Charmless Semileptonic Decays and

 Determination of $\left|V_{u 6}\right|$*

Alessia D'Orazio

Laboratoire de ['Accééérateur Linéaire

Seminar, June $25^{\text {th }} 2007$

Outline

- Introduction and motivation
- \mathcal{B} decays and CKM sector
- PEP II and BaBar
- Why charmess semileptonic \mathcal{B} decays?
- Inclusive vs Exclusive approach
- Experimentaltechniques
- Inclusive approach
- Theoreticalframework
- $b \rightarrow u \ell v$ measurement and $\left|V_{u 6}\right|$
- Exclusive approach
- Theoretical framework
- $B \rightarrow \pi \ell \nu\left(B \rightarrow\left(\rho, \omega, \eta, \eta^{\prime}\right) \ell v\right)$ measurement and $\left|V_{u 6}\right|$
- Prospect and Conclusion

Unitarity Triangle

- Angles and sides have been measured in a B factory and they can offer two independent tests of the SM
- Measurements are consistent with $\mathrm{SM} \rightarrow$ independent constraints on the apex of the UT overlap in a small area in the (ρ, η) plane...but...
there is still enough room for New Physics to hide

Next step: $\left|\mathrm{V}_{\mathrm{ub}}\right|$

- Zoom in to see the overlap of the "other" contours
$>$ we must make the yellow ring thinner

- Left side of the Triangle is

$$
\left|V_{u d} V_{u b}^{*} / V_{c d} V_{c b}^{*}\right|
$$

$\left|\mathrm{V}_{\mathrm{cb}}\right|$ known with a precision of $\sim 2 \%$

$$
\left|\mathrm{V}_{\mathrm{ub}}\right| \text { current uncertainty } \sim 8 \%
$$

error on the length of the side opposite to β dominated by errors on $\left|\mathrm{V}_{\mathrm{ub}}\right| \rightarrow$ Improved precision needed on $\left|\mathbf{V}_{\text {ub }}\right|$

Charmless Semileptonic B decays

Semileptonic B decays provide the best method to measure $\left|\mathrm{V}_{\mathrm{ub}}\right|$


```
                                    Hadron level
```


- Simple theoretical description at parton level
-Leptonic and hadronic currents factorize
-Sensitive to strong interactions in B mesons
- Study structure of B meson
- Allow test of e.g. Lattice QCD
- Rates depend on CKM matrix element and quark masses

$$
\Gamma_{u} \equiv \Gamma(b \rightarrow u \ell v)=\frac{G_{F}^{2}}{192 \pi^{2}}\left|V_{u b}\right|^{2} m_{b}^{5}
$$

The B Factory concept

- BaBar: $9 \mathrm{GeV} \mathrm{e}^{-} \rightarrow \leftarrow 3.1 \mathrm{GeV} \mathrm{e}^{+}$
- $\mathrm{E}_{\mathrm{cm}}=10.58 \mathrm{GeV}=$ Mass of $\mathrm{Y}(4 \mathrm{~S})$
- BB production rate $\approx 10 \mathrm{~Hz}$

1 fb $^{-1}$ of luminosity corresponds roughly to one million BB pairs

Our research tools

- Good e, μ ID (${ }^{*} *_{\ell}>1 \mathrm{GeV}$)
- Good hadron ID (e.g. $\pi /$ K separation)
- Angular coverage $\approx 91 \%$ of 4π in CMS (challenge for v reconstruction)

Inclusive vs Exclusive decays

Inclusive vs Exclusive decays

Inclusive Decays

select lepton and look at the rest of the event inclusively

Large signal rate, high $b \rightarrow c \ell v$ bkg
"Easy" to calculate (OPE/HQE)
Need Shape Function (b-quark motion inside B meson). Constrain SF param. $\mathrm{m}_{\mathrm{b}}, \mu_{\pi}^{2}$ with $\mathrm{b} \rightarrow \mathrm{s} \gamma$ or $b \rightarrow c \ell v$.

Inclusive vs Exclusive decays

Inclusive Decays

select lepton and look at the rest of the event inclusively

Large signal rate, high $b \rightarrow c \ell v$ bkg
"Easy" to calculate (OPE/HQE)
Need Shape Function (b-quark motion inside B meson). Constrain SF param. $\mathrm{m}_{\mathrm{b}}, \mu_{\pi}^{2}$ with $\mathrm{b} \rightarrow \mathrm{s} \gamma$ or $b \rightarrow c \ell v$.

Inclusive vs Exclusive decays

Inclusive Decays

select lepton and look at the rest of the event inclusively

- Large signal rate, high $b \rightarrow c \ell \nu$ bkg
"Easy" to calculate (OPE/HQE)
Need Shape Function (b-quark motion inside B meson). Constrain SF param.
$\mathrm{m}_{\mathrm{b}}, \mu_{\pi}^{2}$ with $\mathrm{b} \rightarrow \mathrm{s} \mathrm{\gamma}$ or $b \rightarrow c \ell \nu$.

Exclusive Decays

hadronic final states X_{u} reconstructed
Low signal rate, better bkg reduction and kinematic constraints

- Need Form Factor F(q2 ${ }^{2}$ to describe the hadronization process $u \rightarrow \pi, \rho, \ldots$
Measurement as function of q^{2}

Inclusive vs Exclusive decays

Inclusive Decays

select lepton and look at the rest of the event inclusively

- Large signal rate, high $b \rightarrow c \ell \nu$ bkg
"Easy" to calculate (OPE/HQE)
Need Shape Function (b-quark motion inside B meson). Constrain SF param.
$\mathrm{m}_{\mathrm{b}}, \mu_{\pi}^{2}$ with $\mathrm{b} \rightarrow \mathrm{s} \mathrm{\gamma}$ or $b \rightarrow c \ell \nu$.

Exclusive Decays

hadronic final states X_{u} reconstructed
Low signal rate, better bkg reduction and kinematic constraints

- Need Form Factors $\mathrm{F}\left(\mathrm{q}^{2}\right)$ to describe the hadronization process $\mathrm{u} \rightarrow \pi, \rho, \ldots$
Measurement as function of q^{2}

Experimental methods: tagged vs untagged

Complementary approaches: • different systematic errors

- statistically independent samples

Experimental methods: tagged vs untagged

Complementary approaches: • different systematic errors

- statistically independent samples

Inclusive Approach

Theory for $\mathrm{b} \rightarrow u \ell v$

- Heavy Quark Expansion gives us total $B \rightarrow X_{u} \ell v$ decay rate
- Expansion in $\alpha_{s}\left(\boldsymbol{m}_{b}\right)$ (perturbative) and $1 / \mathrm{m}_{\mathrm{b}}$ (non-perturbative)

$$
\left.\left.\begin{array}{rl}
\Gamma\left(B \rightarrow X_{u} \ell v\right) & =\frac{G_{F}^{2}\left|V_{u b}\right|^{2} m_{b}^{5}}{192 \pi^{3}}[1-\mathrm{O} \\
& \text { known to } \mathrm{O}\left(\alpha_{s}{ }^{2}\right)
\end{array} \frac{\alpha}{s}_{\pi}^{\pi}\right)-\frac{9 \lambda_{2}-\lambda_{1}}{2 m_{b}^{2}}+\cdots\right]
$$

- but...inclusive decay width cannot be directly measured
> experiments measure partial widths in limited region of phase space that are free from the $B \rightarrow X_{c} \ell v$ background
- Poor convergence of HQE in region where $B \rightarrow X_{c} \ell v$ decays are kinematically forbidden
- non-perturbative Shape Function (SF) must be used to calculate partial rates

Shape Function : What is it ?

- Light-cone momentum distribution of b quark : $f\left(k_{+}\right)$
* Fermi motion of b quark inside B meson
* Universal property of a B meson (to Leading Order) but...
....subleading SFs arise at each order in $1 / m_{b}$
- Consequences : changes effective $\mathrm{m}_{b} \rightarrow$ smear kinematic spectra
- SF depends on 2 parameters related to the mass and kinetic energy of the b-quark: Λ or m_{b} and λ_{1} or $\mu_{\pi}{ }^{2}$

Rough features (mean Λ, r.m.s. λ_{1}) are known

Extraction of the Shape Function

SF cannot be computed \rightarrow must be determined experimentally:
$>$ we can fit the $b \rightarrow s \gamma$ spectrum with theory prediction
$>$ must assume a functional form of $f\left(k_{+}\right)$

$$
\text { for example: } \quad f\left(k_{+}\right)=N(1-x)^{a} e^{(1+a) x} ; \quad x=\frac{k_{+}}{\bar{\Lambda}}
$$

$>$ calculation connects SF moments with b-quark mass m_{b} and kinetic energy μ_{π}^{2} (Neubert, PLB 612:13)
$>$ determined precisely from $b \rightarrow s \gamma$ and $b \rightarrow c \ell v$ decays
$>\left\langle E_{\gamma}^{n}\right\rangle$ from $b \rightarrow s \gamma,\left\langle E_{\ell}^{n}\right\rangle$ and $\left\langle m_{x}^{n}\right\rangle$ from $b \rightarrow c \ell v$
$>$ fit data from BaBar, Belle, CLEO, Delphi, CDF :

$$
\begin{aligned}
& m_{b}=(4.60 \pm 0.04) \mathrm{GeV}, \quad \mu_{\pi}^{2}=(0.20 \pm 0.04) \mathrm{GeV}^{2} \\
& \quad\left(\text { precision on } \mathrm{m}_{b} \text { better than } 1 \%\right)
\end{aligned}
$$

$>$ Use SF together with calculation of triple-diff. decay rate

Inclusive $\mathrm{b} \rightarrow u \ell v$: how to measure it

\wedge Need to suppress the high $b \rightarrow c \ell v$ background: $\frac{\Gamma(b \rightarrow u \ell \bar{v})}{\Gamma(b \rightarrow c \ell \bar{v})} \approx \frac{\left|V_{u b}\right|^{2}}{\left|V_{c b}\right|^{2}} \approx \frac{1}{50}$
$\quad \vee \mathrm{~m}_{\mathrm{H}} \ll \mathrm{m}_{\mathrm{c}} \rightarrow$ differences in kinematics
$>$ There are 3 independent variables in $b \rightarrow u \ell_{v}$:

Getting $\left|V_{u b}\right|$ from the partial rate

- Take your favorite theory calculation and convert the partial rates into $\left|\mathrm{V}_{\mathrm{ub}}\right|$:
OPE gives good results for full phase space but break down in the "SF region" (low M_{X} and low q^{2})

$$
B R\left(B \rightarrow X_{u} \mid v\right)=\frac{\Delta B R}{f_{u}\left(m_{b}, \underline{\Lambda}^{5 F}, \lambda_{1}^{s F}\right)}
$$

various approaches to solve the problem
\bullet DFN (De Fazio, Neubert) \rightarrow HQE with ad-hoc inclusion of SF
JHEP9906:017(1999)

$$
\left|\mathrm{V}_{\mathrm{ub}}\right|=\sqrt{\frac{\Delta \mathrm{BR}}{\Delta \zeta\left(\Lambda^{\mathrm{SF}}, \mu_{\pi}^{2^{\mathrm{SF}}}\right) \cdot \tau_{\mathrm{B}}}}
$$

${ }^{4}$ BLNP (Bosch, Lange, Neubert, Paz) \rightarrow HQE with systematic incorporation of SF PRD72:073006(2005)
\bullet BLL (Bauer, Ligeti, Luke) \rightarrow HQE for $m_{x}<m_{D}$ and $q^{2}>8$ ('non SF region') to minimize
SF effect
PRD64:113004(2001)
-DGE (Anderson,Gardi) \rightarrow use "Dressed Gluon Exponentiation" to convert on-shell b quark calculation into meson decay spectra

$\mathrm{V}_{\mathrm{ub}} \mid$ from inclusive $\mathrm{B} \rightarrow \mathrm{X}_{\mathrm{u}} \ell v$ endpoint spectrum

$80 \mathrm{fb}^{-1}$

- Select electrons with : $2.0<\mathrm{E}_{\mathrm{e}}<2.6 \mathrm{GeV}$

- accurate subtraction of background is crucial !
$=$ non BB bkg subtracted using off-peak and on-peak (with $\mathrm{p}_{\mathrm{e}}>2.8 \mathrm{GeV}$)
- BB bkg from MC : fit $b \rightarrow c \ell v$ individual compositions
- $\mathrm{S} / \mathrm{B} \sim 1 / 15$ for endpoint $\mathrm{E}_{\mathrm{e}}>2.0 \mathrm{GeV}$
- push below the charm threshold (2.3 GeV)
- larger signal acceptance
- less dependence of SF

$\left|\mathrm{V}_{\mathrm{ub}}\right|$ from inclusive $\mathrm{B} \rightarrow \mathrm{X}_{\mathrm{u}} \ell v$ endpoint spectrum

Inclusive electron spectrum
fully corrected for efficiencies and radiative effects
|Vub| extracted from the measurement of partial Branching Ratios
$\Delta B\left(B \rightarrow X_{u} \ell v\right)=\left(0.572 \pm 0.041_{\text {stat }} \pm 0.065_{\text {syst }}\right) \times 10-3$
$2.0<\mathrm{E}_{\mathrm{e}}<2.6 \mathrm{GeV}$
Using BLNP to translate partial rate directly into |Vub|

$$
\left|\mathrm{V}_{\mathrm{ub}}\right|=\left(4.44 \pm 0.25_{\mathrm{exp}}+0.42^{\left.-0.38_{\mathrm{SF}} \pm 0.22_{\mathrm{th}-\mathrm{BLNP}}\right) \times 10^{-3}}\right.
$$

$\mathrm{E}-\mathrm{q}^{2}$ analysis with v reconstruction

- Try to improve signal to background
- Use $\mathrm{p}_{v}=\mathrm{p}_{\text {miss }}$ in addition to $\mathrm{p}_{\mathrm{e}} \rightarrow$ calculate q^{2}
- define $\mathrm{s}_{\mathrm{h}}{ }^{\text {max }}=$ maximum hadronic mass squared

$$
s_{h}^{\max }=m_{B}^{2}+q^{2}-2 m_{B}\left(E_{e}+\frac{q^{2}}{4 E_{e}}\right)
$$

Cutting at $\mathrm{s}_{\mathrm{h}}{ }^{\text {max }}<\mathrm{m}_{\mathrm{D}}{ }^{2}$ removes $\mathrm{b} \rightarrow \mathrm{cl} v$ while keeping most of the signal

* BB bkg normalization for $\mathrm{s}_{\mathrm{h}}{ }^{\max }>4.25 \mathrm{GeV}^{2}$

* $\mathrm{S} / \mathrm{B} \sim 1 / 2$ achieved for $\mathrm{E}_{\mathrm{e}}>2.0 \mathrm{GeV}$ and $\mathrm{S}_{\mathrm{h}}{ }^{\max }<3.5 \mathrm{GeV}^{2}$

Unfolded partial BR : $\quad \Delta B\left(B \rightarrow X_{u} \ell v\right)_{(2.0,3.5)}=\left(4.41 \pm 0.42_{\text {stat }} \pm 0.42_{\text {syst }}\right) \times 10^{-4}$

Used BLNP to traslate into $\left|\mathrm{V}_{\mathrm{ub}}\right|$:

$$
\left|\mathrm{V}_{\mathrm{ub}}\right|=\left(4.41 \pm 0.30_{\exp } \begin{array}{l}
+0.65 \\
-0.47_{\mathrm{HQ}}^{ \pm} \\
\left. \pm 0.28_{\text {theo }}\right) \times 10^{-3}
\end{array}\right.
$$

$\mathrm{m}_{\mathrm{X}}-\mathrm{q}^{2}$ analysis with hadronic B tag

* must reconstruct all decay products to measure m_{X} and q^{2}
- Use (fully recontructed) hadronic B tag
- Study the recoiling B \rightarrow known kinematics/B flavour
- signal side:
- look for one lepton $\left(\mathrm{p}_{\mathrm{l}}>1 \mathrm{GeV}\right)$ and $v\left(\mathrm{~m}^{2}{ }_{\text {miss }}\right)$
- m_{X} and q^{2} from the X system
* Suppress $b \rightarrow c \ell v$ bkg by vetoing against $\mathrm{D}\left({ }^{*}\right)$ decays \rightarrow kaon veto and soft pions
* Normalized to total semileptonic rate

* Measure the partial BR in region of $\mathrm{m}_{\mathrm{X}}<1.7 \mathrm{GeV}$ and $\mathrm{q}^{2}>8 \mathrm{GeV}^{2}$

$$
\Delta B r\left(M_{X}<1.7 \mathrm{GeV}, q^{2}>8 \mathrm{GeV}^{2}\right)=\left(0.87 \pm 0.09_{\text {stat }} \pm 0.09_{\text {syst }} \pm 0.01_{\text {th }}\right) \times 10^{-3}
$$

Using BLNP to traslate into $\left|\mathrm{V}_{\mathrm{ub}}\right|$:

$$
\left|\mathrm{V}_{\text {ub }}\right|=\left(4.65 \pm 0.24_{\text {stat }} \pm 0.24_{\text {syst }}^{+0.36} \underset{\mathrm{SF}}{\left.+0.23_{\mathrm{th}}\right) \times 10^{-3}}\right.
$$

Avoiding the Shape Function

- Combine $B \rightarrow X_{u} \ell v$ and $B \rightarrow X_{s} \gamma$ without going through the $\mathrm{SF}:$

$$
\begin{aligned}
& \qquad \Gamma\left(B \rightarrow X_{u} \ell v\right)=\frac{\left|V_{u b}\right|^{2}}{\left|V_{t s}\right|^{2}} \int W\left(E_{\gamma}\right) \frac{d \Gamma\left(B \rightarrow X_{s} \gamma\right)}{d E_{\gamma}} d E_{\gamma} \\
& \text { Reduced dependence on SF }
\end{aligned}
$$

PRD61:053006(2000),
${ }^{-}$LLR (Leibovich, Low, Rothstein)
PL B513:83(2001)

- Relates $\left|V_{u b}\right|^{2} /\left|V_{+b} V_{+s}{ }^{*}\right|$ to m_{x} or E_{1} spectrum in b->ulv and E_{γ} spectrum in $b->s \gamma$
- Includes higher order corrections
*Neubert
PL B513:88(2001)
- Similar to LLR
*BLNP/ Lange
- Relates $\left|\mathrm{V}_{\mathrm{ub}}\right|$ to the measured partial $\mathrm{BF}(\mathrm{b}->\mathrm{ulv})$ and normalised E_{γ} spectrum in b->s decays

Inclusive $\left|\mathrm{V}_{\mathrm{ub}}\right|$ with reduced model dependence

* based on measurements of the m_{X} spectrum using hadronic tag
*two approaches to reduce SF dependence
$>$ relating $b \rightarrow u \ell v$ to $b \rightarrow s \gamma$ using weight functions (LLR)
$>$ measurement from the full m_{X} spectrum (HQE) $\begin{gathered}\text { Hoang,Ligeti, Manohar PRD } 59,074017 \text { (1999) }\end{gathered}$

Closer look at uncertainties

Statistical	$\pm 2.2 \%$
Exp. systematic	$\pm 3.8 \%$
SF params. $\left(\mathrm{m}_{\mathrm{b}}, \mu_{\pi}{ }^{2}\right)$	$\pm 4.2 \%$
Theory	$\pm 4.2 \%$

- The SF parameters can be improved with $b \rightarrow s \gamma$, $b \rightarrow c \ell \nu$ measurements
- Quark-hadron duality is not considered
$\square b \rightarrow c \ell v$ and $b \rightarrow s \gamma$ data fit well with the HQE predictions
- Weak annihilation $\rightarrow \pm 1.9 \%$ error
\square Expect $<2 \%$ of total rate,Potential problem for all inclusive determinations including large $\mathrm{E}_{1}, \mathrm{q}^{2}$ region
\square Measure $\Gamma\left(B^{0} \rightarrow X_{u} \ell v\right) / \Gamma\left(B^{+} \rightarrow X_{u} \ell v\right)$ to improve the constraints
- Subleading Shape Function $\rightarrow \pm 3.8 \%$ error
Higher order non-perturbative corrections
\square Cannot be constrained with $B \rightarrow X_{s} \gamma$
- The goal is to reach total error on inclusive $\left|\mathrm{V}_{\mathrm{ub}}\right|$ of $\sim 5 \%$

Reinterpretation of Lepton Endpoint

Take the partial Branching Ratio from the BaBar lepton endpoint measurement and use the BaBar semi-inclusive photon spectrum from $b \rightarrow s \gamma$ to calculate $\left|\mathrm{V}_{\mathrm{ub}}\right|$:
\checkmark different theoretical methods
\checkmark different energy cuts

Reinterpretation of Lepton Endpoint

Take the partial Branching Ratio from the BaBar lepton endpoint measurement and use the BaBar semi-inclusive photon spectrum from $b \rightarrow s \gamma$ to calculate $\left|\mathrm{V}_{\mathrm{ub}}\right|$:
\checkmark different theoretical methods
\checkmark different energy cuts
 - caution on treatment
of theory errors in exp.
analyses

- only BLNP includes power corrections and complete error analysis

Reinterpretation of Lepton Endpoint

Take the partial Branching Ratio from the BaBar lepton endpoint measurement and use the BaBar semi-inclusive photon spectrum from $b \rightarrow s \gamma$ to calculate $\left|\mathrm{V}_{\mathrm{ub}}\right|$:
\checkmark different theoretical methods
\checkmark different energy cuts

Discussion is open...

- Without truncation of perturbation theory, any path to a given scheme would lead to same result, e.g.:

- In practice, results differ at finite order in α_{s}
- Presently quoted theory errors do not take this into account \rightarrow too optimistic!

Discussion is open...

Perturbative error $\mathbf{o m} \mathbf{m b}_{b}$

$$
\delta m_{b, p e r t}= \pm 60 \mathrm{MeV} \text { (1.3\%) }
$$

Discussion is open...

Perturbative error estimation on m_{b} from Neubert

$$
\delta m_{b, p e r t}= \pm 60 \mathrm{MeV} \text { (1.3\%) }
$$

from global fit :

$$
\delta m_{b, \text { pert }}= \pm 30 \mathrm{MeV}(<1 \%)
$$

Very important for $|\mathrm{Vub}|$ determination : actual error under-estimated (?)

Status of Inclusive| $\mathrm{Vub}_{\mathrm{ub}} \mid$

```
CLEO (E ( 
4.09 \pm0.48 \pm0.37
BELLE sim. ann. (m
4.37\pm0.46 \pm0.29
BELLE (E
4.82\pm0.45 \pm0.30
BABAR (Ee)
4.39\pm0.25 \pm0.32
BABAR ( }\mp@subsup{\textrm{E}}{\textrm{e}}{},\mp@subsup{\textrm{s}}{\textrm{h}}{\mathrm{ max }}
4.57 \pm0.31 \pm0.42
BELLE m
4.06 \pm0.27 \pm0.24
BABAR (m
4.75 \pm0.35 \pm0.31
Average +/- exp +/- (mb,theory)
4.52\pm0.19 \pm0.27
\chi}/2/\textrm{dof}=6/6(CL=41%
OPE-HQET-SCET (BLNP)
Phys.Rev.D72:073006,2005
m
2
\(4 \quad\left|\mathrm{~V}_{\mathrm{ub}}\right|\left[\times 10^{-3}\right]^{6}\)
```


Numbers rescaled by HFAG.

SF parameters from hep-ex/0507243, predicted partial rates from BLNP

Exclusive Approach

Exclusive decays $\mathrm{B} \rightarrow X_{\mathrm{u}} \ell v$

- $B \rightarrow \pi \ell \nu, B \rightarrow \eta \ell v, B \rightarrow \eta^{\prime} \ell v, B \rightarrow \rho \ell v, B \rightarrow \omega \ell v$
- Branching Ratios are $O\left(10^{-4}\right) \rightarrow$ statistics limited
- measurements can achieve good signal to background ratio
- Theoretical point of view
- effect of strong interactions on the hadronization of the Xu final states described by Form Factors: f (q^{2})
- In principle $\left|\mathrm{V}_{\mathrm{ub}}\right|$ could be determined from all exclusive channels but....

most promising, both experimentally and theoretically

- decay rate related to $|\mathrm{Vub}|$ through hadronic form factor :
massless leptons and isospin symmetry assumption

just one form factor needed

Form Factor calculations

form factor has been calculated using :
\checkmark Light Cone Sum Rules
PRD71:014015(2005)
\checkmark valid for $\mathrm{q}^{2}<14 \mathrm{GeV}^{2} \rightarrow \mathbf{1 1 \%}$ uncertainty
\checkmark Lattice QCD $\rightarrow \mathbf{1 1 \%}$ uncertainty
\checkmark unquenced calculation by HPQCD PRD73:074502(2006)
FNAL hep-lat/0409116
\checkmark valid for $\mathrm{q}^{2}>16 \mathrm{GeV}^{2}$
\checkmark Quark models : ISGW II
PRD52:2783(1995) (no error quoted)
LQCD and LCSR valid in different $\boldsymbol{q}^{\mathbf{2}}$ ranges \rightarrow No crosscheck important to measure differential decay rate as function of q^{2}
to discriminate among models

Need for a parametrization for extrapolation to low $\mathrm{q}^{2} \rightarrow$ additional uncertainty

Theory and Uncertainties

Need for theoretical input on Form Factor introduce uncertainties in the experimental measurements :

- FF shape \rightarrow acceptance

Measure shape on data to reduce dependence on theoretical predictions

- FF normalization \rightarrow extraction of $\left|\mathrm{V}_{\mathrm{ub}}\right|$ from partial BRs

$$
\begin{aligned}
\left|V_{u b}\right| & =\sqrt{\frac{\Delta \mathcal{B R}\left(B^{0} \rightarrow \pi^{-} \ell^{+} \nu\right)}{\Delta \zeta_{-} \cdot \tau_{B}}} \\
\Delta \zeta & =\frac{G_{F}^{2}}{24 \pi^{3}} \int_{q_{\min }^{2}}^{q_{\text {max }}^{2}}\left|f_{+}\left(q^{2}\right)\right|^{2} p_{\pi}^{3} d q^{2}
\end{aligned}
$$

$\left|\mathrm{V}_{\mathrm{ub}}\right|$ extraction from partial BR doesn't have extrapolation uncertainties

$\mathrm{B} \rightarrow \mathrm{X} \ell v$ semileptonic selection

events are selected requiring an energetic prompt lepton in the recoil of a fully reconstructed B

- Minimum lepton momentum in B rest frame \rightarrow reduce bkg $p^{*}>0.5 \mathrm{GeV} / \mathrm{c}$ for electrons and $\mathrm{p}^{*}>0.8 \mathrm{GeV} / \mathrm{c}$ for muons
- Lepton charge and $\mathrm{B}_{\text {reco }}$ flavour correlation (mixing correction included to take into account the $\mathrm{B}^{0}-\mathrm{B}^{0}$ mixing)

$$
m_{E S}=\sqrt{(\sqrt{s} / 2)^{2}-p_{B}^{* 2}}
$$

$\mathrm{B} \rightarrow \pi \ell \nu$ with hadronic tags plots in full q^{2} range

* starting from sample with a signal lepton (right charge) and searching for a pion among the remaining particles
* no additional tracks and small residual energy
* specific cuts applied to reject peaking background events: $\boldsymbol{b} \rightarrow \boldsymbol{u} \boldsymbol{\ell} \boldsymbol{v}$ (other than signal), $\mathbf{b} \rightarrow \boldsymbol{c} \ell v$ and other background components

Cut on missing mass $\mathbf{m m}^{\mathbf{2}}=\mathbf{P}^{\mathbf{2}}{ }_{\text {miss }}=\left(\mathbf{P}_{\mathrm{Y}(4 \mathrm{~S})}-\mathbf{P}_{\text {Breco }}-\mathbf{P}_{\mathrm{Xu}}-\mathbf{P}_{\text {lept }}\right)^{2}$ is a powerful tool to reject events $\mathrm{b} \rightarrow \mathrm{clv}$
$>$ signal events : $\mathrm{mm}=\mathrm{m}_{v} \rightarrow \mathrm{~mm}^{2}$ peaks at 0
$>$ bkg events : undetected or poorly measured particles \rightarrow mm^{2} tends to larger values

* use m_{ES} and mm^{2} distribution to extract the signal

Extract the signal in $3 q^{2}\left(\left(p_{1}+p_{v}\right)^{2}\right)$ bins $\mathrm{q}^{2}<8 \mathrm{GeV}^{2}, 8<\mathrm{q}^{2}<16 \mathrm{GeV}^{2}, \mathrm{q}^{2}>16 \mathrm{GeV}^{2}$
to measure Form Factor shape and reduce model dependence

$\mathrm{B} \rightarrow \pi \ell v$ with semileptonic tag

* use semileptonic tagged B
- identify a signal lepton (right charge) and search for a pion among the remaining particles
* no additional tracks and (low) neutral energy
* unbinned maximum likelihood fit to $\cos ^{2} \phi_{\mathrm{B}}$ distribution to extract signal yield

$>$ signal events: $\cos ^{2} \phi_{\mathrm{B}}<1 \rightarrow$ event where only v undetected
$>$ bkg events : flat distribution
Extract the signal in $\mathbf{3} \mathbf{q}^{2}\left(\left(m_{B}-E_{\pi}\right)^{2}-\left|p_{\pi}\right|\right)$ bins

$$
q^{2}<8 \mathrm{GeV}^{2}, 8<\mathrm{q}^{2}<16 \mathrm{GeV}^{2}, \mathrm{q}^{2}>16 \mathrm{GeV}^{2}
$$

$\mathrm{B} \rightarrow \pi \ell \nu$ and $\left|\mathrm{V}_{\mathrm{ub}}\right|:$ tagged analysis results

measurements combination of $\mathrm{B}^{0} \rightarrow \pi \ell^{+} v$ and $\mathrm{B}^{+} \rightarrow \pi^{0} \ell^{+} v$ BRs using hadronic and semileptonic tags assuming isospin symmetry $\Gamma\left(\mathrm{B}^{0} \rightarrow \pi^{-} \ell^{+} v\right)=2 \times \Gamma\left(\mathrm{B}^{+} \rightarrow \pi^{0} \ell^{+} v\right)$:

Weighted averages assuming :

- statistical errors are uncorrelated
- most systematic errors fully correlated
$\mathcal{B}\left(B^{0} \rightarrow \pi^{-} \ell^{+} \nu\right)=\left(1.33 \pm 0.17_{\text {stat }} \pm 0.11_{\text {syst }}\right) \times 10^{-4}$
- Experimental error dominated by statistics, with smaller systematics than previous measurements
- Very promising with increasing BaBar dataset !!

$\mathrm{B} \rightarrow \pi \ell \nu$ (untagged): loose v reconstruction technique

© need for v reconstruction from full event
compared with previous untagged analysis(PRD72, 051102) new in this approach:
© no ‘neutrino quality’ cuts :
© significantly increased signal efficiency : $5 \rightarrow 25$ signal ev./fb ${ }^{-1}$, somewhat higher background(S/B from $\sim 1.5 \rightarrow 0.5$)

븐 use $q^{2}=\left(p_{B}-p_{\pi}\right)^{2}$ instead of $q^{2}=\left(p_{1}+p_{v}\right)^{2}$
e signal and background given by a multi-parameter fit in $\Delta \mathrm{E}-\mathrm{m}_{\mathrm{ES}}$ on 12 signal bins of q^{2}

Fit background normalization in bins of q^{2}

reduces syst. uncertainties due to background modeling

Untagged $\mathrm{B} \rightarrow \pi \ell \nu$ and $\left|\mathrm{V}_{\mathrm{ub}}\right|$: results

Also measure full covariance matrix of q^{2} spectrum, form-factor parameters and test QCD calculations:
\rightarrow LQCD and LCSR compatible with our data
\rightarrow ISGW2 quark-model incompatible (Prob<0.06\%).

Smallest statistical and systematic uncertainties of all individual $\mathrm{B} \rightarrow \pi \mathrm{lv}$ measurements to date!

	$q^{2}\left(\mathrm{GeV}^{2}\right)$	$\Delta \zeta\left(\mathrm{ps}^{-1}\right)$	$\left\|V_{u b}\right\|\left(10^{-3}\right)$
HPQCD [3]	>16	1.46 ± 0.35	$4.1 \pm 0.2 \pm 0.2_{-0.4}^{+0.6}$
FNAL [4]	>16	1.83 ± 0.50	$3.7 \pm 0.2 \pm 0.2_{-0.4}^{+0.6}$
LCSR [5]	<16	5.44 ± 1.43	$3.6 \pm 0.1 \pm 0.1_{-0.4}^{+0.6}$
ISGW2 [6]	$0-26.4$	9.6 ± 4.8	$3.2 \pm 0.1 \pm 0.1_{-0.6}^{+1.3}$

Other channels B $\rightarrow\left(\eta, \eta^{\prime}, \rho, \omega\right) \ell v$

* $\mathrm{B} \rightarrow\left(\eta, \eta^{\prime}\right) \ell v$ with hadronic tag hep-ex/0607066
* same technique of $\mathrm{B} \rightarrow \pi \ell v$
* meson reconstructed in

$$
\begin{aligned}
& \eta \rightarrow \gamma \gamma, \pi^{+} \pi^{-} \pi^{0}, \pi^{0} \pi^{0} \pi^{0} \\
& \eta^{\prime} \rightarrow \rho \gamma, \eta \pi^{+} \pi^{-}
\end{aligned}
$$

VERY LOW statistics!

$$
\mathscr{B R}\left(\mathrm{B}^{+} \rightarrow \eta \mathrm{l}^{+} v\right)<1.4^{*} 10^{-4}(90 \% C L)
$$

$$
\mathcal{B R}\left(\mathrm{B}^{+} \rightarrow \eta^{\prime} \mathrm{l}^{+} v\right)<1.3 * 10^{-4}(90 \% C L)
$$

-Measurements of $\mathrm{B} \rightarrow(\rho, \omega, \eta) \ell v$ on full dataset with different techniques in progress B $\rightarrow \rho l v:$

- In $\mathbf{3} \mathbf{q}^{2}$ bins
- Even with $1 / a \mathrm{a}$, will be difficult to extract the full $4-\mathrm{D} \frac{a \mathrm{~T}}{d q^{2} d \cos \theta_{i} \cos \theta_{r} d \chi}$ rate (5^{4} bins !) Would need help from th. : integrate over the angles ? FF ratios ?

These measurements will yield a nice improvement of the experimental knowledge of these channels. Theoretical progress needed to fully take advantage of this ($\left|\mathrm{V}_{\mathrm{ub}}\right|$ extraction, constraints on FF, \ldots)

- Existing model: Ball-Zwicky [3] (not for η ') ; Nothing (?) from LQCD...

Status of exclusive | $\mathrm{V}_{\mathrm{ub}} \mid$

Considering only statistical error, actual $B R(\mathrm{~B} \rightarrow \pi \ell v)$ measurement can determine $\left|\mathrm{V}_{\mathrm{ub}}\right|$ with a precision of \sim 2.2\%

Currently error for exclusive $\left|\mathbf{V}_{\mathrm{ub}}\right|$ dominated by FF normalization uncertainty $\mathbf{\sim 1 0 - 1 2 \%}$

EXCLUSIVE

$$
V_{u b}^{\text {excle }}=(35.0 \pm 4.0) 10^{-4}
$$

Form factors from LQCD and QCDSR

$$
\begin{gathered}
\text { INCLUSIVE } \\
V_{\mathrm{ub}}^{\text {incl. }}=(44.9 \pm 3.3) \\
10^{-4}
\end{gathered}
$$

Model dependent (BLNP, DGE,..)
Non perturbative parameters most not from LQCD (fitted from experiments)

A New Physics effect is unlikely in this tree-level process
\longrightarrow i) Statistical fluctuation
ii) Problem with the theoretical calculations and/or the estimate of the uncertainties

Future experiments

- future B physics program will pursue New Physics through CP violation and rare decays
- e.g $b \rightarrow s \bar{s}, b \rightarrow s \gamma, b \rightarrow s \ell^{+} \ell^{-}, B \rightarrow \tau \nu, B \rightarrow D \tau \nu, B_{s} \rightarrow \mu^{+} \mu^{-}$
$\square\left|\mathrm{V}_{\mathrm{ub}} / \mathrm{V}_{\mathrm{cb}}\right|$ provides a crucial New Physics-free constraint
\square Will they improve $\left|\mathrm{V}_{\mathrm{ub}}\right|$ to $\ll 5 \%$?
\square a Super \boldsymbol{B} factory can produce high-statistics, high purity, hadronic
tag sample to measure $b \rightarrow u \ell v$
- LHCb's primary strength lies in B_{s} physics

Observable	B Factories $\left(2 \mathrm{ab}^{-1}\right)$	Super $B\left(75 \mathrm{ab}^{-1}\right)$
$V_{u b} \mid$ (exclusive)	$8 \%(*)$	3.0%
$V_{u b} \mid$ (inclusive)	$8 \%(*)$	2.0%

\square NB: the real challenge lies in theory
\square precision data can inspire and validate theoretical advances
\square Lattice QCD holds the key
\square we need to see inclusive and exclusive $\left|\mathrm{V}_{\mathrm{ub}}\right|$ converge!

Conclusions

\checkmark Lot of work done on the experimental and theoretical side
\checkmark Many different methods on how to suppress the background
\checkmark Many different theoretical calculation
\checkmark Big progress in both measurement and interpretation of $B \rightarrow X_{u} \ell \nu$ in the last 2 years
\checkmark Inclusive $\left|V_{u b}\right|$ achieved $\pm 7.4 \%$ accuracy
\checkmark Exclusive $\mathrm{B} \rightarrow \pi \ell \nu$ measurement has reached an experimental precision of 5% for the full q^{2} range but... theoretical uncertainties are dominant
\checkmark Improved FF calculation needed: Uncertainty on exclusive $\left|\mathbf{V}_{\mathrm{ub}}\right| \sim \mathbf{1 0 - 1 2 \%}$ dominated by theory!
\checkmark Statistics alone will not be enough but it will help
\checkmark Inclusive: SF parameters, weak annihilation constraint, $b \rightarrow c \ell \nu$ and $b \rightarrow u \ell \nu$ modelling
\checkmark Exclusive: FF shape
we could reach total error of $\approx \mathbf{2 \%} / \mathbf{3 \%}$ in incl / excl Vub in the "next" future...

Backup Slides

Semileptonic B decays: the "Big Picture"

Global OPE fit

- OPE predicts total rate G_{c} and moments $\left\langle E_{\lambda}{ }^{n}\right\rangle,\left\langle m_{X}{ }^{\eta}\right\rangle$ as functions of $\left|V_{c b}\right|$, m_{b}, m_{c}, and several non-perturb. params
\square Each observable has different dependence
\rightarrow Can determine all parameters from a global fit
- E_{γ} spectrum in $B \rightarrow X_{s} \gamma$ decays connected directly to the SF
\square Small rate and high background makes it tough to measure
\square Measured by BABAR, Belle, CLEO

Global OPE fit

- Buchmüller \& Flächer (hep-ph/0507253)
fit data from 10 measurements with an OPE calculation by Gambino \& Uraltsev (Eur. Phys. J. C34 (2004) 181)

Fit parameters: $\left|V_{c b}\right|, m_{b}, m_{c}, \mu_{\pi}^{2}, \mu_{G}^{2}, \rho_{D}{ }^{3}, \rho_{L S}{ }^{3}, \operatorname{BR}\left(B \rightarrow X_{c} \lambda v\right)$

\square Goodness of the fit and the consistency between $X_{c} \lambda \nu$ and $X_{s} \gamma$ add confidence to the theory

Needed for $\left|V_{u b}\right|$

Getting $\left|V_{u b}\right|$ from the partial rate

- Take your favorite theory calculation and convert the partial rates into $\left|\mathrm{V}_{\mathrm{ub}}\right|$:
OPE gives good results for full phase space but break down in the "SF region" (low M_{X} and low q^{2})

various approaches to solve the problem

-DFN (De Fazio, Neubert) \rightarrow HQE with ad-hoc inclusion of SF JHEP9906:017(1999)
*BLNP (Bosch, Lange, Neubert, Paz) \rightarrow HQE with systematic incorporation of SF PRD72:073006(2005)
Handle SF region by introducing a parameterization

- Shape function form is unknown -> assume form
- Shape function moments are related to HQE parameters $\left(m_{b}, \mu_{\pi}{ }^{2}\right)$-> can be measured
- Leading shape functions universal in b->clv, b->ulv, b->s
- Subleading shape functions depend on decay
${ }^{4}$ BLL (Bauer, Ligeti, Luke) $\rightarrow \mathbf{H Q E}$ for $\mathbf{m}_{\mathrm{X}}<\mathrm{m}_{\mathrm{D}}$ and $\mathbf{q}^{\mathbf{2}}>\mathbf{8}$ ('non SF region') to minimize SF effect
- Residual dependence on SF effects

PRD64:113004(2001)

- Only depend on m_{b}
*DGE (Anderson,Gardi) \rightarrow use "Dressed Gluon Exponentiation" to convert on-shell b quark calculation into meson decay spectra
- Only depend on m_{b}

Fully hadronic tag

Aim is to collect as many as possible fully reconstructed B mesons in order to study the property of the recoil.

- one B fully reconstructed in hadronic channels :
$\mathrm{B}_{\text {reco }} \rightarrow \mathrm{D}^{(*)}+\left(\mathrm{n} \pi \mathrm{mK} \mathrm{pK} \mathrm{q}_{\mathrm{s}} \pi^{0}\right) \rightarrow$ study the remaining of event
- $\mathrm{B}_{\text {reco }}$ kinematics well known \rightarrow constraints for signal B
- B^{0} and B^{+}decays can be studied separately \rightarrow reduce combinatorial background / cross-feed
- all visible particles on the events are reconstructed \rightarrow only one missing v in the event
- low level of background
- loose cuts : theoretical extrapolation errors reduced
- high multiplicity channels and large resonances can be studied
- clean signal but low statistics

Definition of $\cos ^{2} \phi_{\mathrm{B}}$

$$
\cos ^{2} \phi_{B}=\frac{\cos ^{2} \theta_{B D^{(*)} l}+\cos ^{2} \theta_{B \pi l}+2 \cos \theta_{B D^{(*)} l} \cos \theta_{B \pi l} \cos \gamma}{\sin ^{2} \gamma}
$$

ϕ_{B} is the angle between the directions of the two B mesons.
Well-reconstructed events with $\mathrm{B}_{\text {sig }} \rightarrow \pi \mid v$ and $\mathrm{B}_{\mathrm{tag}} \rightarrow \mathrm{D}\left({ }^{*}\right) \mid v$ will have $\cos ^{2} \phi_{B} \leq 1$.

This document was created with Win2PDF available at http://www.daneprairie.com. The unregistered version of Win2PDF is for evaluation or non-commercial use only.

