
Building gravitational waveforms 
from precessing black hole binary systems 

for advanced LIGO/Virgo

Alejandro Bohé

in collaboration with  S. Husa, L. Haegel,
M. Hannam, P. Schmidt, F. Ohme, M. Pürrer, G. Pratten

Séminaire LAL,  Univ. Paris Sud - 22/04/14

1
arXiv 1308.3271



Outline

• Gravitational waves and Compact Binary Systems

• Tools for modeling Compact Binary Coalescences

• PhenomP: a closed form IMR model for precessing systems
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Gravitational waves

• Their very weak coupling to matter makes them very 
hard to detect. No direct detection so far but several 
indirect observations

• energy loss of binary pulsars (PSR B1913+16, Hulse & 
Taylor 1974, Nobel 93)

• BICEP2 !

Observed Pulsar orbit

General Relativity Prediction from 
Gravitational Waves

• Gravitational waves are one of the fundamental predictions of General Relativity in 
which gravity results from the curvature of space-time

• They are «ripples» in the fabric of space-time (perturbations 
of the metric) that propagate at the speed of light and that are 
generated by violent phenomena involving massive objects 
moving in a non axisymmetric way at relativistic speeds (more 
precisely, by systems with a time varying mass quadrupole or 
higher moment)

• Gravitational Waves will give a non electromagnetic view of the 
universe, and therefore opening a new window on the universe



Principle of detection with interferometers

L2

L1

The strength of a gravitational wave is given by 
the strain  h(t) = dL / L

Detectors are sensitive to the amplitude instead of intensity
→ range is proportional to the sensitivity
→ number of events to the sensitivity³

A GW passing through the detector changes the 
proper length of the arms of the interferometer

Technological challenge: h ⇡ 10�21
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Advanced Interferometer network

First direct detection expected before 2020 (2017-18 ?)

LIGO 
Hanford

LIGO  
Livingston

VIRGO

The advanced versions of the LIGO Virgo interferometers to enter in service in 2015
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LIGO-
India

LIGO-H
(USA) Virgo

(Italy)
KAGRA
(Japan)

LIGO-L
(USA)

The Global Network c. 2020
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Other frequency bands

Pulsar Timing eLISA

selected by ESA for L3
launch ~2034



Gravitational
Waves

Cosmological sources
• cosmic strings
• phase transitions
• inflation - preheating
• ?

Astrophysical sources
• binary systems of black holes

and/or neutron stars
• supernovae
• highly spinning neutron stars

Astrophysics
 

• Mass distrib of compact objects. Mass gap?

• Intermediate Mass Black Holes?
  Hierarchical mergers of galaxies.

• How do stellar mass compact binaries form 
and evolve?

• Origin of short gamma ray bursts?

Fundamental physics
 

• Window on very high energy physics

• Test General Relativity in the strong field regime

• Measure cosmo. parameters (dark energy eos?)

• Neutron star eos. Matter at high densities

(some) Motivation



Compact Binary Coalescences
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Estimated rates

Class.Quant.Grav. 27 (2010)



Progress

• Gravitational waves and Compact Binary Systems

• Tools for modeling Compact Binary Coalescences

• PhenomP: a closed form IMR model for precessing systems
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Dynamics of Compact Binary Coalescences

Loses energy by GW emission
→separation decreases

(and frequency increases)

To extract the signal from the instrumental noise (matched filtering),
the waveform needs to be modeled with great accuracy
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Intrinsic parameter space

• Total mass M: scale factor

• Mass ratio q= m1/m2

• Spin ! 6 components in general

black holes generically have large spins
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Reynolds 1302.3260 (2013)

Neutron stars

a < 0.4

in binary systems a < 0.04



Effect of Spin

Generic case: precession of the orbital plane
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The components of the spins that are orthogonal to the orbital plane change the inspiral rate



CBC: modeling the inspiral

During the «slow» inspiral, while the objects are far from each other, 
a perturbative treatment is valid:

post-Newtonian expansion in v/c
Newtonian estimate

1

2
µv2 =

1

2

Gmµ

r
i.e. v2

c2
=

Rs

2r
Rs = 2

Gm

c2

• Purely analytical approach: iterate Einstein equations in harmonic coordinates

⌧µ⌫ = |g|Tµ⌫ +
c4

16⇡G
⇤µ⌫

⌧µ⌫     stress-energy pseudo tensor
of matter + gravitational fields

rewrite Einstein eqs
hµ⌫ =

p
�ggµ⌫ � ⌘µ⌫

@µh
↵µ = 0 harmonic gauge

⇤hµ⌫ =
16⇡G

c4
⌧µ⌫

• The formalism is based on an elegant combination of post-Minkovskian, post-Newtonian et multipolar expansions

 
• To make the calculation tractable: effective description in terms of (spinning) point particles (regularisation UV)

• For parameter estimation, we need at least 3.5PN precision in the phase (corrections up to (v/c)7 )

 (also 2 different approaches ADM and EFT)

(see Living Review by Blanchet)



Nitz, Lundgren, Brown, Ochsner, Keppel, Harry (July 2013)

State of the art in PN

LIGO Technical Document

E = �µc
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state of the art for the phase:
• non-spinning: 3.5 PN (a lot of effort currently on 4PN)
• spin-orbit: 4 PN Marsat, Bohe, Blanchet, Buonanno (2013)

• spin-spin: only leading order 2PN

dE

dt
= �F =) d!

dt
=

�F
dE/d!

Also Spin precession equations to
Next-to-Next-to leading order

x =

✓
Gm!

c

3

◆2/3

= O((v/c)2)

derivative operation does not commute with the regularization operation at 1, and we have
generically for singular functions F in the class considered in Ref. [44]:5

d

dt
(F )1 = (@tF )1 + (vi1@iF )1 , (2.20)

where (G)1 represents the value ofG at particle 1 position in the sense of the Hadamard partie

finie. In order to present a closed-form expression for ⌦ij in terms of the metric potentials,
we first applied the total time derivative there according to the Leibniz rule on individual
monomials composingH ij, applying the distributivity ansatz [i.e. (FG)1 = (F )1(G)1] for the
products. We next replaced the accelerations by their expressions in terms of the potentials.
For the time derivatives of quantities regularized at 1, we resorted to Eq. (2.20). Finally, the
partial time derivatives of the potentials were eliminated in turn by means of the identities
(3.28) of Ref. [45], which are equivalent to the harmonic gauge condition.

Since we are working at linear order in the spins, only the non-spin parts of the metric
potentials enter the computation of the matrix ⌦ij. Most of those contributions are the
same as those required for the 2PN equations of motion without spin.6 There are only two
genuine 3PN potentials: One of them, Ẑij at Newtonian order, has the same structure as
Ŵij; The other one, Ŷi, which enters the term �16@[iŶ j] in Eq. (2.19), shows a higher order
of non-linearity (in powers of G). Only its regularized value can be computed, using dimen-
sional regularization in principle, as was done for the 3PN equations of motion without spin
obtained in [46]. Like for the term S̃jk(@ijŶk)1 appearing in the equations of motion (see
Section V of Paper I), we find that the corrections coming from the dimensional regulariza-
tion exactly cancel out because of the antisymmetrization due to the contraction with the
spin tensor. Thus, like in Paper I, Hadamard’s regularization is su�cient for our purpose
here. The remaining 3PN metric potential, T̂ , does not contribute.

Due to the length of the expression, we relegate to Appendix B the relation between
the conserved spin vector and the spin tensor in terms of the orbital variables derived from
Eqs. (2.2) and (2.9). We conclude this Section by giving the explicit expression for the
precession equation of the conserved spin 1:

dS1

dt
= ⌦1 ⇥ S1 . (2.21)

The vector ⌦1 may be expanded at 3PN order in the form:

⌦1 =
1

c2
⌦

1PN
1 +

1

c4
⌦

2PN
1 +

1

c6
⌦

3PN
1 +O

✓
1

c7

◆
. (2.22)

Except for the spin tensor, we use the same notations for the orbital variables as in Paper I:
(uv) denotes the scalar product u · v = uivi and w = u ⇥ v the cross product between u

and v, whose components are given by wi = "ijkujvk. At leading order, we have

⌦

1PN
1 =

G

r212
m2


3

2
n12 ⇥ v1 � 2n12 ⇥ v2

�
, (2.23)

5 This equation states that, formally, the Hadamard regularization commutes with the operator vµ1 @µ.
6 The non-spin part of the acceleration has the form ai = F i � dQi/dt with Qi = P i � vi; see Eqs. (3.5)

and Eqs. (3.7) in Paper I.
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Except for the spin tensor, we use the same notations for the orbital variables as in Paper I:
(uv) denotes the scalar product u · v = uivi and w = u ⇥ v the cross product between u

and v, whose components are given by wi = "ijkujvk. At leading order, we have

⌦

1PN
1 =

G

r212
m2


3

2
n12 ⇥ v1 � 2n12 ⇥ v2

�
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5 This equation states that, formally, the Hadamard regularization commutes with the operator vµ1 @µ.
6 The non-spin part of the acceleration has the form ai = F i � dQi/dt with Qi = P i � vi; see Eqs. (3.5)

and Eqs. (3.7) in Paper I.
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Assumption in the balance equation: constant spins!

Bohe, Marsat, Blanchet, Faye (2013)



Studying the Merger

«Visible» for massive systems (say M≳12 M☉)

Non linearities become too strong: PN expansion breaks down
→ need to resort to Numerical Relativity
simulation of the full Einstein equations

Very expensive: O(1000) configs. only (a few 105 CPU hours/config)
Simulation of O(10) orbits. Going to low frequencies is very expensive.

Two main approaches:
- finite differences
- spectral codes

Intrinsic parameter space is 7D: mass ratio + 6 spin components. Impossible to sample

For DA purposes, we need analytical models calibrated to simulations

⌧
coalescence

⇡ ⌫�1f�8/3
initial



Modeling the ringdown

After the merger, we are left with a single perturbed BH decaying into Kerr. The system 
is well described by BH perturbation theory.

Evolution equation for perturbations of Kerr written in terms of  =  4(r, r, ✓,�)⇢
�4
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Inspiral-Merger-Ringdown models

For data analysis purposes, we need models that cover the full coalescence and that are fast 
to evaluate (purely analytical or solving ODEs)

Two main strategies have been proposed and implemented so far

- Effective One Body formalism (Damour, Buonanno (98))

resummation of the PN results
map the two body problem to the motion of a test particle in a deformed Kerr metric
factorized waveform
calibration to NR
connection to ringdown: sum of quasinormal modes

- Phenomenological models
PN at low frequencies
ansatz fitted to NR simulations for the merger
effective spin parameter
connection to ringdown

Phenom B/C models for aligned spins

Ajith+ CQG 2007, Ajith+ PRD  2008
Ajith+ PRL 2011, Santamaria+ PRD 2010



Progress

• Gravitational waves and Compact Binary Systems

• Tools for modeling Compact Binary Coalescences

• PhenomP: a closed form IMR model for precessing systems
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IMR Phenom models: aligned spin

Ajith+ CQG 2007, Ajith+ PRD  2008
Ajith+ PRL 2011, Santamaria+ PRD 2010

PN RD

effective spin

Fit of the dependence of the phenomenlological parameters
 on the physical parameters via hybrid waveforms



aligned IMR Phenom: effective spin

In principle 3 intrinsic parameters: ⌘ =
m1m2

(m1 +m2)2
,�1 =

S1

m2
1

,�2 =
S2

m2
2

�(f) =
3
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55⇥
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✓
113

3
� 76⇥

3
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⌅s �

113�

3
⌅a

��
+ . . .

Fourier domain PN phase:

leading order effect of spin

� ⌘ �s + ��a �
76⌘

113
�sThe effective parameter

is sufficient to reproduce the leading order effect of spin in the phase. One can rewrite 
the higher orders in terms of it plus a correction that is ignored.

�s = (�1 + �2)/2
�a = (�1 � �2)/2

Idea: capture the main features of aligned spin waveforms with as little new 
parameters as possible (the more params there are, the more expensive the DA).
On the other hand, prevents from measuring individual spins...

In fact, for historical reasons, slightly different choice...

(cf Pürrer et al (2013))



Dynamics of precession
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On the precessional timescale:  L, S1, S2  precess around J which remains fixed

derivative operation does not commute with the regularization operation at 1, and we have
generically for singular functions F in the class considered in Ref. [44]:5

d

dt
(F )1 = (@tF )1 + (vi1@iF )1 , (2.20)

where (G)1 represents the value ofG at particle 1 position in the sense of the Hadamard partie

finie. In order to present a closed-form expression for ⌦ij in terms of the metric potentials,
we first applied the total time derivative there according to the Leibniz rule on individual
monomials composingH ij, applying the distributivity ansatz [i.e. (FG)1 = (F )1(G)1] for the
products. We next replaced the accelerations by their expressions in terms of the potentials.
For the time derivatives of quantities regularized at 1, we resorted to Eq. (2.20). Finally, the
partial time derivatives of the potentials were eliminated in turn by means of the identities
(3.28) of Ref. [45], which are equivalent to the harmonic gauge condition.

Since we are working at linear order in the spins, only the non-spin parts of the metric
potentials enter the computation of the matrix ⌦ij. Most of those contributions are the
same as those required for the 2PN equations of motion without spin.6 There are only two
genuine 3PN potentials: One of them, Ẑij at Newtonian order, has the same structure as
Ŵij; The other one, Ŷi, which enters the term �16@[iŶ j] in Eq. (2.19), shows a higher order
of non-linearity (in powers of G). Only its regularized value can be computed, using dimen-
sional regularization in principle, as was done for the 3PN equations of motion without spin
obtained in [46]. Like for the term S̃jk(@ijŶk)1 appearing in the equations of motion (see
Section V of Paper I), we find that the corrections coming from the dimensional regulariza-
tion exactly cancel out because of the antisymmetrization due to the contraction with the
spin tensor. Thus, like in Paper I, Hadamard’s regularization is su�cient for our purpose
here. The remaining 3PN metric potential, T̂ , does not contribute.

Due to the length of the expression, we relegate to Appendix B the relation between
the conserved spin vector and the spin tensor in terms of the orbital variables derived from
Eqs. (2.2) and (2.9). We conclude this Section by giving the explicit expression for the
precession equation of the conserved spin 1:

dS1

dt
= ⌦1 ⇥ S1 . (2.21)

The vector ⌦1 may be expanded at 3PN order in the form:
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Except for the spin tensor, we use the same notations for the orbital variables as in Paper I:
(uv) denotes the scalar product u · v = uivi and w = u ⇥ v the cross product between u

and v, whose components are given by wi = "ijkujvk. At leading order, we have
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1 =
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r212
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3

2
n12 ⇥ v1 � 2n12 ⇥ v2

�
, (2.23)

5 This equation states that, formally, the Hadamard regularization commutes with the operator vµ1 @µ.
6 The non-spin part of the acceleration has the form ai = F i � dQi/dt with Qi = P i � vi; see Eqs. (3.5)

and Eqs. (3.7) in Paper I.
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On the radiation reaction timescale: J and L shrink but in most cases 
the orientation of J remains constant.         varies

↵̇(t)

◆



Factorizing precession effects

Idea: one can factorize the effect of precession by going to a non inertial frame in co-rotation with 
the system. «Quadrupole alignment»

Precessing waveform + appropriate rotation R(t) ≃ Non Precessing waveform

≃

Schmidt et al. (2011, 2013), O'Shaughnessy et al. (2011, 2013), 
Boyle et al. (2011, 2013), Pekowsky et al. (2013)

The appropriate rotation can be read off the precessing waveform by following the direction that 
instantaneously maximizes the radiated power.

This closely follows the orbital angular momentum L. 

One can model a priori the rotation by solving the precessional dynamics (◆,↵)



Twisting up non precessing waveforms

• deduce R(t) from EOB dynamics → EOB
• analytical PN prescription → PhenomP

One cheap(er) way of modeling precessing wfs is to model the evolution of L i.e. of 

Hannam et al. submitted to PRL.
PhenomP coded up in LAL

(◆,↵)

and then twist up a non precessing waveform

hP
2m(t) = e�im↵

X

|m0|=2

eim
0✏d2m0,m(�◆)h2,m0(t),

non precessing 
waveform modes

(PhenomC)

precessing
modes angle dependent

factors

• PN angles with NNLO spin-orbit corrections, continued through merger
• model formulated in the frequency domain (faster DA) using the SPA (even through merger!)
• Uses approximate degeneracies 6 → 2 spin params
• Note that no NR precessing simulation was used to formulate the model

✏̇ = ↵̇ cos ◆



Effective spin parameters

Here again, the idea is to minimize the number of «extra» parameters with respect to non 
precessing models, i.e. to capture the main features of precessing wfs with as little new 
parameters as possible.

The quantity that affects the phase the most is the precessional speed      . Its leading order in 
PN can again be described by some combination of the spins, but it is not constant!

↵̇

We use the following strategy to restrict ourselves to ONE extra spin parameter: 
- consider a single spin system
- average the PN precessional equations over the orientation of the spin in the orbital plane
- the averaged equations now only depend on      and the effective aligned spin �p �e↵

Our new parameter has a simple interpretation in the single spin case. In the double 
spin case, we expect that some value will allow to capture the main effects.
(presumably the one that reproduces the averaged LO of    )↵̇

Note that from the point of view of data analysis, this doesn’t just mean one extra parameter:
 source orientation and polarization now have to be taken into account!



PhenomP: effectualness study
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Other systems investigated:
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Fitting factor = overlap optimized 
over the whole freedom in the model

Worth trying a precessing 
search? (probably not)



PhenomP: parameter bias study
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PhenomP: parameter bias study

cp

-1.0

-0.5

0.0

0.5

1.0

cos q

0

2

4

6

f

0.2

0.3

0.4

0.5
Best fits obtained with 
effective precessing spin 
different from 0 (away from 
the poles)



Perspectives

The first direct detection of gravitational waves is expected within 
the next years with the LIGO-Virgo network of interferometers. 
Compact binary coalescences are likely to be the first source to be 
observed.

The waveforms need to be modeled with great precision to extract as
much physics as possible. This is done via a combination of analytical 
and numerical methods.

One of the main current challenges lies in the modeling of precession 
through the whole coalescence. We have produced a first closed form 
model, PhenomP which looks promising.

Next steps
• calibrate the rotation during the merger
• add spin parameters?
• refine the underlying non precessing model (larger q)





Progress of the spin PN computations: dynamics

LO Spin-Orbit (1/c3): 
 Barker and O’Connell (75, 79)
 Goldberger, Rothstein (06) (EFT approach)

NLO Spin-Orbit (1/c5): 
Tagoshi, Ohashi, Owen (98, 01)
Blanchet, Buonanno, Faye (06)
Damour, Jaranowski, Schäfer, (08) (ADM formalism)
Levi (10), Porto (10) (EFT)

Spin-Spin effects: 
LO (1/c4): Kidder, Will, Wiseman, (93)

            Porto (05) (EFT)
                Buonanno, Faye, Hinderer (13)
NLO (1/c6): Steinhoff, Hergt, Schäfer (08,10) (ADM)

 Porto, Rothstein (10), Levi (11) (EFT)
NNLO (1/c8) spin1-spin2: 
                 Hartung, Steinhoff (11) (ADM)
                 Levi (12) (EFT)

NNLO (1/c7): 
Hartung Steinhoff (11) (ADM)
Marsat, Bohe, Faye, Blanchet, (12)

dvi1
dt

= Ai
N +

1

c2
Ai

1PN +
1

c3
Ai

S
1.5PN +

1

c4

h
Ai

2PN +Ai

SS
2PN

i
+

1

c5

h
Ai

2.5PN +Ai

S
2.5PN

i

+
1

c6

h
Ai

3PN +Ai

SS
3PN

i
+

1

c7

h
Ai

3.5PN +Ai

S
3.5PN

i
+O(8)

Here we compute the 3.5PN spin-orbit (linear in spin) 
correction together with the evolution equations for 

the spins

We redefine our spin variable as S ⌘ c Sphys = �Gm2

so that S is of Newtonian order for maximally spinning compact objects.



Progress of the spin PN computations: Radiation

Spin-Orbit effects
 LO (1/c3):  Kidder, Will, Wiseman (93, 95)

 NLO (1/c5): Blanchet, Buonanno, Faye (06)

 NNLO (1/c7): Bohe, Marsat, Blanchet, (13)

So far, a wave generation formalism has only been derived in the harmonic gauge formulation 
(although EFT on the way (cf Porto (06))

For the flux

Tail SO effects
 LO (1/c6):  Blanchet, Buonanno, Faye (06)

 NLO (1/c8): Marsat, Bohe, Blanchet, Buonanno

Spin-Spin effects
 LO (1/c4):  Mikoczi, Vasuth, Gergely (05)

For the polarizations

SO LO (1/c3):  Kidder, Will, Wiseman (93, 95)
 Arun, Buonanno, Faye, Ochsner (09)

SS LO (1/c4): Kidder, Will, Wiseman (95, 96) Spin1-Spin2
    Buonanno, Faye, Hinderer Spin1-Spin1

tail LO (1/c6): Blanchet, Buonanno, Faye (06)

F =
32c5

5G
x

5
⌫

2
h
1 + f1 x+ f1.5 x

3/2 + f2 x
2 + f2.5 x

5/2 + f3 x
3 + f3.5 x

7/2 +O(4)
i



Analytical approach to the ringdown

After the merger, we are left with a single perturbed BH decaying into Kerr. 
The system is well described by BH perturbation theory

Evolution equation for perturbations of Kerr written in terms of  =  4(r, r, ✓,�)⇢
�4

⇢ = �(r � ia cos ✓)�1


(r2 + a2)2

�

� a2 sin2 ✓

�
@2 

@t2
+

4Mar

�
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@t@�
+
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� 1
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@�2
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✓
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◆
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✓
sin ✓

@ 
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◆
+ 4


a(r �M)

�

+

i cos ✓

sin
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�
@ 

@�
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M(r2 � a2)

�

� r � ia cos ✓

�
@ 

@t
+ (4 cot

2 ✓2 + 2) = 0

⌃ = r2 + a2 cos2 ✓

� = r2 � 2Mr + a2Teukolsky equation

(Let us assume for now that we know the final spin)



Solving the Teukolsky equation

Separate variables  (t, r, ✓,�) = e�i!teim�S(✓)R(r)

(Radial equation+) angular equation

d

du


(1� u2)

dS

du

�
+


a2!2u2 + 4a!u� 2 +A� (m� 2u)2

1� u2

�
S = 0

u = cos ✓

We are looking for eigenfunctions of this operator which depends on c = a!, andm

These eigenfunctions are known as spheroidal harmonics. For a given c and m, discrete family 
of solutions Slm(c;u)

(cf Berti et al. 06)

Z 1

�1
Slm(c;u)Sl0m0(c;u)du 6= �ll0�mm0

Except at some discrete values of c, these form a complete non-orthogonal basis of the 
functions on the sphere

! complex



Quasi Normal Modes

Imposing the appropriate boundary conditions for the radial solution selects a discrete set of 
admissible complex frequencies

!l,m,n
orientation: 
 prograde 
 retrograde

 / ei(m��!t)

Re! > 0
Re! < 0

(for m>0)

These can be computed using Leaver’s continued fraction method (also used to express the angular 
eigenfunctions as a series in u) [Leaver ’85]
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Im!
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m = 2
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Reconstructing the full solution

 (t, r, ✓,�) =
X

l,m,n

 ̃lmne
�i!lmntSlmn(✓)Rlmn(r)e

im�

Expressing the full solution is a non trivial mathematical problem!

In particular it is not a decomposition over a basis!

In this description, all «modes» are complex exponentials, which would not be the case if we had 
decomposed on a basis of spheroidal harmonics for a given deformation parameter.

Redefinition of the amplitudes to introduce as a reference time the peak of the 22 and get rid of 
the radial dependance (we compute our waves at infinity)

 4(t, ✓,�) =
X

l,m,n

 ̃lmne
�i!lmn(t�t22)Slmn(✓)e

im�



Measuring cosmo. parameters

[Nissanke et al (2009)]



Measuring cosmo. parameters

• Binary neutron stars and black holes are standard sirens (Schutz '86):
– Distance can be inferred from the gravitational wave signal itself, if (some) 

information about sky position, orientation

– No need for a cosmic distance ladder!
– Different systematics from SN
– Errors from lensing (eLISA...)
– spin breaks degeneracies

• Need to extract redshift:
– Use electromagnetic counterparts, e.g. Gamma ray bursts[Nissanke et al., arXiv:0904.1017]

– Assuming a peaked mass distribution [Taylor, Gair, Mandel, arXiv:1108.5161] 

Fit to

(non spinning case)

DL =
(1 + z)

H0

Z z

0

dz0

[⌦M (1 + z0)3 + ⌦DE(1 + z)3(1+w)]1/2



Measuring cosmo. parameters

[Sathyaprakash, Schutz, Van Den Broeck, CQG 2010]

Example: With Einstein Telescope

assume 1000 BNS merger over 3 years (1.4 + 1.4) and that H0 is known

Advanced LIGO/Virgo: H0 with a few % precision

[Nissanke et al (2009), Del Pozzo (2011)]


