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Full Lattice QCD is expensive
I Fermions are expensive. Need to solve linear equation

Dlatticeη = φ. For a 163 × 32 lattice,
Dlattice : ∼ 1 million × 1 million matrix.

I apeNEXT, QCDOC(predecessor of BlueGene/L): (∼
10 Teraflops) supercomputers optimized for LQCD calculations.



To “solve QCD” numerically needs “cheap” multi Petaflops
machines.

I Multicore chips.
I CPU+coprocessors (e.g., IBM Cell: PPE+SPE)

CPU+Graphics Processing Units(GPU)



Graphics Processing Units(GPU)

http://developer.download.nvidia.com/compute/cuda/0 81/
NVIDIA CUDA Programming Guide 0.8.2.pdf

I Powerful and inexpensive. For example,
NVIDIA GeForce 7900 GTX($378 as of Oct.2006)

51.2 GB/sec memory bandwidth.
NVIDIA 8800 GTX($599) 330 GFLOPS measured.
ATI Radeon X1900 XTX(similar price)

can sustain a measured 240 GFLOPS.
Compare to the SSE units of a dual-core 3.7 GHz Intel
Pentium Extreme Edition 965

8.5 GB/sec and 25.6 GFLOPS theoretical peak.

I Programmable. High level languages have emerged.

I The computational capabilities of GPUs grow fast.



GPU

I For the moment only single precision.

I Effective General-Purpose GPU programming is not simply a
matter of learning a new language.

I Few if any full-featured debuggers and profilers.

I Poor bandwidth between CPU and GPU.



GPGPU and LQCD on GPUs

I General-Purpose computing on the GPU (GPGPU) has
become interesting.

I http://GPGPU.org : general discussion, programming help,
etc.

I fluid dynamics simulations, visual simulation of cloud
dynamics, etc.

I G. I. Egri, Z. Fodor, C. Hoelbling, S. D. Katz, D. Nogradi and
K. K. Szabo, “Lattice QCD as a video game”,
arXiv:hep-lat/0611022.

I Nx × Ny × Nz × Nt lattice → NxNy × NzNt texture.
I a lattice site → a pixel.

I Use GPUs as accelerators. Move time consuming parts of
LQCD simulation codes to GPUs.



HMC c-code of ETMC

I HMC — Hybrid Monte Carlo Algorithm.

I ETMC — European Twisted Mass Collaboration.

I Dynamical simulation with two quark flavors. Include fermion
determinant by pseudo-fermions

detQ ∝
∫

dφdφ† exp
(
− φ†

1

Q
φ
)

I The gauge action includes a plaquette term (1×1 Wilson
loops) and a planar rectangular term (1×2 Wilson loops).

I The code can also compute quark propagators (invert).



Profiling of the HMC code

I Intel Itanium 2 processor, no SSE (Streaming SIMD
Extensions).

I compile with icc.

I gprof hmc tm(invert) gmon.out

lattice Hopping Matrix() get rectangle staples() total

hmc tm
44 ∼31% ∼52% ∼83%

63 × 4 ∼40% ∼45% ∼85%
83 × 16 ∼58% ∼26% ∼84%
163 × 32 ∼74% ∼8% ∼82%

invert
163 × 32 ∼81% — —



Hopping Matrix.c

I The HMC algorithm requires computations like η = Q−1φ.

I It’s done by using, say, the Conjugate Gradient method, which
requires multiplications of Q with vectors.

I Hopping Matrix() finishes the “hopping” part in the
multiplications:

l(x) = κ
∑
y

∑
µ

δx ,y−µ(1 + γµ)Uµ(x) k(y).

Here Uµ(x) is the gauge field. l and k are spinors. When y is
odd/even, x is even/odd on the lattice.

I There are two outer loops in Hopping Matrix(). One goes
over y , the other goes over x .



Hopping Matrix.c (cont’d)

l(x) = κ
∑
y

∑
µ

δx ,y−µ(1 + γµ)Uµ(x) k(y).

I In each loop, there is an inner loop for the four directions:
µ = t̂, x̂ , ŷ , ẑ .

I The gauge fields Uµ(x) are in the order they are accessed to
allow for continuous memory access.

I As a first step, we are trying to put Hopping Matrix() on
GPUs since it is the most time consuming part.



Distribution of Hopping Matrix.c

l(x) = κ
∑
y

∑
µ

δx ,y−µ(1 + γµ)Uµ(x) k(y).

I Distributing the loops in Hopping Matrix() makes it possible
to put Hopping Matrix() on several GPUs and makes it
simpler to optimize the code for GPUs.

I At the same time, by re-organizing the distributed loops in
different ways, we may find an optimized way which fastens
the code.

I When re-organizing the distributed loops, the gauge fields
Uµ(x) should be re-ordered to allow for continuous memory
access.

I Spinor fields used for storing intermediate results should also
be re-ordered for optimization in memory access.



Distribution of Hopping Matrix.c (cont’d)

l(x) = κ
∑

µ

∑
y

δx ,y−µ(1 + γµ)Uµ(x) k(y).

I The loop over y or x is distributed along four directions µ = t̂,
x̂ , ŷ , ẑ . i.e., for each direction, there is a loop over y or x .

I After re-ordering the gauge fields and spinor fields
correspondingly, we find some improvement on the Intel
Itanium 2 processor (no SSE, compile with icc).

163 × 32 before(seconds) after(seconds) improvement

hmc tm ∼ 20300 ∼ 16100 ∼20%

invert ∼ 13600 ∼ 10600 ∼20%

hmc tm: one trajectory.
invert: one quark propagator with source at 0.



Put Hopping Matrix() on a GPU

l(x) = κ
∑

µ

∑
y

δx ,y−µ(1 + γµ)Uµ(x) k(y).

The basic scheme is:

1. Beginning of the program: initialize GPU environnement and
put data from gauge fields Uµ(x) on the GPU.

2. In Hopping Matrix():
I put k(y) on GPU
I compute loop of y
I permute intermediate spin fields
I compute loop of x
I get back l(x)

GPUs excel at processing data in two-dimensional arrays, but
are limited when processing one-dimensional arrays.

3. End of program: cleanup GPU stuff.



Things going on and to do

I One version is finished, which uses Cg, a traditionnal shading
language created by Nvidia. This is on GeForce7 series.
∼ 8× faster for executing Hopping Matrix() once comparing
with a pentium machine. Quite encouraging.

I Another version is under developing, which uses Cuda to use
the new possibilities of the GeForce8 series.

I Performance analysis for the above GPU versions.

I Performance analysis for the codes using the distributed
Hopping Matrix() (with or without SSE).
(More precise analysis than using ‘gprof’.)

I Is there any improvement on a Pentium4 machine with SSE2
using a distributed Hopping Matrix()?


