K} t_o physics event (offline)

Translates in precise **timing requirements** of the sub-detectors
PFO-based timing cuts

Region	p _t range	Time cut
Photons		
central	$0.75~{ m GeV} \le p_t < 4.0~{ m GeV}$	t < 2.0 nsec
$(\cos\theta \le 0.975)$	$0~{ m GeV} \le p_t < 0.75~{ m GeV}$	t < 1.0 nsec
forward	$0.75 { m ~GeV} \le p_t < 4.0 { m ~GeV}$	t < 2.0 nsec
$(\cos \theta > 0.975)$	$0~{ m GeV} \le p_t < 0.75~{ m GeV}$	t < 1.0 nsec
Neutral hadrons		
central	$0.75~{ m GeV} \le p_t < 8.0~{ m GeV}$	t < 2.5 nsec
$(\cos\theta \le 0.975)$	$0~{ m GeV} \le p_t < 0.75~{ m GeV}$	t < 1.5 nsec
forward	$0.75~{ m GeV} \le p_t < 8.0~{ m GeV}$	t < 2.0 nsec
$(\cos \theta > 0.975)$	$0~{ m GeV} \le p_t < 0.75~{ m GeV}$	t < 1.0 nsec
Charged PFOs		
all	$0.75~{ m GeV} \le p_t < 4.0~{ m GeV}$	t < 3.0 nsec
	$0~{ m GeV} \le p_t < 0.75~{ m GeV}$	t < 1.5 nsec

time development in hadronic showers

- In steel 90% of the energy is recorded within 6 ns (corrected for time-of-flight).
- In tungsten this takes almost ~100 ns. (depends on active material)
 - Response is slower due to the much larger component of the energy in slow neutrons.
- Need to integrate over ~100 ns in reconstruction, keeping out pile-up hits...

Higgs Decay Processes

- SM Higgs branching ratios depend only on the Higgs mass
- 125 GeV Higgs has sizable branching ratios to large number of final states
 - $H \rightarrow b\overline{b}$: 58%
 - $H \rightarrow WW^*$: 22%
 - $H \rightarrow gg: 8.5\%$
 - $H \rightarrow \tau^+ \tau^-$: 6.4%
 - $H \rightarrow ZZ^*$: 2.7%
 - $H \rightarrow c\overline{c}$: 2.7%
 - $H \rightarrow \gamma \gamma$: 0.23%
 - $H \rightarrow Z\gamma$: 0.15%
 - $H \rightarrow \mu^+ \mu^-$: 0.022%
- Measuring all these decay channels is excellent test of Standard Model

gaugino pair production, 3 TeV

Example

SUSY "model II":

$$m(\tilde{\chi}_1^0) = 340 \,\text{GeV}$$
 $m(\tilde{\chi}_2^0), m(\tilde{\chi}_1^+) \approx 643 \,\text{GeV}$

Higgs compositeness

Allows to probe Higgs compositeness at the 30 TeV scale for 1 ab⁻¹ at 3 TeV (60 TeV scale if combined with single Higgs production)

clc

European Strategy statements => high-energy frontier

2006 statement "4":

4. In order to be in the position to push the energy and luminosity frontier even further it is vital to strengthen the advanced accelerator R&D programme; *a coordinated programme should be intensified, to develop the CLIC bechnology and high performance magnets for future accelerators, and to play a significant role in the study and development of a high-intensity neutrino facility.*

proton-proton or electron-positron

at high-energy frontier

2013 statement "d":

d) To stay at the forefront of particle physics, Europe needs to be in a position to propose an ambitious post-LHC accelerator project at CERN by the time of the next Strategy update, when physics results from the LHC running at 14 TeV will be available. CERN should undertake design studies for accelerator projects in a global context, with emphasis on proton-proton and electron-positron high-energy frontier machines. These design studies should be coupled to a vigorous accelerator R&D programme, including mgh-field magnets and high-gradient accelerating structures, in collaboration with national institutes, laboratories and universities worldwide.

CLIC and FCC

CERN-hosted design studies at the high-energy frontier

