Nouveaux Etats mésoniques découverts avec les usines à B

Réunion du GDR "Physique subatomique et calculs sur réseau" LAL, Orsay 15-17 juin 2007

Denis Bernard LLR Ecole Polytechnique France

New Resonances

- Tentatively assigned to Charmonium states :

$$\begin{array}{ll} h_c & 1^1 P_1 & (\mathsf{CLEO}) & \psi(2S) \to \pi^0 h_c(\gamma \eta_c) \\ X(3943) & \eta_c''(3^1 S_0(c\overline{c})) ? & (\mathsf{Belle}) & \operatorname{recoil} \text{ on } J/\psi \text{ in } e^+e^- \\ Y(3940) & \chi_{c1}'(2^3 P_1(c\overline{c})) ? & (\mathsf{Belle}) & B \to (J/\psi \, \omega) K \\ Z(3930) & \chi_{c2}'(2^3 P_2(c\overline{c})) ? & (\mathsf{Belle}) & \gamma\gamma \to D\overline{D} \end{array}$$

- Certainly not Charmonium states (What are they?) :

X(3872) (Belle) Y(4260) (BaBar)

 $\psi(2S) \to \pi^0 h_c(\gamma \eta_c)$

 $3.08 \times 10^6 \ \psi(2S)$ decays.

• $M(h_c) = 3524.4 \pm 0.6(stat) \pm 0.4(syst)$ MeV

• $M({}^{3}P_{J}) - M({}^{1}P_{1}) = 1.0 \pm 0.6(stat) \pm 0.4(syst)$ MeV

CLEOc

PRL 95, 102003 (2005)

 $X(3943): e^+e^- \rightarrow J/\psi X$

Double charmonium production 350 fb⁻¹ hep-ex/0507019 (LP 2005)

• $M = 3943 \pm 6 \pm 6 \text{ MeV}$ • $\Gamma = 15.4 \pm 10.1 \text{ MeV}.$ • $BR(X \to D\bar{D}^*) = 96^{+45}_{-32} \pm 22\%,$ • $BR(X \to D\bar{D}) < 41\%$ (90% CL), • and $BR(X \to \omega J/\psi) < 26\%$ (90% CL). • $R(X \to \omega J/\psi) < 26\%$ (90% CL).

Possibly
$$3^1S_0(c\overline{c})$$
 η_c'' state

Test
$$\gamma\gamma \to D\bar{D}^*$$

(S. Godfrey FPCP 2006, hep-ph/0605152)

 $B \to Y(3940)K, Y(3940) \to J/\psi \pi \pi \pi^0$

 $\gamma\gamma \to Z(3930) \to DD$

- $\gamma\gamma \rightarrow D\bar{D}$: $J^{PC} = 0^{++}, 2^{++}$
- $M = 3929 \pm 5 \pm 2 \,\mathrm{MeV}$
- $\Gamma = 29 \pm 10 \pm 2 \,\mathrm{MeV}$
- $\Gamma_{\gamma\gamma} \cdot \mathcal{B}_{D\bar{D}} = 0.18 \pm 0.05 \pm 0.03$ keV.
- DD angular distrib. consistent with J = 2.

Probably χ'_{c2} state $(2^3P_2(c\bar{c}))$ Test : exclude χ'_{c0} by observing $D\overline{D}^* | (D\overline{D}^*/D\overline{D} \approx 1/3 \text{ for } \chi'_{c2})$ (Godfrey) 395 fb^{-1} PRL 96, 082003 (2006) IR Denis Bernard

Fig. 2. The quenched charmonium spectrum (Columbia², CP-PACS³), glueballs⁴ and spin-exotic $c\bar{c}$ -glue hybrids², overlayed with the experimental spectrum.

"Charmonia from lattice QCD"

G. Bali hep-lat/0608004

X(3872)

X(3872) Observation

- Discovered by Belle in $B \to KX(3872)$, $X(3872) \to J/\psi \pi^+\pi^-$
- Confirmed by BaBar,
- Also seen in inclusive production in $\overline{p}p$ by D0, CDF.

X(3872) Mass : 2005

• $m = 3871.9 \pm 0.5 \,\text{MeV}/c^2$ ($D^0 \overline{D}^{*0}$ threshold is at $3871.3 \pm 1.0 \,\text{MeV}/c^2$) PDG04

•
$$M_{X(3872)} - M_{D^0 D^{*0}} = 0.6 \pm 1.1 \,\mathrm{MeV}/c^2$$

• Narrow $\Gamma < 2.3 \,\mathrm{MeV}$ @ 90 % CL. (Belle)

 $< 4.1 \,\mathrm{MeV}$ (BaBar)

Г

X(3872) Mass and CLEO's D^0 Mass

 $\Psi(3770) \rightarrow D^0 \overline{D}{}^0$, $D^0 \rightarrow K^0_S \phi$, $(\pi^+ \ \pi^-)(K^+ \ K^-)$

- Very small background
- D^0 , K^0_S , ϕ , have small momenta
- D^0 mass calibrated by K^0_S , ϕ mass.

CLEO PRELIMINARY

- $1864.85 \pm 0.15 \pm 0.20 \,\mathrm{MeV}/c^2$
- $1864.5 \pm 0.40 \,\mathrm{MeV}/c^2$ PDG'06 fit
- $1864.1 \pm 1.00 \,\mathrm{MeV}/c^2$ PDG'06 average

$$\begin{split} M_{X(3872)} = & 3871.2 \pm 0.5 \, \mathrm{MeV}/c^2 & \mathsf{PDG'06} \\ M_{X(3872)} - M_{D^0 D^{*0}} = & 0.1 \pm 1.0 \, \mathrm{MeV}/c^2 & \mathsf{PDG'06} \\ \hline & -0.4 \pm 0.7 \, \mathrm{MeV}/c^2 & \mathsf{PDG'06} + \mathsf{CLEO} \end{split}$$

X(3872) : Branching Fraction

• $\mathcal{B}(B \to KX) \times \mathcal{B}(X \to \pi^+ \pi^- J/\psi) = (10.5 \pm 1.8) \times 10^{-6}.$

X(3872) : Search for a Charged Partner If X(3872) is isospin 1, then $\mathcal{B}(B \to KX^{\pm}) \approx 2\mathcal{B}(B \to KX^{0})$

Observation of $X(3872) \rightarrow J/\psi \gamma$

X(3872) : $\pi^+\pi^-$ Invariant Mass Distribution

- Dipion mass consistent with $\rho^0 \rightarrow \pi^+ \pi^-$: again $C_{X(3872)} = +1$
- (Isospin violating again)

• S-wave
$$J/\psi - \rho$$
 favored : J^{++} favored over J^{-+}

$$P_{X(3872)} = +1$$

• C.L. of $\chi^2=28\%$ vs 0.1%

Angular Analysis of $X(3872) \rightarrow J/\psi \pi^+\pi^-$

In the limit where the X(3872), J/ψ and ρ rest frames coincide $dN/d(\cos\theta_{\ell\pi}) \propto \sin^2\theta_{\ell\pi}$.

 0^{++} disfavored.

Search for $B \to X(3872)K$, $X(3872) \to D^0 \overline{D}{}^0 \pi^0$

CDF 3D Angular Analysis

J^{PC}	χ^2 prob.
1++	27.8%
2-+	25.8%
1	0.02%
2+-	5.5.10 ⁻⁵
1+-	3.8·10 ⁻⁵
2	3.8·10 ⁻⁵
3+-	3.8·10 ⁻⁵
3	$2.4 \cdot 10^{-5}$
2++	1.1.10 ⁻⁵
1-+	4.1.10 ⁻⁶
0-+	3.5·10 ⁻¹⁷
0+-	$< 1.10^{-20}$
0++	$< 1.10^{-20}$

- Method checked on $\overline{\psi}(2S)~J^{PC}=1^{--}$

- X(3872) : Only $J^{PC} = 1^{++}$ and 2^{-+} compatible with data !
- (Belle had "strongly disfavored 2^{-+} assignment" (hep-ex/0505038))

 $\begin{array}{|c|c|c|c|c|c|c|c|} \hline 1^{++} & \mbox{left} & \mbox{780 pb}^{-1} & \mbox{CDF Run II Preliminary} & \mbox{M. Kreps @ ICHEP 2006.} \\ \hline Test : & \hline 1^{++}({}^{3}P_{1}) \rightarrow \psi\gamma \ \mbox{vs } 2^{-+}({}^{1}D_{2}) \rightarrow h_{c}\gamma \end{array} \end{array}$ (Barnes, Godfrey PRD69 054008)

X(3872) : Not a Charmonium Meson

• 1 : 1⁺⁺ is χ_{c1} (predicted at $\approx 3950 \,\mathrm{MeV}/c^2$

X(3872) is too light!

Direct Measurement of $\mathcal{B}(B \to XK^+)$

Inclusive Search on the Recoil : $B \to XK$

- One reconstructed B (NN1)
- One selected K (NN2)
- K momentum computed in recoil \overline{B} rest frame $\mathbf{e}^{\mathbf{e}}$

 $pprox 4 \ 10^5 B$'s.

Χ?

e⁺

π

 π

Ē

B

Y4S

K

K

- $\mathcal{B}(B \to X(3872)K) = (0.5 \pm 1.4)10^{-4} < 3.2 \times 10^{-4}$
- $\mathcal{B}(X(3872) \to J/\psi \pi^+\pi^-) > 4.3\%$ at 90% CL.
- 2 : Too large for an isospin violating decay (e.g. $\mathcal{B}(\psi(2S) \rightarrow J/\psi \pi^0) = 0.10 \pm 0.02\%$)

Denis Bernard

UR

Phys.Rev.Lett.96 :052002,2006

Measuring Isospin Violation in X(3872) Decay

Observation of $B \to X(3872)(J/\psi \pi^+\pi^-\pi^0)K$, consistent with Isospin-conserving $X(3872) \to J/\psi \omega$

 4.3σ

$$X(3872)$$
 : Interpretation ?

 1^{++} .. 4-quark models Predictions :

- Diquark-antidiquark ; Maiani et al., PRD71 014028 (2005)
 - 2 neutral states $X_u = [cu] [\overline{cu}], \qquad X_d = [cd] [\overline{cd}],$ • 2 charged states $X^+ = [cu] [\overline{cd}], \qquad X^- = [cd] [\overline{cu}]$
 - Neutral states produced in B^0 and B^+ decays, $\left| \begin{array}{c} m(X_d) m(X_u) pprox (7 \pm 2) \, \mathrm{MeV}/c^2. \end{array} \right|$
- S-wave $D^0 \overline{D}^{*0}$ molecule; Braaten & Kusunoki, PRD 71 (2005) 074005
 - Braaten & Kusunoki, PRD 71 (2005) 074005 • using $B \rightarrow D^{(*)}D^{(*)}K$ BF's, factorization, heavy quark and isospin symmetry.
 - $B^0 \to X(3872)K^0$ Suppressed by 1 order of magn. wrt $B^+ \to X(3872)K^+$

They need the Dalitz plot analysis of $B \to D^{(*)}D^{(*)}K!$

Swanson predicts $R \approx 0.06 - 0.29$.

Phys.Rept.429 :243-305,2006

Denis Bernard LIR

 $R = 0/+, \Delta m, \text{ in Belle's } B \to KX(3872) \ (D^0 \overline{D}{}^0 \pi^0) ?$

Belle	$\frac{2}{6416}$ 414 fb ⁻¹		Preliminary		hep-ex/0606055	
Signal		$\epsilon \mathcal{B} imes 10^4$	N_{obs}	sig, σ	${\cal B} imes 10^4$	
$B \to D$	$D^0 \overline{D}{}^0 \pi^0 K$	$2.12{\pm}0.10$	$24.1{\pm}6.1$	6.4	$1.27 \pm \ 0.31 ^{+0.22}_{-0.39}$	
$B^+ \rightarrow$	$D^0 \overline{D}{}^0 \pi^0 K^+$	$3.62{\pm}0.14$	$17.4{\pm}5.2$	5.0	$1.07 \pm \ 0.31 ^{+0.19}_{-0.33}$	
$B^0 ightarrow L$	$D^0\overline{D}{}^0\pi^0K^0$	$0.84{\pm}0.04$	$6.5{\pm}2.6$	4.6	$1.73 \pm \ 0.70 ^{+0.31}_{-0.53}$	

- *R* compatible with 1?!?!
- Δm ?

- $\mathcal{B}(B \to X(3872)K) = (0.5 \pm 1.4) \times 10^{-4} < 3.2 \times 10^{-4}$ (BaBar)
- $\mathcal{B}(B \to X(3872)K) \times \mathcal{B}(X(3872) \to \pi^+\pi^- J/\psi) = (10.5 \pm 1.8) \times 10^{-6}$. (av)
- $\mathcal{B}(B \to X(3872)K)\mathcal{B}(X(3872) \to D\overline{D}\pi^0) = (1.27 \pm 0.31^{+0.22}_{-0.39}) \times 10^{-4}$ (Belle) \Rightarrow
- $\mathcal{B}(B \to X(3872)K) \approx 2. \times 10^{-4}$ (similar to factorization suppressed $B \to \chi_{c0}K$)
- $X(3872) \rightarrow D\overline{D}\pi^0$ dominant?
- $4.3\% < \mathcal{B}(X(3872) \to J/\psi \pi^+\pi^-) < 7.6\%$

• Inclusive $\mathcal{B}(B \to X(3872)K)$ should be detectable $\sigma_{\mathcal{B}} = 0.64 \times 10^{-4} / \sqrt{\mathcal{L}(ab^{-1})}$

Due to $D\overline{D}\pi^0$ possibly saturating the width, a D^0 tag would help lower the BKG!

Y(4260)

A New 1⁻⁻ Resonance Decaying to $J/\psi \pi^+\pi^$ in Initial State Radiation Production

• Was searching for $e^+e^- \rightarrow X(3872)\gamma$, $X(3872) \rightarrow J/\psi \pi^+\pi^-$

- Found a new resonance $m=4259\pm 8\,{
 m MeV}/c^2$, $\Gamma=88\pm 23\,{
 m MeV}$, $>8\sigma$
- $\Gamma(Y \to e^- e^-) \cdot \mathcal{B}(Y \to J/\psi \pi^+ \pi^-) = 5.5 \pm 1.0^{+0.8}_{-0.7} \,\text{eV}.$

Detection of ISR γ not required

Phys. Rev. Lett. 95, 142001 (2005)

15-17 juin 2007

ISR Checks

• Events with γ reco'ed ($\approx 25\%$) : extensive checks.

Confirmed by Belle, CLEO

Search for $Y(4260) \rightarrow \psi(2S)\pi^+\pi^-$ in ISR Production

$$e^+e^- \rightarrow Y(4260)\gamma_{ISR}$$

 $Y(4260) \rightarrow \psi(2S)\pi^+\pi^-$
 $\psi(2S) \rightarrow J/\psi \pi^+\pi^-$

Detection of ISR γ not required

Denis Bernard LMC

$$Y(4260) \rightarrow \psi(2S)\pi^+\pi^-$$
 in ISR Production

Y: One or Two States?

$c\overline{c}$ Meson ? Bizarre

If 1^{--} , should be produced directly in e^+e^- collisions

 $R(\sqrt{s}) = \sigma(e^+e^- \to hadrons) / \sigma(e^+e^- \to \mu\mu)$

PDG 04

Direct Production in e^+e^- Collision

- $J/\psi \pi^+ \pi^- : 11\sigma$
- $J/\psi \pi^0 \pi^0$: 5.1 σ
- $\pi^0 \pi^0$ seen as expected for S-wave dipion with $I \neq 1$
- $\pi^+\pi^-/\pi^0\pi^0 \approx 2$ confirms I = 0

Kills $\chi_{c1}\rho^0$ molecule model Liu et al., Phys.Rev.D72 :054023,2005

Search for $Y(4260) \rightarrow D\overline{D}$ in ISR

 D^0 and D^{\pm} reconstructed in a series of 2 – 4 body decays.

Detection of ISR γ not required

Search $B \rightarrow Y K Decays$

- $\mathcal{B}_Y = \mathcal{B}(B^- \to Y(4260)K^-, Y(4260) \to J/\psi \pi^+\pi^-) = (2.0 \pm 0.7 \pm 0.2) \times 10^{-5}.$ < $2.9 \times 10^{-5} @95\% C.L.$
- Not conclusive (3.1σ)

 $211\,\mathrm{fb}^{-1}$

Phys.Rev.D73 :011101,2006

Not a Charmonium Meson

 1^{--} slots : S, D

• T. Barnes, S. Godfrey and E. S. Swanson, Phys.Rev.D72 :054026,2005

$Glue ball \ ?$

If ggg, flavorblind decays (Zhu, Phys.Lett.B625 :212,2005)

Other Models

- TetraQuark? $(cs)(\overline{cs})$ predicts $D_s^+\overline{D}_s^- \gg D\overline{D}$
 - searches of $D_s^+\overline{D}_s^-$, $D\overline{D}^*$ in progress L.Maiani et al. Phys.Rev.D72 :031502,2005
- An $\omega \chi_{c1}$ Molecule?

$$-\Gamma(Y \to \chi_{c1}\pi^+\pi^-\pi^0) \approx \Gamma(Y \to J/\psi \pi^+\pi^-)$$
$$-\Gamma(Y \to J/\psi \pi^+\pi^-\pi^0) \approx \Gamma(Y \to J/\psi \pi^+\pi^-)/\epsilon$$

$$-\Gamma(Y \to J/\psi \pi^+ \pi^- \pi^0) \approx \Gamma(Y \to J/\psi \pi^+ \pi^-)/2$$

C.Z. Yuan, P. Wang, X.H. Mo, Phys.Lett.B634 :399-402,2006

An Hybrid Meson?

 $c\overline{c}g$ bound states, searched for for ages ...

 $J^{PC} = 1^{-+}$ is the lightest

State	mass (GeV)	Model	Ref.
$H_{u,d}$	1.3-1.8	Bag model	[19]
	1.8 - 2.0	Flux tube model	[11-14]
	2.1 - 2.5	QCD sum rules (most after 1984)	[26-28]
H _c	pprox 3.9	Adiabatic bag model	[20]
	4.2-4.5	Flux tube model	[12-14]
	4.1-5.3	QCD sum rules (most after 1984)	[26-28]
	$4.19(3) \pm syst.$	HQLGT	[23]

TABLE I. Predicted 1^{-+} hybrid masses.

- Hybrids favored 2-body decay to (P = +, P = -) $D\overline{D}$, $D^*\overline{D}^*$, $D\overline{D}^*$ suppressed
- Y Decays to $\overline{D}D_1(2420)$ should dominate!!

Search for companions with other quantum numbers!

- T. Barnes, F. E. Close and E. S. Swanson, Phys.Rev.D52 :5242-5256,1995
- Kou, Pene, Phys.Lett.B631 :164-169,2005

Y(4260) on the (quenched) Lattice QCD : 1^{--} : $m = 4.38 \pm 0.15 \text{ GeV}/c^2$ Siang-Qian Luo, Yan Liu, Phys.Rev.D74 :034502,2006

Spectroscopy : Charmonium / baryons)

B factories are yielding many results besides CKM Physics.

Today : A sample only : Charmonium : A new revolution?

- Charmonium meson slots filling up (many tests still to be made)
- X(3872) : 1⁺⁺ ! might be Tetraquark ; Molecule ? diquark-antidiquark ?
- Y(4260) : 1⁻⁻ ! Hybrid ?

Stay tuned :

- Data taking
- Extension to other final states

will continue for the next years : much more to come !