Lattice QCD on Graphics Processing Units?

Zhaofeng Liu

LPT, INRIA-Futurs(Orsay), PRISM(Versailles), IRISA/INRIA(Rennes), CAPS-Entreprise

June 14, 2007

Outline

Background

- Graphics Processing Units(GPU)
- HMC c-code of ETMC
- Some first attempts
 - profiling
 - distribution of Hopping_Matrix()
 - puting on GPUs

Full Lattice QCD is expensive

- Fermions are expensive. Need to solve linear equation $D_{lattice}\eta = \phi$. For a $16^3 \times 32$ lattice, $D_{lattice}$: ~ 1 million $\times 1$ million matrix.
- apeNEXT, QCDOC(predecessor of BlueGene/L): (~ 10 Teraflops) supercomputers optimized for LQCD calculations.

To "solve QCD" numerically needs "cheap" multi Petaflops machines.

- Multicore chips.
- CPU+coprocessors (e.g., IBM Cell: PPE+SPE) CPU+Graphics Processing Units(GPU)

Graphics Processing Units(GPU)

http://developer.download.nvidia.com/compute/cuda/0_81/ NVIDIA_CUDA_Programming_Guide_0.8.2.pdf

 Powerful and inexpensive. For example, NVIDIA GeForce 7900 GTX(\$378 as of Oct.2006)
 51.2 GB/sec memory bandwidth. NVIDIA 8800 GTX(\$599) 330 GFLOPS measured. ATI Radeon X1900 XTX(similar price) can sustain a measured 240 GFLOPS. Compare to the SSE units of a dual-core 3.7 GHz Intel Pentium Extreme Edition 965
 8.5 GB/sec and 25.6 GFLOPS theoretical peak.

- ▶ Programmable. High level languages have emerged.
- ► The computational capabilities of GPUs grow fast.

GPU

- For the moment only single precision.
- Effective General-Purpose GPU programming is not simply a matter of learning a new language.
- ► Few if any full-featured debuggers and profilers.
- Poor bandwidth between CPU and GPU.

GPGPU and LQCD on GPUs

- General-Purpose computing on the GPU (GPGPU) has become interesting.
 - http://GPGPU.org : general discussion, programming help, etc.
 - fluid dynamics simulations, visual simulation of cloud dynamics, etc.
- G. I. Egri, Z. Fodor, C. Hoelbling, S. D. Katz, D. Nogradi and K. K. Szabo, "Lattice QCD as a video game", arXiv:hep-lat/0611022.
 - $N_x \times N_y \times N_z \times N_t$ lattice $\rightarrow N_x N_y \times N_z N_t$ texture.
 - a lattice site \rightarrow a pixel.
- Use GPUs as accelerators. Move time consuming parts of LQCD simulation codes to GPUs.

HMC c-code of ETMC

- ► HMC Hybrid Monte Carlo Algorithm.
- ► ETMC European Twisted Mass Collaboration.
- Dynamical simulation with two quark flavors. Include fermion determinant by pseudo-fermions

$$detQ \propto \int {
m d}\phi {
m d}\phi^\dagger \expig(-\phi^\dagger rac{1}{Q}\phiig)$$

- The gauge action includes a plaquette term (1×1 Wilson loops) and a planar rectangular term (1×2 Wilson loops).
- The code can also compute quark propagators (invert).

Profiling of the HMC code

- Intel Itanium 2 processor, no SSE (Streaming SIMD Extensions).
- compile with icc.
- gprof hmc_tm(invert) gmon.out

lattice	Hopping_Matrix()	get_rectangle_staples()	total
hmc_tm			
4 ⁴	${\sim}31\%$	${\sim}52\%$	$\sim 83\%$
$6^3 \times 4$	${\sim}40\%$	${\sim}45\%$	${\sim}85\%$
$8^3 \times 16$	${\sim}58\%$	${\sim}26\%$	${\sim}84\%$
$16^3 \times 32$	${\sim}74\%$	${\sim}8\%$	$\sim 82\%$
invert			
$16^3 \times 32$	\sim 81%	—	—

Hopping_Matrix.c

• The HMC algorithm requires computations like $\eta = Q^{-1}\phi$.

- It's done by using, say, the Conjugate Gradient method, which requires multiplications of Q with vectors.
- Hopping_Matrix() finishes the "hopping" part in the multiplications:

$$I(x) = \kappa \sum_{y} \sum_{\mu} \delta_{x,y-\mu} (1+\gamma_{\mu}) U_{\mu}(x) k(y).$$

Here $U_{\mu}(x)$ is the gauge field. *I* and *k* are spinors. When *y* is odd/even, *x* is even/odd on the lattice.

There are two outer loops in Hopping_Matrix(). One goes over y, the other goes over x.

Hopping_Matrix.c (cont'd)

$$I(x) = \kappa \sum_{y} \sum_{\mu} \delta_{x,y-\mu} (1+\gamma_{\mu}) U_{\mu}(x) k(y).$$

- ► In each loop, there is an inner loop for the four directions: $\mu = \hat{t}, \hat{x}, \hat{y}, \hat{z}.$
- ► The gauge fields U_µ(x) are in the order they are accessed to allow for continuous memory access.
- As a first step, we are trying to put Hopping_Matrix() on GPUs since it is the most time consuming part.

Distribution of Hopping_Matrix.c

$$I(x) = \kappa \sum_{y} \sum_{\mu} \delta_{x,y-\mu} (1+\gamma_{\mu}) U_{\mu}(x) k(y).$$

- Distributing the loops in Hopping_Matrix() makes it possible to put Hopping_Matrix() on several GPUs and makes it simpler to optimize the code for GPUs.
- At the same time, by re-organizing the distributed loops in different ways, we may find an optimized way which fastens the code.
- When re-organizing the distributed loops, the gauge fields U_µ(x) should be re-ordered to allow for continuous memory access.
- Spinor fields used for storing intermediate results should also be re-ordered for optimization in memory access.

Distribution of Hopping_Matrix.c (cont'd)

$$I(x) = \kappa \sum_{\mu} \sum_{y} \delta_{x,y-\mu} (1+\gamma_{\mu}) U_{\mu}(x) k(y).$$

- The loop over y or x is distributed along four directions $\mu = \hat{t}$, \hat{x} , \hat{y} , \hat{z} . i.e., for each direction, there is a loop over y or x.
- After re-ordering the gauge fields and spinor fields correspondingly, we find some improvement on the Intel Itanium 2 processor (no SSE, compile with icc).

$16^3 imes 32$	before(seconds)	after(seconds)	improvement
hmc_tm	~ 20300	~ 16100	${\sim}20\%$
invert	~ 13600	~ 10600	${\sim}20\%$

hmc_tm: one trajectory.

invert: one quark propagator with source at 0.

Put Hopping_Matrix() on a GPU

$$I(x) = \kappa \sum_{\mu} \sum_{y} \delta_{x,y-\mu} (1+\gamma_{\mu}) U_{\mu}(x) k(y).$$

The basic scheme is:

- 1. Beginning of the program: initialize GPU environnement and put data from gauge fields $U_{\mu}(x)$ on the GPU.
- 2. In Hopping_Matrix():
 - put k(y) on GPU
 - compute loop of y
 - permute intermediate spin fields
 - compute loop of x
 - get back l(x)

GPUs excel at processing data in two-dimensional arrays, but are limited when processing one-dimensional arrays.

3. End of program: cleanup GPU stuff.

Things going on and to do

- One version is finished, which uses Cg, a traditionnal shading language created by Nvidia. This is on GeForce7 series.
 ~ 8× faster for executing Hopping_Matrix() once comparing with a pentium machine. Quite encouraging.
- Another version is under developing, which uses Cuda to use the new possibilities of the GeForce8 series.
- Performance analysis for the above GPU versions.
- Performance analysis for the codes using the distributed Hopping_Matrix() (with or without SSE). (More precise analysis than using 'gprof'.)
- Is there any improvement on a Pentium4 machine with SSE2 using a distributed Hopping_Matrix()?