

Alessia D'Orazio Laboratoire de l'Accélérateur Linéaire

Seminar, June 25th 2007

Outline

Introduction and motivation □ B decays and CKM sector □ *PEP II and BaBar* • Why charmless semileptonic B decays? Inclusive vs Exclusive approach Experimental techniques Inclusive approach □ Theoretical framework. $\square b \rightarrow u\ell v \text{ measurement and } |\mathcal{V}_{ub}|$ Exclusive approach □ Theoretical framework $\square B \to \pi \ell \nu (B \to (\rho, \omega, \eta, \eta') \ell \nu) \text{ measurement and } |\mathcal{V}_{ub}|$ Prospect and Conclusion

Unitarity Triangle

- Angles and sides have been measured in a B factory and they can offer two independent tests of the SM
- Measurements are consistent with $SM \rightarrow$ independent constraints on the apex of the UT overlap in a small area in the (ρ,η) plane...but...

Precision of sin2β (~4%) outstripped the other measurement : Must improve the others to make

more stringent test

Next step: $|V_{ub}|$

- Zoom in to see the overlap of the "other" contours
 - > we must make the **yellow ring** thinner

• Left side of the Triangle is

 $V_{ud}V_{ub}^* / V_{cd}V_{cb}^*$

 $|V_{cb}|$ known with a precision of ~ 2%

 $|V_{ub}|$ current uncertainty ~ 8%

error on the length of the side opposite to β dominated by errors on $|V_{ub}| \rightarrow$ **Improved precision needed on** $|V_{ub}|$

Alessia D'Orazio

Charmless Semileptonic B decays

Semileptonic B decays provide the best method to measure $\left|V_{ub}\right|$

• Rates depend on CKM matrix element and quark masses

$$\Gamma_{u} \equiv \Gamma(b \to u \ell v) = \frac{G_{F}^{2}}{192\pi^{2}} \left| V_{ub} \right|^{2} m_{b}^{5} \qquad \text{tree level}$$

The B Factory concept

Our research tools

- **Good e,** μ **ID** ($p_{\ell}^* > 1GeV$)
- **Good hadron ID** (e.g. π/K separation)
- Angular coverage $\approx 91\%$ of 4π in CMS
 - (challenge for v reconstruction)

Inclusive Decays

select lepton and look at the rest of the event inclusively

- > Large signal rate, high $b \rightarrow c\ell v$ bkg
- "Easy" to calculate (OPE/HQE)
- Need Shape Function (b-quark motion inside B meson). Constrain SF param. m_b, μ_{π}^2 with $b \rightarrow s\gamma$ or $b \rightarrow c\ell v$.

Inclusive Decays

select lepton and look at the rest of the event inclusively

- > Large signal rate, high $b \rightarrow c\ell v$ bkg
- "Easy" to calculate (OPE/HQE)
- Need Shape Function (b-quark motion inside B meson). Constrain SF param. m_b, μ_{π}^2 with $b \rightarrow s\gamma$ or $b \rightarrow c\ell v$.

Inclusive Decays

select lepton and look at the rest of the event inclusively

- > Large signal rate, high $b \rightarrow c\ell v$ bkg
- "Easy" to calculate (OPE/HQE)
- Need Shape Function (b-quark motion inside B meson). Constrain SF param. m_b, μ_{π}^2 with $b \rightarrow s\gamma$ or $b \rightarrow c\ell v$.

Exclusive Decays

hadronic final states X_u reconstructed

- Low signal rate, better bkg reduction and kinematic constraints
- Need Form Factor F(q²) to describe the hadronization process u → π, ρ, ...
- > Measurement as function of q^2

Inclusive Decays

select lepton and look at the rest of the event inclusively

- > Large signal rate, high $b \rightarrow c\ell v$ bkg
- "Easy" to calculate (OPE/HQE)
- Need Shape Function (b-quark motion inside B meson). Constrain SF param. m_b, μ_{π}^2 with $b \rightarrow s\gamma$ or $b \rightarrow c\ell v$.

Exclusive Decays

hadronic final states X_u reconstructed

- Low signal rate, better bkg reduction and kinematic constraints
- Need Form Factors $F(q^2)$ to describe the hadronization process $u \rightarrow \pi, \rho, ...$
- > Measurement as function of q^2

Theoretical uncertainties complementary

Experimental methods: tagged vs untagged

Complementary approaches:

- different systematic errors
- statistically independent samples

π^+ B Y(4S) π^+ π^-

Hadronic Tag:

- Fully reconstruct hadronic decay of one B: $B \rightarrow D^{(*)} + (\pi^+, \pi^0, K^+, K^0) \approx 1000$ modes
- \rightarrow know kinematics of other B

Semileptonic Tag:

Reconstruct $B \rightarrow D^{(*)} \ell \nu$ and study recoil

- **Full reconstruction of** D^(*)
- Partial reconstruction of D^* (only l, π_{soft})
- Two $\nu\,\rightarrow\,$ tag-B kinematics incomplete

No Tag:

High statistics High backgrounds and cross-feed → Fully reconstruct signal side (v reco.)

Experimental methods: tagged vs untagged

Complementary approaches:

 π^{-}

- different systematic errors
- statistically independent samples

Hadronic Tag:

Fully reconstruct hadronic decay of one B: $B \rightarrow D^{(*)} + (\pi^+, \pi^0, K^+, K^0) \approx 1000 \text{ modes}$ \rightarrow know kinematics of other B

Semileptonic Tag:

Reconstruct $B \rightarrow D^{(*)} \ell v$ and study recoil

- Full reconstruction of D^(*)

- Partial reconstruction of D* (only l,π_{soft}) Two $\nu \rightarrow$ tag-B kinematics incomplete

No Tag:

High statistics High backgrounds and cross-feed → Fully reconstruct signal side (v reco.) tagged ☺ high signal purity for almost all phase space ⊗ low signal efficiency

<u>untagged</u>

 Iower signal purity and restricted phase space
 iigh signal efficiency

π

Only B-Factories could explore tagged technique

Inclusive Approach

Theory for $b \rightarrow u \ell v$

- Heavy Quark Expansion gives us total $B \rightarrow X_u \ell v$ decay rate
 - Expansion in $\alpha_s(m_b)$ (perturbative) and $1/m_b$ (non-perturbative)

$$\Gamma(B \to X_u \ell \nu) = \frac{G_F^2 |V_{ub}|^2 m_b^5}{192\pi^3} \left[1 - O\left(\frac{\alpha_s}{\pi}\right) - \frac{9\lambda_2 - \lambda_1}{2m_b^2} + \cdots \right]$$

known to $O(\alpha_s^2)$ Suppressed by $1/m_b^2$

- but...inclusive decay width cannot be directly measured
 - > experiments measure partial widths in limited region of phase space that are free from the $B \rightarrow X_c \ell v$ background
- Poor convergence of HQE in region where $B \rightarrow X_c \ell v$ decays are kinematically forbidden
- non-perturbative Shape Function (SF) must be used to calculate partial rates

Shape Function : What is it ?

- Light-cone momentum distribution of *b* quark : $f(k_+)$
 - * Fermi motion of b quark inside B meson
 - Universal property of a B meson (to Leading Order) but...
 subleading SFs arise at each order in 1/m_b
- Consequences : changes effective $m_b \rightarrow \underline{smear \ kinematic \ spectra}$
- SF depends on 2 parameters related to the mass and kinetic energy of the b-quark: Λ or m_b and λ₁ or μ_π²

Extraction of the Shape Function

SF cannot be computed \rightarrow must be determined experimentally:

- > we can fit the $b \rightarrow s\gamma$ spectrum with theory prediction
 - > must assume a functional form of $f(k_+)$

for example:
$$f(k_{+}) = N(1-x)^{a} e^{(1+a)x}; \quad x = \frac{k_{+}}{\overline{\Lambda}}$$

> calculation connects SF moments with *b*-quark mass m_b and kinetic energy μ_{π}^2 (Neubert, PLB 612:13)

- > determined precisely from $b \rightarrow s\gamma$ and $b \rightarrow c\ell v$ decays
 - $\succ \left\langle E_{\gamma}^{n} \right\rangle \text{ from } b \rightarrow s\gamma, \ \left\langle E_{\ell}^{n} \right\rangle \text{ and } \left\langle m_{X}^{n} \right\rangle \text{ from } b \rightarrow c\ell v$

> fit data from BaBar, Belle, CLEO, Delphi, CDF :

Buchmüller & Flächer hep-ph/0507253

$$m_b = (4.60 \pm 0.04) \,\text{GeV}, \quad \mu_\pi^2 = (0.20 \pm 0.04) \,\text{GeV}^2$$

(precision on m_b better than 1%)

>Use SF together with calculation of triple-diff. decay rate

Alessia D'Orazio

Inclusive $b \rightarrow u\ell v$: how to measure it

> Need to suppress the high $b \rightarrow c\ell v$ background:

 $\sqrt{m_u} \ll m_c \rightarrow \underline{differences in kinematics}$

$$\frac{\Gamma(b \to u \,\ell \,\overline{v})}{\Gamma(b \to c \,\ell \,\overline{v})} \approx \frac{\left|V_{ub}\right|^2}{\left|V_{cb}\right|^2} \approx \frac{1}{50}$$

> There are 3 independent variables in $b \rightarrow u\ell v$:

we measure **partial rates** in favorable regions of the phase space ¹⁹

Getting $|V_{ub}|$ from the partial rate

Take your favorite theory calculation and convert the partial rates into |V_{ub}|:

OPE gives good results for full phase space but break down in the "SF region" (low M_X and low q^2)

various approaches to solve the problem

* **DFN** (De Fazio, Neubert) \rightarrow **HQE with ad-hoc inclusion of SF**

JHEP9906:017(1999)

*BLNP (Bosch, Lange, Neubert, Paz) \rightarrow HQE with systematic incorporation of SF PRD72:073006(2005)

*BLL (Bauer, Ligeti, Luke) \to HQE for $m_X\!\!<\!m_D$ and $q^2\!\!>\!\!8$ ('non SF region') to minimize SF effect

PRD64:113004(2001)

*DGE (Anderson,Gardi) → use "Dressed Gluon Exponentiation" to convert on-shell b quark calculation into meson decay spectra JHEP0601:097(2006)

Predicted rate

20

$|V_{ub}|$ from inclusive $B \rightarrow X_u \ell \nu$ endpoint spectrum

80 fb-1

- \bullet Select electrons with : $2.0 < E_e < \, 2.6 \; GeV$
- accurate subtraction of background is crucial !
 - non BB bkg subtracted using off-peak and on-peak (with $p_e > 2.8 GeV$)
 - **BB** bkg from MC : fit $b \rightarrow c\ell v$ individual compositions
- S/B ~ 1/15 for endpoint $E_e > 2.0 \text{ GeV}$
- push below the charm threshold (2.3 GeV)
 - Iarger signal acceptance
 - less dependence of SF

$|V_{ub}|$ from inclusive $B \rightarrow X_u \ell \nu$ endpoint spectrum

Inclusive electron spectrum

fully corrected for efficiencies and radiative effects

|Vub| extracted from the measurement of partial Branching Ratios

 $\Delta B (B \rightarrow X_u \ell v) = (0.572 \pm 0.041_{\text{stat}} \pm 0.065_{\text{syst}}) \times 10-3$

 $2.0 < E_e < 2.6 \text{ GeV}$

Using **BLNP** to translate partial rate directly into |Vub|

$$|V_{ub}| = (4.44 \pm 0.25_{exp} + 0.42) \pm 0.22_{th-BLNP} \times 10^{-3}$$

80 fb⁻¹

E_1-q^2 analysis with v reconstruction

- Try to improve signal to background
- Use $p_v = p_{miss}$ in addition to $p_e \rightarrow calculate q^2$

define $s_h^{max} = maximum$ hadronic mass squared $s_h^{max} = m_B^2 + q^2 - 2m_B(E_e + \frac{q^2}{4E_e}),$ Cutting at $s_h^{max} < m_D^2$ removes $b \rightarrow clv$ while keeping most of the signal

- BB bkg normalization for $s_h^{max} > 4.25 \text{ GeV}^2$
- S/B ~1/2 achieved for $E_e > 2.0$ GeV and $s_h^{max} < 3.5$ GeV²

$$\Delta B \ (B \rightarrow X_u \,\ell \, v) \ _{(2.0,3.5)} = (4.41 \pm 0.42_{\text{stat}} \pm 0.42_{\text{syst}}) \ \text{x} \ 10^{-4}$$

Used BLNP to traslate into $|V_{ub}|$:

$$|V_{ub}| = (4.41 \pm 0.30 \text{ exp} - 0.47 \frac{\pm}{HQ} 0.28_{\text{theo}}) \times 10^{-3}$$

25 June 2007

HQE parameters taken from BaBar $B \rightarrow X_c Iv$ moments

m_X -q² analysis with hadronic B tag

211 fb⁻¹

- must reconstruct all decay products to measure m_X and q²
 - Use (fully recontructed) hadronic B tag
 - Study the recoiling B→known kinematics/B flavour
- signal side:
 - look for one lepton ($p_l > 1 \text{ GeV}$) and $\nu(m^2_{miss})$
 - m_X and q^2 from the X system
- Suppress $b \rightarrow c\ell v$ bkg by vetoing against D(*) decays \rightarrow kaon veto and soft pions
- Normalized to total semileptonic rate

$$\Delta Br(M_X < 1.7 \text{GeV}, q^2 > 8 \text{GeV}^2) = (0.87 \pm 0.09_{\text{stat}} \pm 0.09_{\text{syst}} \pm 0.01_{th}) \times 10^{-3}$$

Using BLNP to traslate into $|V_{ub}|$:

$$|V_{ub}| = (4.65 \pm 0.24_{stat} \pm 0.24_{syst} - 0.36_{SF} \pm 0.23_{th}) \times 10^{-3}$$

HQE parameters taken from BaBar $B \rightarrow X_c Iv$ moments

25 June 2007

Avoiding the Shape Function

• Combine $B \to X_u \ell v$ and $B \to X_s \gamma$ without going through the SF:

80 fb⁻¹

Inclusive $|V_{ub}|$ with reduced model dependence

- based on measurements of the m_X spectrum using hadronic tag
- * two approaches to reduce SF dependence
 - > relating $b \rightarrow u\ell v$ to $b \rightarrow s\gamma$ using weight functions (LLR)
 - > measurement from the full m_X spectrum (HQE) Uraltsev hep-ph/9905520, Hoang,Ligeti,Manohar PRD 59, 074017 (1999)

Closer look at uncertainties

Statistical	±2.2%
Exp. systematic	±3.8%
SF params. (m_b, μ_{π}^2)	±4.2%
Theory	±4.2%

The SF parameters can be improved with $b \rightarrow s\gamma$, $b \rightarrow c\ell v$ measurements

- Quark-hadron duality is not considered
 - \Box $b \rightarrow c\ell v$ and $b \rightarrow s\gamma$ data fit well with the HQE predictions
- Weak annihilation $\rightarrow \pm 1.9\%$ error
 - \Box Expect <2% of total rate,
 - □ Potential problem for all inclusive determinations including large E_1 , q^2 region
 - $\square \text{ Measure } \Gamma (B^0 \to X_u \ell v) / \Gamma (B^+ \to X_u \ell v) \text{ to}$
 - improve the constraints
- Subleading Shape Function $\rightarrow \pm 3.8\%$ error
 - □ Higher order non-perturbative corrections
 - $\Box \quad \text{Cannot be constrained with } B \to X_s \gamma$
- The goal is to reach total error on inclusive $|V_{ub}|$ of ~ 5%

Reinterpretation of Lepton Endpoint

Take the partial Branching Ratio from the BaBar lepton endpoint measurement and use the BaBar semi-inclusive photon spectrum from $b \rightarrow s\gamma$ to calculate $|V_{ub}|$:

different theoretical methods

✓ different energy cuts

Reinterpretation of Lepton Endpoint

Take the partial Branching Ratio from the BaBar lepton endpoint measurement and use the BaBar semi-inclusive photon spectrum from $b \rightarrow s\gamma$ to calculate $|V_{ub}|$:

- different theoretical methods
- ✓ different energy cuts

Reinterpretation of Lepton Endpoint

Take the partial Branching Ratio from the BaBar lepton endpoint measurement and use the BaBar semi-inclusive photon spectrum from $b \rightarrow s\gamma$ to calculate $|V_{ub}|$:

- different theoretical methods
- ✓ different energy cuts

Discussion is open...

• Without truncation of perturbation theory, any path to a given scheme would lead to same result, e.g.:

[Fit in 1S scheme] \oplus [Translation: 1S \rightarrow kin.]

- In practice, results differ at finite order in α_s
- Presently quoted theory errors do not take this into account → too optimistic!

Discussion is open...

• Without truncation of perturbation theory, any path to a given scheme would lead to same result, e.g.:

[Fit in kinetic scheme]

[Fit in 1S scheme] \oplus [Translation: 1S \rightarrow kin.]

- In practice, results differ at finite order in α_s
- Presently quoted theory errors do not take this into account → too optimistic!

Perturbative error om m_b

 $\delta m_{b,pert} = \pm 60 \text{ MeV} (1.3\%)$

Discussion is open...

Status of Inclusive |V_{ub}|

Numbers rescaled by HFAG.

SF parameters from hep-ex/0507243, predicted partial rates from BLNP

Exclusive Approach

Exclusive decays $B \rightarrow X_u \ell v$

- $B \to \pi \ell v, B \to \eta \ell v, B \to \eta' \ell v, B \to \rho \ell v, B \to \omega \ell v$
 - Branching Ratios are $O(10^{-4}) \rightarrow \text{statistics limited}$
 - measurements can achieve good signal to background ratio
- Theoretical point of view
 - effect of strong interactions on the hadronization of the Xu final states described by Form Factors : $f(q^2)$
- In principle $|V_{ub}|$ could be determined from all exclusive channels but....

 $\pi \ell v$ most promising, both experimentally and theoretically

decay rate related to |Vub| through hadronic form factor :

massless leptons and isospin
symmetry assumption
$$\frac{d\Gamma(B \to \pi \ell \nu)}{dq^2} = \frac{G_F^2}{24\pi^3} \left| V_{ub} \right|^2 p_{\pi}^3 \left| f_+(q^2) \right|^2$$
just one form factor needed

Form Factor calculations

Theory and Uncertainties

Need for theoretical input on Form Factor introduce uncertainties in the experimental measurements :

<u>FF shape</u> \rightarrow acceptance ٠

> Measure shape on data to reduce dependence on theoretical predictions

<u>FF normalization</u> \rightarrow extraction of $|V_{ub}|$ from partial BRs ٠

$$V_{ub}| = \sqrt{\frac{\Delta \mathcal{BR}(B^0 \to \pi^- \,\ell^+ \nu\,)}{\Delta \zeta} \cdot \tau_B}$$

$$\Delta \zeta = \frac{G_F^2}{24\pi^3} \int_{q_{min}^2}^{q_{max}^2} |f_+(q^2)|^2 p_\pi^3 dq^2$$

 $|V_{ub}|$ extraction from partial BR doesn't have extrapolation uncertainties Alessia D'Orazio

$B \rightarrow X\ell v$ semileptonic selection

events are selected requiring an energetic prompt lepton in the recoil of a fully reconstructed B

- Minimum lepton momentum in B rest frame → reduce bkg $p^*>0.5 \text{ GeV/c}$ for electrons and $p^*>0.8 \text{ GeV/c}$ for muons
- Lepton charge and B_{reco} flavour correlation (mixing correction included to take into account the B⁰-B⁰ mixing)

$$m_{ES} = \sqrt{(\sqrt{s}/2)^2 - p_B^{*2}}$$

$B \rightarrow \pi \ell v$ with hadronic tags

- starting from sample with a signal lepton (right charge) and searching for a pion among the remaining particles
- no additional tracks and small residual energy

211 fb⁻¹

• specific cuts applied to reject peaking background events: $b \rightarrow u\ell v$ (other than signal), $b \rightarrow c\ell v$ and other background components

Cut on missing mass $mm^2 = P^2_{miss} = (P_{Y(4S)} - P_{Breco} - P_{Xu} - P_{lept})^2$

is a powerful tool to reject events $b \rightarrow clv$

≥ <u>signal events</u> : $mm = m_v \rightarrow mm^2$ peaks at 0

 \succ <u>bkg events</u> : undetected or poorly measured particles → mm² tends to larger values

• use m_{ES} and mm² distribution to extract the signal

Extract the signal in 3q^2 ((p_1+p_v)^2) bins $q^2 < 8 \text{ GeV}^2$, $8 < q^2 < 16 \text{ GeV}^2$, $q^2 > 16 \text{ GeV}^2$

to measure Form Factor shape and reduce model dependence

211 fb⁻¹

$B \rightarrow \pi \ell v$ with semileptonic tag

- identify a signal lepton (right charge) and search for a pion among the remaining particles
- * no additional tracks and (low) neutral energy
- ${\mbox{\tiny\bullet}}$ unbinned maximum likelihood fit to $cos^2 \phi_B$ distribution to extract signal yield

 $\mathbf{p}_{\mathbf{D}(^{\star})\mathbf{I}}$

> signal events : cos²φ_B < 1→ event where only v undetected
 > bkg events : flat distribution

Extract the signal in 3 q² ($(m_B-E_\pi)^2 - |p_\pi|$ **)bins** q²<8 GeV², 8< q²<16 GeV², q²>16GeV²

Alessia D'Orazio

$B \rightarrow \pi \ell v$ and $|V_{ub}|$: tagged analysis results

measurements combination of $\mathbf{B}^0 \to \pi^- \ell^+ \nu$ and $\mathbf{B}^+ \to \pi^0 \ell^+ \nu$ BRs using hadronic and semileptonic tags assuming isospin symmetry $\Gamma(\mathbf{B}^0 \to \pi^- \ell^+ \nu) = 2 \times \Gamma(\mathbf{B}^+ \to \pi^0 \ell^+ \nu)$:

Weighted averages assuming :

- statistical errors are uncorrelated
- most systematic errors fully correlated

 $\mathcal{B}(B^0 \to \pi^- \ell^+ \nu) = (1.33 \pm 0.17_{\text{stat}} \pm 0.11_{\text{syst}}) \times 10^{-4}$

• Experimental error dominated by statistics, with smaller systematics than previous measurements

Very promising with increasing BaBar dataset !!

	$q^2 \; ({\rm GeV}^2)$	$\Delta \zeta \ (\mathrm{ps}^{-1})$	$ V_{ub} \ (10^{-3})$
Ball-Zwicky [5]	< 16	5.44 ± 1.43	$3.2 \pm 0.2 \pm 0.1^{+0.5}_{-0.4}$
HPQCD [6]	> 16	1.46 ± 0.35	$4.5 \pm 0.5 \pm 0.3 \substack{+0.7 \\ -0.5}$
FNAL $[7]$	> 16	1.83 ± 0.50	$4.0 \pm 0.5 \pm 0.3 \substack{+0.7 \\ -0.5}$
APE [8]	> 16	1.80 ± 0.86	$4.1 \pm 0.5 \pm 0.3 \substack{+1.6 \\ -0.7}$

PRL98:091801(2007)

$B \rightarrow \pi \ell v$ (untagged): loose v reconstruction technique

 $^{\circ}$ need for v reconstruction from full event

compared with previous untagged analysis(PRD72, 051102) new in this approach:

• no 'neutrino quality' cuts :

■ significantly increased signal efficiency : $5 \rightarrow 25$ signal ev./fb⁻¹, somewhat higher background(S/B from ~1.5 →0.5)

■ use
$$q^2 = (p_B - p_\pi)^2$$
 instead of $q^2 = (p_l + p_\nu)^2$

• signal and background given by a multi-parameter fit in $\Delta E - m_{ES}$ on 12 signal bins of q²

reduces syst. uncertainties due to background modeling

Untagged $B \rightarrow \pi \ell v$ and $|V_{ub}|$: results

Smallest statistical <u>and</u> systematic uncertainties of all individual $B \rightarrow \pi I \nu$ measurements to date!

	$q^2 (\text{GeV}^2)$	$\Delta \zeta \ (\mathrm{ps}^{-1})$	$ V_{ub} \ (10^{-3})$
HPQCD $[3]$	> 16	1.46 ± 0.35	$4.1 \pm 0.2 \pm 0.2 \stackrel{+0.6}{_{-0.4}}$
FNAL $[4]$	> 16	1.83 ± 0.50	$3.7 \pm 0.2 \pm 0.2 \stackrel{+0.6}{_{-0.4}}$
LCSR [5]	< 16	5.44 ± 1.43	$3.6 \pm 0.1 \pm 0.1 \stackrel{+0.6}{_{-0.4}}$
ISGW2 [6]	$0\!-\!26.4$	9.6 ± 4.8	$3.2 \pm 0.1 \pm 0.1 \stackrel{+1.3}{_{-0.6}}$

25 June 2007

•Measurements of $B \rightarrow (\rho, \omega, \eta) \ell v$ on full dataset with different techniques in progress $B \rightarrow \rho l v$:

- In 3 q² bins
- Even with 1/ab, will be difficult to extract the full 4-D $\frac{1}{dq^2 d \cos \theta_\ell \cos \theta_r d\chi}$ rate (5⁴ bins !) Would need help from th. : integrate over the angles ? FF ratios ?

These measurements will yield a nice improvement of the experimental knowledge of these channels. Theoretical progress needed to fully take advantage of this ($|V_{ub}|$ extraction, constraints on FF,...)

Existing model: Ball-Zwicky [3] (not for η'); Nothing (?) from LQCD...

Status of exclusive $|V_{ub}|$

PRD Erratum 75:119906(2007)

A New Physics effect is unlikely in this tree-level process

- i) Statistical fluctuation
 - ii) Problem with the theoretical calculations and/or the estimate of the uncertainties

Future experiments

□ future *B* physics program will pursue New Physics through CP violation and rare decays

 $\Box \text{ e.g } b \rightarrow s\bar{sss}, b \rightarrow s\gamma, b \rightarrow s\ell^+\ell^-, B \rightarrow \tau\nu, B \rightarrow D\tau\nu, B_s \rightarrow \mu^+\mu^-$

 \Box $|V_{ub} / V_{cb}|$ provides a crucial New Physics-free constraint

• Will they improve $|V_{ub}|$ to << 5% ?

□ a **Super** *B* **factory** can produce high-statistics, high purity, hadronic tag sample to measure $b \rightarrow u\ell v$

 \Box LHCb's primary strength lies in B_s physics

□ NB: the real challenge lies in theory

□ precision data can inspire and validate theoretical advances

□ Lattice QCD holds the key

 \Box we need to see inclusive and exclusive $|V_{ub}|$ converge!

Observable	B Factories (2 ab ⁻¹)	Super B (75 ab ⁻¹)
$V_{ub} $ (exclusive)	8% (*)	3.0%
V_{ub} (inclusive)	$8\%\;(*)$	2.0%

Conclusions

✓ Lot of work done on the experimental and theoretical side

Many different methods on how to suppress the background

Many different theoretical calculation

✓ Big progress in both measurement and interpretation of $B \rightarrow X_u \ell v$ in the last 2 years

✓ Inclusive $|V_{ub}|$ achieved ±7.4% accuracy

✓ Exclusive $B \rightarrow \pi \ell \nu$ measurement has reached an experimental precision of 5% for the full q² range but... theoretical uncertainties are dominant

✓ Improved FF calculation needed: Uncertainty on exclusive $|V_{ub}|$ ~10-12% dominated by theory!

✓ Statistics alone will not be enough but it will help

✓ Inclusive: SF parameters, weak annihilation constraint, $b \rightarrow c\ell v$ and $b \rightarrow u\ell v$ modelling

✓ Exclusive: FF shape

we could reach total error of $\approx 2\% / 3\%$ in incl / excl Vub in the "next" future...

Backup Slides

Semileptonic B decays: the "Big Picture"

Global OPE fit

- OPE predicts total rate G_c and moments $\langle E_{\lambda}{}^n \rangle$, $\langle m_X{}^n \rangle$ as functions of $|V_{cb}|$, m_b , m_c , and several non-perturb. params
 - □ Each observable has different dependence
 - \rightarrow Can determine all parameters from a global fit
- E_{γ} spectrum in $B \rightarrow X_s \gamma$ decays connected directly to the SF
 - □ Small rate and high background makes it tough to measure
 - □ Measured by *BABAR*, Belle, CLEO

Global OPE fit

BABAR	PRD69:111103 PRD69:111104 PRD72:052004 hep-ex/0507001
Belle	PRL93:061803 hep-ex/0508005
CLEO	PRD70:031002 PRL87:251807
CDF	PRD71:051103
DELPHI	EPJ C45:35

4.4

4.7

 $\overline{}$

4.6 m_b (GeV)

Buchmüller & Flächer (hep-ph/0507253) fit data from 10 measurements with an OPE calculation by Gambino & Uraltsev (Eur. Phys. J. C34 (2004) 181)

 \square Fit parameters: $|V_{cb}|, m_b, m_c, \mu_{\pi}^2, \mu_G^2, \rho_D^3, \rho_{LS}^3, \text{BR}(B \rightarrow X_c \lambda \nu)$

Getting $|V_{ub}|$ from the partial rate

- Take your favorite theory calculation and convert the partial rates into |V_{ub}|:
- **OPE** gives good results for full phase space but break down in the "SF region" (low M_X and low q^2)

Predicted rate

PRD64:113004(2001)

"traditional" theoretical calculations

various approaches to solve the problem

***DFN** (De Fazio, Neubert) \rightarrow HQE with ad-hoc inclusion of SF JHEP9906:017(1999)

***BLNP** (Bosch, Lange, Neubert, Paz) \rightarrow HQE with systematic incorporation of SF PRD72:073006(2005)

Handle SF region by introducing a parameterization

- Shape function form is unknown -> assume form
- Shape function moments are related to HQE parameters (m_b , μ_{π}^2) -> can be measured
- Leading shape functions universal in b->clv, b->ulv, b->s γ
- Subleading shape functions depend on decay
- ***BLL** (Bauer, Ligeti, Luke) \rightarrow HQE for $m_X < m_D$ and $q^2 > 8$ ('non SF region') to minimize SF effect
 - Residual dependence on SF effects
 - Only depend on m_b

*DGE (Anderson,Gardi) \rightarrow use "Dressed Gluon Exponentiation" to convert on-shell b quark calculation into meson decay spectra

Only depend on m_b

JHEP0601:097(2006)

54

Fully hadronic tag

Aim is to collect as many as possible fully reconstructed B mesons in order to study the property of the recoil.

• one B fully reconstructed in hadronic channels : $B_{reco} \rightarrow D^{(*)} + (n\pi \text{ mK pK}_s q\pi^0) \rightarrow \text{study the remaining of event}$

• B_{reco} kinematics well known \rightarrow constraints for signal B

• B^0 and B^+ decays can be studied separately \rightarrow reduce combinatorial background / cross-feed

• all visible particles on the events are reconstructed \rightarrow only one missing v in the event

- low level of background
 - loose cuts : theoretical extrapolation errors reduced
 - high multiplicity channels and large resonances can be studied

<u>clean signal but low statistics</u>

Definition of $\cos^2 \phi_B$

$$\cos^2 \phi_B = \frac{\cos^2 \theta_{BD^{(*)}l} + \cos^2 \theta_{B\pi l} + 2\cos \theta_{BD^{(*)}l} \cos \theta_{B\pi l} \cos \gamma}{\sin^2 \gamma}$$

 ϕ_{B} is the angle between the directions of the two B mesons. Well-reconstructed events with $B_{sig} \rightarrow \pi I_{V}$ and $B_{tag} \rightarrow D(*)I_{V}$ will have $\cos^{2}\phi_{B} \leq 1$. This document was created with Win2PDF available at http://www.daneprairie.com. The unregistered version of Win2PDF is for evaluation or non-commercial use only.