CHIRAL EXTRAPOLATION OF BARYON PROPERTIES

V. B. in collaboration with T. Hemmert, U.-G. Meißner and A. Rusetsky

QCD AT LOW ENERGY

- NON PERTURBATIVE
- IMPORTANT PROPERTY: CHIRAL SYMMETRY in the limit of massless quarks

• CHPT

- Effective Lagrangian
- Low energy constants
- Regularizations
- Magnetic moments
- Nucleon mass
- $\bullet \ \Delta \ \text{mass}$
 - Infinite volume
 - Finite volume
- Axial vector coupling

• octet masses

CONCLUSION

CHIRAL PERTURBATION THEORY

EFT OF THE STANDARD MODEL

(PROPERTIES)

MOST GENERAL EFFECTIVE LAGRANGIAN in agreement with SYMMETRIES OF QCD

• EXPANSION

- in external momenta p: interaction between GB is weak
- in quark masses m_q : small compared to $\Lambda_{\chi} \simeq 1 \text{ GeV}$

$$\mathcal{L}_{EFF} = \sum_i \mathcal{L}_{\pi N}^{(i)} + \sum_j \mathcal{L}_{\pi \pi}^{(j)}$$

i,j power in small parameter $q=\{p,m_q\}$

4

EFFECTIVE LAGRANGIAN AT TWO LOOP ORDER

Here: include eom terms in \mathcal{L}_{eff} : Fettes, Meißner, Moijzis & Steininger: Ann. Phys. 283 (2000) 273 Eliminate eom terms in \mathcal{L}_{eff} : Ecker & Mojzis, Phys. Lett. B365 (1996) 312

$$\longrightarrow$$
 LECs: $F, l_i; m_0, g_0, c_i, d_i, e$

 χ limit value of: pion decay constant $\rightsquigarrow F$: $F_{\pi} = F(1 + \mathcal{O}(m_q))$ nucleon mass $\rightsquigarrow m_0$ axial vector coupling $\rightsquigarrow g_0$

DETERMINATION OF THE LECs

- not constrained by symmetries
- in general scale dependent (renormalization) $\checkmark d_i, e_i : b_i = b_i^r(\lambda) + \kappa_i \lambda^{d-4} (1/(d-4) + \cdots)$
- describe influence of "heavy" degrees of freedom not contained explicitely in χ Lagrangians
- RELATE MANY OBSERVABLES
- naturalness: $c_i \sim g_A / \Lambda_\chi \sim 1 \; {\rm GeV^{-1}}$

TWO CLASSES

• dynamical LECs: ∂_{μ}^{n}

govern momentum dependence → accessible EXPERIMENTALLY

• symmetry breaking LECS: $\sim m_q^n, \ m_q^n \partial_\mu^m$

specify quark mass dependence of amplitudes \rightarrow more difficult to extract from experiments

ADDITIONAL INPUT FROM THEORY

 large-N_c method
 RESULTS IN MESON SECTOR BUT NOT FOR BARYONS

 lattice QCD
 Results in Meson sector but not for baryons

• πN scattering inside the Mandelstam triangle: best convergence, relies on dispersive analysis,

Büttiker & Meißner, Nucl. Phys. A668 (2000) 97

- πN scattering in the threshold region: large data basis, Fettes, Meißner & Steininger, Nucl. Phys. A640 (1998) 119
- peripheral phases in NN scattering: large data basis, Epelbaum, Glöckle & Meißner, Eur. Phys. J. A19 (2004) 125 Resulting values in GeV^{-1}

$$c_1 = -0.9^{+0.2}_{-0.5}, \ c_2 = 3.3 \pm 0.2, \ c_3 = -4.7^{+1.2}_{-1.0}, \ c_4 = 3.5^{+0.5}_{-0.2}$$

RESONANCE SATURATION:

- Effective Lagrangian with resonances chirally coupled to nucleons and pions
- Let the resonance masses become very large

 d_i

- d_{16} : $\pi N \rightarrow \pi \pi N$: not very well determined, Fettes, B & Meißner, Nucl. Phys. A669 (2000) 269
- d_{18} : Goldberger Treiman discrepancy and $g_{\pi NN} = 13.18$

$$g_{\pi N} = rac{g_A m}{F_\pi} \Big(1 - rac{2 M_\pi^2 ar{d}_{18}}{g_A} \Big) + \mathcal{O}(M_\pi^4)$$

Resulting values in GeV^{-2}

$$\bar{d}_{16} = -3.4 \cdots - 0.92, \ \bar{d}_{18} = -0.72 \pm 0.27, \ \bar{d}_{28} = 0$$

e_1

only badly determined from πN scattering, negative, of natural size

 l_4

$$M_{\pi} = M(1 - \frac{M^2}{32\pi^2 F^2} \bar{l}_3 + \mathcal{O}(M^4))$$

$$egin{aligned} F_{\pi} &= F(1 + rac{M^2}{16\pi^2 F^2} ar{l}_4 + \mathcal{O}(M^4)), &ar{l}_4 &= 16\pi^2 F^2 l_4^r(\lambda) - 2\ln(M_{\pi}/\lambda) \ &ar{l}_4 &= 4.33 \longrightarrow F = 87 \mathrm{MeV} \end{aligned}$$

		\overline{l}_3	$ar{l}_4$
sources		$\pi\pi$ scat.	$\langle r_{\pi}^S angle$
standard CHPT		2.9 ± 2.4 [1]	4.4 ± 0.2 [2]
lattice	[3]	3.65 ± 0.12	4.52 ± 0.06
	[4]	$3.5\pm0.5\pm0.1$	
	[5]	0.6 ± 1.2	3.9 ± 0.5

[1] Gasser and Leutyler
[2] Gasser, Leutwyler and Colangelo
[3] ETM Collaboration 2007
[4] Del Debbio et al. 2006
[5] MILC COllaboration 2006

• POWER COUNTING SCHEME: Weinberg

- MESON SECTOR

ONE TO ONE CORRESPONDANCE BETWEEN LOOP EXPANSION AND POWERS IN q

10

– BARYON SECTOR

PROBLEM: $m_N \sim \Lambda_{\chi}$ does not vanish in χ limit \longrightarrow EXTRA SCALE EXPANSION in q/Λ_{χ} & q/m_N

*** HBCHPT:** E. Jenkins & A. Manohar

INCORRECT THRESHOLDS AND SINGULARITIES IN SOME CASES

***** Covariant CHPT

• Tang and Ellis: POWER VIOLATING TERMS ARE POLYNOMS IN M_{π} AND EXT. MOM

CAN BE ABSORBED IN LECs of \mathcal{L}_{eff} most general Lagrangian

• Infinite series in 1/m

- IR regularization; T. Becher & H. Leutwyler

RESUMS THE KINETIC 1/m terms

but UNPHYSICAL CUTS \rightarrow DIVERGING quantities when M_{π} becomes large

- EOMS scheme: S. Scherer et al.

SUBTRACT POWER COUNTING VIOLATING TERMS

Loop functions DECREASE as M_{π} becomes large

 \star CUT-OFF

- ALL THESE REGULARIZATIONS DIFFER BY HIGHER ORDER TERMS
- ALL NON-ANALYTICAL TERMS ARE THE SAME
- ANALYTICAL TERMS CAN BE DIFFERENT: DIFFERENCE ABSORBED IN THE LECS

FOR χ EXTRAPOL. NO DIFFERENCE RESULTS MUST BE INDEPENDENT OF REGULARIZATION SCHEME

QUARK MASS EXPANSION OF MAGNETIC MOMENTS in SU(2): B. Kubis and U.-G. Meißner, Nucl. Phys. A 679 (2001) 698, B. R. Holstein, V. Pascalutsa and M. Vanderhaegen, Phys. Rev. D 72 (2005) 094014

$$\begin{array}{l} \begin{array}{l} \mbox{HB:} \kappa_p = \kappa_0 + \frac{g^2 m^2}{(4\pi F_\pi)^2} \left\{ -2\pi\mu - 2\left(1 + 5\ln\mu\right)\mu^2 + \frac{21\pi}{4}\mu^3 + O(\mu^4) \right\} & \mu = M_\pi/m \end{array} \\ \\ \hline \mbox{Rel:} \kappa_p = \kappa_0 + \frac{g^2_A m^2}{(4\pi F_\pi)^2} \left\{ \boxed{1 - \frac{\mu\left(4 - 11\mu^2 + 3\mu^4\right)}{\sqrt{1 - \mu^2/4}} \arccos\frac{\mu}{2} - 6\mu^2 + 2\mu^2\left(-5 + 3\mu^2\right)\ln\mu} \right\} \end{array} \\ \hline \\ \hline \mbox{IR:} \kappa_p = \kappa_0 + \frac{g^2_A m^2}{(4\pi F_\pi)^2} \left\{ -\frac{\mu\left(4 - 11\mu^2 + 3\mu^4\right)}{\sqrt{1 - \mu^2/4}} \arccos\left(-\frac{\mu}{2}\right) - \frac{3}{2}\mu^4 + 2\mu^2\left(-5 + 3\mu^2\right)\ln\mu} \right\} \end{array}$$

CHIRAL EXTRAPOLATION VALID UP TO $M_\pi \sim 350$ MeV

BARYON OBSERVABLE TO TWO LOOPS: $\mathcal{O}(M, F, l_i; m_0, g_0, c_i, d_i, e_i, \cdots)$

meson sector

EXAMPLE: NUCLEON MASS

CALCULATION TO TWO LOOPs $\mathcal{O}(q^6)$

- TREE graphs with insertion from $\mathcal{L}_{\pi N}^{(i)}$, i=5,6
- LOOP graphs with insertions at most from $\mathcal{L}_{\pi N}^{(4)}$
- TWO LOOP graphs with insertions at most from $\mathcal{L}_{\pi N}^{(2)}$

EXAMPLE: NUCLEON MASS

QUARK MASS EXPANSION OF m_N in SU(2)

• Fifth order calculation: McGovern & Birse, Phys. Rev. D74 (2006) 097501

2 - - 3

$$m_N = m_0 - 4c_1 M^2 - rac{3g_0^2 M^3}{32\pi F^2} + k_1 M^4 \ln rac{M}{m_N} + k_2 M^4 + k_3 M^5 \ln rac{M}{m_N} + k_4 M^5 + \mathcal{O}(M^6)$$

$$\begin{aligned} k_1 &= -(3/32\pi^2 F^2)(-8c_1 + c_2 + 4c_3 + g_0^2/m_0) \\ k_2 &= -4e_1 + (3/128\pi^2 F^2)(c_2 - 2g_0^2/m_0) \\ k_3 &= (3/1024\pi^3 F^4)(16g_0^2 - 3) \\ k_4 &= (3/32\pi F^2)((2l_4^r - 3l_3^r) - 4(2d_{16}^r - d_{18})/g_0 + 16d_{28}^r + g_0^2/(8\pi^2 F^2) + 1/8m_0^2) \end{aligned}$$

• $M \longrightarrow M_{\pi}$: EXTRA l_3 CONTRIBUTION extremely small in the considered range

Pion mass to leading order

- ullet COEFF. OF $M^5 \ln M$ TERM FIXED BY CHIRAL SYMMETRY
- ONLY $\mathcal{O}(q^3)$ COUNTERTERMS IN M^5_π TERM \longrightarrow COEFFICIENTS RATHER WELL KNOWN
- FITS TO THE DATA WITH CONSTRAINT FROM PHYSICAL VALUE

• $\mathcal{O}(q^4)$:

B., Hemmert & Meißner, Nucl. Phys. A732 (2004) 149 and similar work by Hemmert, Procura & Weise

- LECs close to empirical values: $c_1 = -0.9, c_2 = 3.2, c_3 = -3.5, e_1 = -1$ (in appropriate units)
- Chiral SU(2) value of nucleon mass: $m_0 \sim 0.88 GeV$
- •Moderate/Large theoretical uncertainty for M_{π} above 400/500 MeV

CHIRAL EXTRAPOLATION VALID UP TO $M_\pi \sim 350$ MeV

20

chiral extrapolation - V. Bernard - GDR Lattice, June 2007

• VOLUME DEPENDENCE: Ali Khan et al. Nucl. Phys. B689 (2004) 175; Colangelo et al. Nucl.Phys.Proc.Suppl. 153 (2006) 41

• different combination of c_i from finite volume correction \rightarrow FURTHER CONSTRAINS

RESULT CONSISTENT WITH INFINITE VOLUME

- M. Procura et al., Phys. Rev. D73 (2006) 114510
- Problem in nucleon sector: CHIRAL SYMMETRY RESTRICTS THE πN INTERACTION LESS SEVERELY THAN $\pi \pi$.

Δ (1232):

 $\star m_\Delta - m_N$ SMALL

***** COUPLES STRONGLY TO PIONS, NUCLEONS & PHOTONS

 \rightarrow COVARIANT EFT w/ EXPLICIT Δ (1232) (spin 3/2) DOFs

Hemmert, Holstein, Kambor, Phys. Lett. B 395 (1997) 89

• $\Delta \equiv (m_{\Delta} - m_N)$ as additional small parameter: does not vanish in the χ limit

 \rightarrow EXPANSION IN $\epsilon \equiv \{p, m_q, \Delta\}$

• Should fulfill DECOUPLING THEOREM: Gasser & Zepeda, Nucl. Phys. B174 (1980)445

Leading chiral non-analytic terms stem from pion (Goldstone boson) one-loop graphs coupled to pions or nucleons (ground state baryons)

 \rightarrow severe constraints

more operator structures → more LECs

QUARK MASS EXPANSION OF m_{Δ} in SU(2):

-INFINITE VOLUME V. B., Hemmert & Meißner, Phys. Lett. B622 (2005) 141

•work to fourth order in the ϵ -expansion within IR regularization

$$m_\Delta = m_0^\Delta - 4a_1 M_\pi^2 - 4e_1^\Delta M_\pi^4 + m_\Delta^{N-\mathrm{loop}} + m_\Delta^{\Delta-\mathrm{loop}}$$

11 combinations of parameters

 \rightarrow 3 from nucleon sectors

use resonance saturation

 \rightarrow from complex Δ pole:

 $c_A = 1.1$ (axial $N\Delta$ coupling)

 $\Delta_0 \equiv m_\Delta - m_N = 0.33 \, {
m GeV}$

FITS TO LATTICE DATA + CONSTRAINT FROM PHYSICAL VALUE

6 combinations of LEC's to fit

▲ & ● MILC coll., Phys. Rev. D64 (2001) 054506
 ▲ QCDSF, G. Schierholz, priv. comm.

- ALL LECs OF NATURAL SIZE
- AXIAL $\Delta\Delta$ COUPLING $g_1 = 2$ NOT FAR FROM $9g_A/5 = 2.28$ as in SU(6)
- LEADING SYMMETRY BREAKER $a_1 = -0.3 \text{GeV}^{-1}$ FAR FROM SU(6) \rightarrow FURTHER STUDY
- ullet sigma terms $\sigma_{\pi N}(0)=48.9$ MeV, $\sigma_{\pi\Delta}(0)=20.6$ MeV
- FIT FOR NUCLEON MASS SIMILAR TO HBCHPT

24

ullet $M_\pi \gtrsim 290$ MeV: $oldsymbol{\Delta}$ IS A STABLE PARTICLE

$$\longrightarrow$$
 CALC. AS NUCLEON $E_1 - m_\Delta \propto exp(-M_\pi L)$

- ullet $M_\pi \lesssim 290$ MeV: $oldsymbol{\Delta}$ IS UNSTABLE
 - INVERSE POWER RATHER THAN EXPONENTIAL LAW

CAN ONE DETERMINE THE Δ MASS AND WIDTH ON THE LATTICE WHEN IT DECAYS?

RELATED CALCULATION:

TWO-BODY SCATTERING PHASE SHIFTS FROM THE ENERGY LEVELS IN A FINITE BOX:

M. Lüscher, Lectures at Les Houches (1988), NPB 364 (1991) 237, Wiese

1 Dimension case:

- free: $pL=2\pi n$
- interacting: $pL + 2\delta(p) = 2\pi n$

AVOIDED LEVEL CROSSING NEAR THE RESONANCE ENERGY

- HORIZONTAL PLATEAUS
- DISTANCE BETWEEN ENERGY LEVELS NEAR AVOIDED CROSSING

POSITION OF THE RESONANCE DECAY WIDTH OF THE RESONANCE Δ self-energy at a finite volume \rightarrow POLES OF THE PROPAGATOR

 $E_n = f(m_\Delta, g_{\pi N \Delta})$: $\pi \Delta$ Loops and Tadpole exponentially suppressed

- AVOIDED LEVEL CROSSING FOR $g_{\pi N \Delta}$ SMALL
- ullet WIDTH OF $oldsymbol{\Delta}$ TOO LARGE FOR $g_{\pi N \Delta}$ PHYSICAL, WASHED OUT

SENSITIVE TO THE INPUT VALUES OF m_{Δ} for $M_{\pi}^{\rm phys}L \le 5$ INCREASE SENSITIVITY CLOSER TO $N + \pi$ THRESHOLD

- $E_2 E_1$ SENSITIVE TO $g_{\pi N \Delta}$
- CONCLUSION

check the convergence $\mathcal{O}(\epsilon^4)$

FITTING THE MASS AND WIDTH OF THE ${\bf \Delta}$ IS FEASIBLE DESPITE THE FACT THAT THE AVOIDED LEVEL CROSSING IS WASHED OUT

AXIAL-VECTOR COUPLING CONSTANT

$$\begin{split} g_{A} &= g_{0} \left\{ 1 + \left(\frac{\alpha_{2}}{(4\pi F)^{2}} \ln \frac{M_{\pi}}{\lambda} + \beta_{2} \right) M_{\pi}^{2} + \alpha_{3} M_{\pi}^{3} \right. \\ &+ \left(\frac{\alpha_{4}}{(4\pi F)^{4}} \ln^{2} \frac{M_{\pi}}{\lambda} + \frac{\gamma_{4}}{(4\pi F)^{2}} \ln \frac{M_{\pi}}{\lambda} + \beta_{4} \right) M_{\pi}^{4} + \alpha_{5} M_{\pi}^{5} \right\} + \mathcal{O}(M_{\pi}^{6}) , \\ &= g_{0} \left\{ 1 + \underbrace{\Delta^{(2)} + \Delta^{(3)}}_{1-\text{loop}} + \underbrace{\Delta^{(4)} + \Delta^{(5)}}_{2-\text{loop}} \right\} + \mathcal{O}(M_{\pi}^{6}) \end{split}$$

ullet in principle also $M^5_\pi \ln M_\pi$ term ightarrow put it in uncertainty of $lpha_5$

• 1-loop result

$$egin{split} lpha_2 &= -2 - 4g_0^2 \ , \ \ eta_2 &= rac{4}{g_0} \Big(d_{16}^r(\lambda) - 2d_{28}^r(\lambda) \Big) - g_0^2/(4\pi F)^2 \ lpha_3 &= ig(3 + 3g_0^2 - 4m_0c_3 + 8m_0c_4ig) \,/(24\pi F^2m_0) \end{split}$$

At physical pion mass: $g_A = g_0(1 - 0.15 + 0.26 + ...)$

 \star natural correction at ${\cal O}(M_\pi^2)$ $(ar d_{16}=-1.76~{
m GeV}^{-2})$

 \star unnaturally large correction at ${\cal O}(M_\pi^3)$ for central values of c_i due to large values of

these LECs

• input parameters: c's fixed at central values

• SHARP RISE BEYOND $M_\pi \simeq 300 \text{ MeV} \rightarrow \text{dominance of the } M_\pi^3$ term

▲ LPHC/MILC

R. G. Edwards et al, Phys. Rev. Lett. 96 (2006) 052001

QCDSF/UKQCD

A. A. Khan et al, Nucl. Phys. Proc. Suppl. 140 (2005) 408

♦ RBC

- S. Sasaki et al, Nucl. Phys. Proc. Suppl. 106 (2002) 302
- LHPC/SESAM
- D. Dolgov et al., Phys. Rev. D 66 (2002) 034506
- QCDSF preliminary

RATHER FLAT DEPENDENCE IN M_{π} IN CONTRADICTION WITH ONE LOOP RESULT

• INCLUDING THE Δ: T. H.Hemmert, M. Procura & W. Weise, Phys. Rev. D 68 (2003) 075009

-COULD BE IMPORTANT \rightarrow Adler-Weisberger sum rule -IMPROVE THE CHIRAL EXPANSION BY SHUFFLING TO LOWEST ORDER TERMS WHICH WOULD APPEAR LATER IN THE SERIE WITH NO \triangle

 $\mathcal{O}(\epsilon^3)$ calculation

$$egin{aligned} g^{SSE}_A(M^2_\pi) &= g^0(1\!+\!(lpha_2\lnrac{M_\pi}{\lambda}\!+\!eta_2)M^2_\pi\!+\!\gamma_2rac{M^3_\pi}{\Delta_0}\!+\!\delta_2M^2_\pi\ln R\!+\!\epsilon_2\Delta_0^2\ln R\!+\!\mathcal{O}(\epsilon^4) \ &R &= rac{\Delta_0}{m_\pi} + \sqrt{rac{\Delta_0^2}{m_\pi^2}-1}; &\Delta_0 \equiv m_\Delta - m_N \end{aligned}$$

taken at ϕ sical values

PARAMETERS:
$$\overbrace{c_A}, \widecheck{\Delta_0}, g_1, \, C(\lambda)$$

Combination of LECs: not known: MATCHING WITH HBCHPT AT $\lambda = 2\Delta_0$

Result insensitive for λ between 0.4 & 0.8 MeV

 $\overline{\}$

 $C(1GeV)=(-3.4\pm1.2)~GeV$

- g_1 LARGER THAN SU(6) VALUE: NOT CONSISTENT WITH m_Δ RESULT ??
- ullet Ali Khan et al. hep-lat/0603028 SIMILAR FIT BUT c_A LARGER $ightarrow g_1 \sim 3$

Large theoretical uncertainties

• TWO LOOP CALCULATION V. B. & Meißner, Phys. Lett. B 639 (2006) 278

$$\begin{split} g_{A} &= g_{0} \left\{ 1 + \left(\frac{\alpha_{2}}{(4\pi F)^{2}} \ln \frac{M_{\pi}}{\lambda} + \beta_{2} \right) M_{\pi}^{2} + \alpha_{3} M_{\pi}^{3} \right. \\ &+ \left(\frac{\alpha_{4}}{(4\pi F)^{4}} \ln^{2} \frac{M_{\pi}}{\lambda} + \frac{\gamma_{4}}{(4\pi F)^{2}} \ln \frac{M_{\pi}}{\lambda} + \beta_{4} \right) M_{\pi}^{4} + \alpha_{5} M_{\pi}^{5} \right\} + \mathcal{O}(M_{\pi}^{6}) , \\ &= g_{0} \left\{ 1 + \underbrace{\Delta^{(2)} + \Delta^{(3)}}_{1-\text{loop}} + \underbrace{\Delta^{(4)} + \Delta^{(5)}}_{2-\text{loop}} \right\} + \mathcal{O}(M_{\pi}^{6}) \end{split}$$

•CALCULATIONAL STRATEGY:

- calculate α_4 EXACTLY using RGE TECHNIQUE
- calculate DOMINANT contribution to $\gamma_4, \beta_4, \alpha_5$ +NATURALNESS

α_4

COEFF OF THE DOUBLE LOG $\sim \ln^2 M_\pi$ CAN BE ENTIRELY EXPRESSED IN TERMS OF THE COUPLING CONSTANTS OF THE ONE-LOOP FUNCTIONAL

generic form of two loop divergences:

$$\left| \frac{k(d)}{(4\pi)^4} \frac{\lambda^{2\epsilon}}{(4\pi)^4} \left[\frac{1}{\epsilon^2} + \frac{2}{\epsilon} \ln \frac{M_{\pi}}{\lambda} + \ln^2 \frac{M_{\pi}}{\lambda} + \ldots \right] \right|$$

generic form of one loop graph with insertions from dimension three πN Lagrangian:

$$-\frac{h_i(d)}{2} \frac{\lambda^{2\epsilon}}{(4\pi)^4} \left[\frac{\kappa_i}{\epsilon^2} + \frac{\kappa_i}{\epsilon} \ln \frac{M_\pi}{\lambda} + \frac{(4\pi)^2 d_i^r(\lambda)}{\epsilon} + (4\pi)^2 d_i^r(\lambda) \ln \frac{M_\pi}{\lambda} + \ldots \right]$$

RG condition $k_0 = h_i^0 k_i$

• Topologies of one-loop graphs that generate the coeff of the double log:

Altogether: 8 LECs ($d_{16} \cdots$) without eom terms + 7 LECS from eom terms

 β functions are known for both type of Lagrangian \rightarrow good check of the calc.

$$\alpha_4 = -\frac{16}{3} - \frac{11}{3}g_0^2 + 16g_0^4$$

$\gamma_4,eta_4,lpha_5$

• From previous one loop graph one gets contributions to γ_4

 $\gamma_4^{d_{16}} = -12\, d_{16}^r(\lambda) \left(rac{5}{3} + g_0^2
ight)$

• Relativistic propagator generates the $1/m_N$ corrections

 $\gamma_4^{c_i} = rac{4(c_4-c_3)}{m_0} \;, \;\; eta_4^{c_i} = rac{c_4}{m_0} \; rac{1}{4\pi^2 F^2} \;, \;\; lpha_5^{c_i} = rac{c_3}{m_0^2} \; rac{1}{16\pi F^2}$

• Further corrections from the quark mass expansion of F_{π}

$$ilde{lpha_4} = 4 \, lpha_2 \ , ilde{\gamma}_4 = -rac{2}{F^2} \, lpha_2 \, l_4^r(\lambda) \ , ilde{eta}_4 = rac{2g_0^2}{(4\pi F)^2 F^2} l_4^r(\lambda) \ , ilde{lpha}_5 = -rac{2lpha_3}{(4\pi F)^2} \left(l_4^r(\lambda) - rac{2}{16\pi^2} \ln rac{M_\pi}{\lambda}
ight)$$

- Further contributions can only be estimated assuming naturalness
- At physical pion mass

 $g_A = g_0(1-0.15+0.26-0.06-0.01+...)$

Theoretical uncertainty small for $M_\pi \leq 300 {
m MeV}$

•More fields and operator structures \implies MORE LECs

nucleon doublet & pion triplet \rightarrow baryon octet & Goldstone boson octet

meson-baryon coupling:
$$g_a \bar{\psi}_N u_\mu \gamma_\mu \gamma_5 \psi_N \rightarrow D \langle \bar{B} \{ \psi \gamma_5, B \} \rangle + F \langle \bar{B} [\psi \gamma_5, B] \rangle$$

symmetry breaking: $c_1 \bar{\psi}_N \langle \chi_+ \rangle \psi_N \rightarrow b_0 \langle \bar{B}B \rangle + b_D \langle \bar{B} \{ \chi_+, B \} \rangle + b_F \langle \bar{B} [\chi_+, B] \rangle$
MATCHING CONDITIONS \rightarrow IMPORTANT CONSTRAINTS M. Frink and U.-G. Meißner, JHEP 0407 (2004) 028
leading symmetry breakers $c_1 = b_0 + \frac{1}{2}(b_D + b_F) + \mathcal{O}(\sqrt{m_s})$

NUCLEON MASS: Frink, Scheller and U.-G. Meißner, Eur. Phys. J. A24 (2005) 395

SIMILAR FIT AS IN SU(2)

PION MASS EXPANSION IN THE BARYON OCTET:

• WHAT ABOUT THE CASCADE?

SHORT DIGRESSION ON $F_{\pi}\&F_K/F_{\pi}$

GENUINE QCD quantities so far unknown experimentally

$$\mathcal{L} = ilde{g}(l_{\mu} + rac{1}{2}ar{U}(oldsymbol{\mathcal{V}_{eff}}\gamma_{\mu} + oldsymbol{\mathcal{A}_{eff}}\gamma_{\mu}\gamma_{5})D)W^{\mu} + h.c$$

•
$$F_{\pi}$$

 $\pi
ightarrow \mu
u
ightarrow |F_{\pi} \mathcal{A}^{ud}_{eff}|$

SM input: NO RH currents
$$\longrightarrow \mathcal{A}^{ud}_{eff} = \mathcal{V}^{ud}_{eff} = V_{CKM}$$

 $\mathcal{V}^{ud}_{eff}=0.97377(26)$ from $0^+
ightarrow 0^+$ Towner & Hardy updated by Marciano & Sirlin '05

$$F_{\pi}|_{SM} = (92.4 \pm 0.2) {
m MeV}$$

• $\left(F_K/F_{\pi}\right)$

$$\frac{\Gamma(K \to \mu\nu)}{\Gamma(\pi \to \mu\nu)} \to |\frac{F_K \mathcal{A}_{eff}^{us}}{F_\pi \mathcal{A}_{eff}^{ud}}|^2 = 0.07602(23) \quad \text{(Marciano hep-ph/0402299)}$$

 $F_K/F_\pi|_{SM} = (1.180 \pm 0.006)$

- from T. Kaneko, KAON 2007
- simulations at heavy m_{sea} underestimate F_K/F_π
- PACS-CS 2007 very preliminary

SU(3) RECENT LATTICE DATA BARELY COMPATIBLE WITH SM???

ullet NOT IMPORTANT TO FIT LATTICE DATA FOR ONE QUANTITY UP TO LARGE M_π

BUT

• IMPORTANCE OF PERFORMING SIMULTANEOUS SYSTEMATIC EXTRAPOLATION WITH CONSISTENT SET OF LEC's

• IMPORTANCE OF CAREFULLY EVALUATING THE THEORETICAL UNCERTAINTIES

ullet CHIRAL EXTRAPOLATION VALID UP TO $M_\pi \sim 350$ MeV