Higgs production at N3LO beyond threshold

Claude Duhr

 in collaboration with C. Anastasiou, F. Dulat, E. Furlan, T. Gehrmann, F. Herzog, B. MistlbergerLAL, Orsay, 24/10/201

Higgs physics at LHC

- Establishing whether the BEH mechanism and its boson is SM-like will be of outmost importance for the run of the LHC.
- Higgs-boson production modes at the LHC:

Gluon fusion

TTH

Higgs strahlung

VBF

- Current status for the total cross section: [D. André @ ICHEP 2014]

$$
\sigma / \sigma_{\mathrm{SM}}=1.00 \pm 0.13[\pm 0.09{ }^{(4)} \text { stat. } \underbrace{+0.08}(\text { heo.) } 0.07 \text { yst.) }]
$$

\Rightarrow Theo. and exp. uncertainties are of the same order.
\Rightarrow Need to improve our theory predictions!

The gluon fusion cross section

- The dominant Higgs production mechanism at the LHC is gluon fusion.
\Rightarrow Loop-induced process.

- For a light Higgs boson, the dimension five operator describing a tree-level coupling of the gluons to the Higgs boson

$$
\mathcal{L}=\mathcal{L}_{Q C D, 5}-\frac{1}{4 v} C_{1} H G_{\mu \nu}^{a} G_{a}^{\mu \nu}
$$

- Top-mass corrections known at NNLO.
[Harlander, Ozeren; Pak, Rogal, Steinhauser; Ball, Del Duca, Marzani, Forte, Vicini; Harlander, Mantler, Marzani, Ozeren]
- In the rest of the talk, I will only concentrate on the effective theory.

The gluon fusion cross section

- The gluon fusion cross section is given in perturbation theory by

$$
\sigma(p p \rightarrow H+X)=\tau \sum_{i j} \int_{\tau}^{1} d z \mathcal{L}_{i j}(z) \hat{\sigma}_{i j}(\tau / z)
$$

- The (partonic) cross section depends up to an overall scale only on the ratio

$$
\tau=\frac{m^{2}}{s} \quad z=\frac{m^{2}}{\hat{s}}
$$

- The partonic cross section known at NLO and NNLO.
[Dawson; Djouadi, Spira, Zerwas; Harlander, Kilgore; Anastasiou, Melnikov; Ravindran, Smith, van Neerven]
- The inclusive Higgs cross section is known to be 'plagued' by large perturbative corrections.

The gluon fusion cross section

	σ	$\delta \sigma$
LO	9.6 pb	$\sim 25 \%$
NLO	16.7 pb	$\sim 20 \%$
N2LO	19.6 pb	$\sim 7-9 \%$
N3LO	$? ? ?$	$\sim 4-8 \%$

[Fixed order only]
[Plot from Anastasiou, Bühler, Herzog, Lazopoulos]
[Results for 8 TeV]

The gluon fusion cross section

- We need one more order in the perturbative expansion, N3LO.
- So far no complete computation is available.
\Rightarrow Scale variation at N3LO is known.
[Moch, Vogt; Ball, Bonvini, Forte, Marzani, Ridolfi; Bühler, Lazopoulos]
- Several approximate N3LO results exist.
[Ball, Bonvini, Forte, Marzani, Ridolfi; de Florian, Mazzitelli, Moch, Vogt]
\Rightarrow How good are these approximations..?
- Only full computation can tell...
- Challenge: Never has an N3LO computation been performed so far...
- Uncharted territory!
\Rightarrow New conceptual challenges.

Outline

- Higgs production at N3LO
- The soft-virtual cross-section at N3LO.
- Approximate cross-sections at N3LO.
- Going beyond the soft-virtual approximation.

Higgs production at N3LO

The gluon fusion cross section

- At NLO, there are two contributions (~1991):
[Dawson; Djouadi, Spira, Zerwas]

Virtual corrections ('loops') Real emission

- Both contributions are individually divergent:
\Rightarrow UV divergences are handled by renormalization.
\Rightarrow IR divergences cancelled by PDF counterterms.

The gluon fusion cross section

- At NNLO, there are three contributions (2002):
[Harlander, Kilgore; Anastasiou, Melnikov; Ravindran, Smith, van Neerven]

Double virtual
Real-virtual

Double real

The gluon fusion cross section

- At N3LO, there are five contributions:

Triple virtual

Real-virtual squared

Double virtual real

Double real virtual

Triple real

Triple virtual corrections

- The triple virtual corrections are directly related to the QCD form factor

- The QCD form factor is known
\Rightarrow at one loop.
\Rightarrow at two loops.
[Gonsalves; Kramer, Lampe; Gehrmann, Huber, Maître]
\Rightarrow at three loops.
[Baikov, Chetyrkin, Smirnov, Smirnov, Steinhauser; Gehrmann, Glover, Huber, Ikizlerli, Studerus]
- It is not the loops that are the problem!

Unitarity

- Optical theorem:

\Rightarrow Discontinuities of loop amplitudes are phase space integrals.
- Discontinuities of loop integrals are given by Cutkosky's rule:

$$
\frac{1}{p^{2}-m^{2}+i \varepsilon} \rightarrow \delta_{+}\left(p^{2}-m^{2}\right)=\delta\left(p^{2}-m^{2}\right) \theta\left(p^{0}\right)
$$

- These relations are at the heart of all the unitarity-based approaches to loop computations.

Reverse-unitarity

- Optical theorem:

- We can read the optical theorem 'backwards' and write inclusive phase space integrals as unitarity cuts of loop integrals. [Anastasiou, Melnikov; Anastasiou, Dixon, Melnikov, Petriello]
\Rightarrow Rather than computing phase-space integrals, we can compute loop integrals with cuts!
\Rightarrow Makes inclusive phase space integrals accessible to all the technology developed for multi-loop computations!
- Integration-by-parts \& differential equations.

Reverse-unitarity @ N3LO

Growth in complexity for real emission

LO	なぁ	1 diagram	1 integral
NLO		10 diagrams	1 integral
NNLO		381 diagrams	18 integrals
N3LO		26565 diagrams	~ 500 integrals

The threshold expansion

- ~ 500 master integrals only for triple real double real NNLO).
\Rightarrow Tough nut to crack!

- The gluon fusion cross section depends on one single parameter:

$$
z=\frac{m^{2}}{s} \quad \bar{z}=1-z
$$

- Close to threshold ($z \sim 1$), we can approximate the triple real cross section by a power series:

$$
\hat{\sigma}(z)=\sigma_{-1}+\sigma_{0}+(1-z) \sigma_{1}+\mathcal{O}(1-z)^{2}
$$

- Goal: Compute cross section as a series around threshold!

The soft-virtual cross section at N3LO

The soft-virtual approximation

- The

$$
\hat{\sigma}(z)=\sigma_{-1}+\sigma_{0}+(1-z) \sigma_{1}+\mathcal{O}(1-z)^{2}
$$

- The soft-virtual term receives contributions from a 'pole' at $z \sim 1$:

$$
(1-z)^{-1+n \epsilon}=\frac{\delta(1-z)}{n \epsilon}+\left[\frac{1}{1-z}\right]_{+}+n \epsilon\left[\frac{\log (1-z)}{1-z}\right]_{+}+\mathcal{O}\left(\epsilon^{2}\right)
$$

- Plus-distribution terms already known. [Moch, Vogt
- Complete three-loop corrections are contained the delta function term.
\Rightarrow The soft-virtual term contains the complete three-loop corrections plus the correction from the emission of up to three soft gluons.

The soft-virtual approximation

- At NLO and NNLO, the soft-virtual term reads $\left(\mu_{R}=\mu_{F}=m_{H}\right)$

$$
\hat{\sigma}_{g g}^{S V}(z)=\frac{\pi C\left(\mu^{2}\right)^{2}}{v^{2}\left(N^{2}-1\right)^{2}} \sum_{k=0}^{\infty}\left(\frac{\alpha_{s}}{\pi}\right)^{k} \hat{\eta}^{(k)}(z)
$$

$$
\hat{\eta}^{(0)}(z)=\delta(1-z)
$$

$$
\hat{\eta}^{(1)}(z)=2 C_{A} \zeta_{2} \delta(1-z)+4 C_{A}\left[\frac{\log (1-z)}{1-z}\right]_{+}
$$

$\hat{\eta}^{(2)}(z)=\delta(1-z)\left\{C_{A}^{2}\left(\frac{67}{18} \zeta_{2}-\frac{55}{12} \zeta_{3}-\frac{1}{8} \zeta_{4}+\frac{93}{16}\right)+N_{F}\left[C_{F}\left(\zeta_{3}-\frac{67}{48}\right)-C_{A}\left(\frac{5}{9} \zeta_{2}+\frac{1}{6} \zeta_{3}+\frac{5}{3}\right)\right]\right\}$
$+\left[\frac{1}{1-z}\right]_{+}\left[C_{A}^{2}\left(\frac{11}{3} \zeta_{2}+\frac{39}{2} \zeta_{3}-\frac{101}{27}\right)+N_{F} C_{A}\left(\frac{14}{27}-\frac{2}{3} \zeta_{2}\right)\right]$
$+\left[\frac{\log (1-z)}{1-z}\right]_{+}\left[C_{A}^{2}\left(\frac{67}{9}-10 \zeta_{2}\right)-\frac{10}{9} C_{A} N_{F}\right]$
$+\left[\frac{\log ^{2}(1-z)}{1-z}\right]_{+}\left(\frac{2}{3} C_{A} N_{F}-\frac{11}{3} C_{A}^{2}\right)+\left[\frac{\log ^{3}(1-z)}{1-z}\right]_{+} 8 C_{A}^{2}$.

N3LO status: soft-virtual

\boldsymbol{V} Triple virtual $\quad \sqrt{\text { Real-virtual }}$ squared $\quad \checkmark \begin{gathered}\text { Double virtual } \\ \text { real }\end{gathered}$

Double real virtual

$\sqrt{ }$ Triple real

The soft-virtual approximation

- The computation of the first term has been completed!
[Anastasiou, CD, Dulat, Furlan, Gehrmann, Herzog, Mistlberger]
- Many different contributions are needed:
$\Rightarrow 22$ three-loop.
[Baikov, Chetyrkin, Smirnov, Smirnov, Steinhauser; Gehrmann, Glover, Huber, Ikizlerli, Studerus]
- 3 double-virtual-real.
[CD Gehrmann, Li, Zhu]
$\Rightarrow 7$ real-virtual-squared.
[Anastasiou, CD, Dulat, Herzog, Mistlberger; Kilgore]
$\rightarrow 10$ [Anastasiou, CD, Dulat, Furlan, Herzog, Mistlberger; 10 double-real-virtual. Li, von Manteuffel, Schabinger, Zhu]
- 8 triple real.
[Anastasiou, CD, Dulat, Mistlberger]
\Rightarrow three-loop splitting functions.
[Moch, Vermaseren, Vogt]
- three-loop beta function.
[Tarasov, Vladimirov, Zharkov; Larin, Vermaseren]
\Rightarrow three-loop Wilson coefficient. ${ }^{[C}$ Steinhauser; Chetyrkin, Kuhn, Sturm]

The integrals

 \& of of NW 列

Higgs soft-virtual @ N3LO

$$
\begin{aligned}
& \hat{\eta}^{(3)}(z)=\delta(1-z)\left\{C_{A}^{3}\left(-\frac{2003}{48} \zeta_{6}+\frac{413}{6} \zeta_{3}^{2}-\frac{7579}{144} \zeta_{5}+\frac{979}{24} \zeta_{2} \zeta_{3}-\frac{15257}{864} \zeta_{4}-\frac{819}{16} \zeta_{3}+\frac{16151}{1296} \zeta_{2}+\frac{215131}{5184}\right)\right. \\
& +N_{F}\left[C_{A}^{2}\left(\frac{869}{72} \zeta_{5}-\frac{125}{12} \zeta_{3} \zeta_{2}+\frac{2629}{432} \zeta_{4}+\frac{1231}{216} \zeta_{3}-\frac{70}{81} \zeta_{2}-\frac{98059}{5184}\right)\right. \\
& \left.+C_{A} C_{F}\left(\frac{5}{2} \zeta_{5}+3 \zeta_{3} \zeta_{2}+\frac{11}{72} \zeta_{4}+\frac{13}{2} \zeta_{3}-\frac{71}{36} \zeta_{2}-\frac{63991}{5184}\right)+C_{F}^{2}\left(-5 \zeta_{5}+\frac{37}{12} \zeta_{3}+\frac{19}{18}\right)\right] \\
& \left.+N_{F}^{2}\left[C_{A}\left(-\frac{19}{36} \zeta_{4}+\frac{43}{108} \zeta_{3}-\frac{133}{324} \zeta_{2}+\frac{2515}{1728}\right)+C_{F}\left(-\frac{1}{36} \zeta_{4}-\frac{7}{6} \zeta_{3}-\frac{23}{72} \zeta_{2}+\frac{4481}{2592}\right)\right]\right\} \\
& +\left[\frac{1}{1-z}\right]_{+}\left\{C_{A}^{3}\left(186 \zeta_{5}-\frac{725}{6} \zeta_{3} \zeta_{2}+\frac{253}{24} \zeta_{4}+\frac{8941}{108} \zeta_{3}+\frac{8563}{324} \zeta_{2}-\frac{297029}{23328}\right)+N_{F}^{2} C_{A}\left(\frac{5}{27} \zeta_{3}+\frac{10}{27} \zeta_{2}-\frac{58}{729}\right)\right. \\
& \left.+N_{F}\left[C_{A}^{2}\left(-\frac{17}{12} \zeta_{4}-\frac{475}{36} \zeta_{3}-\frac{2173}{324} \zeta_{2}+\frac{31313}{11664}\right)+C_{A} C_{F}\left(-\frac{1}{2} \zeta_{4}-\frac{19}{18} \zeta_{3}-\frac{1}{2} \zeta_{2}+\frac{1711}{864}\right)\right]\right\} \\
& +\left[\frac{\log (1-z)}{1-z}\right]_{+}\left\{C_{A}^{3}\left(-77 \zeta_{4}-\frac{352}{3} \zeta_{3}-\frac{152}{3} \zeta_{2}+\frac{30569}{648}\right)+N_{F}^{2} C_{A}\left(-\frac{4}{9} \zeta_{2}+\frac{25}{81}\right)\right. \\
& \left.+N_{F}\left[C_{A}^{2}\left(\frac{46}{3} \zeta_{3}+\frac{94}{9} \zeta_{2}-\frac{4211}{324}\right)+C_{A} C_{F}\left(6 \zeta_{3}-\frac{63}{8}\right)\right]\right\} \\
& +\left[\frac{\log ^{2}(1-z)}{1-z}\right]_{+}\left\{C_{A}^{3}\left(181 \zeta_{3}+\frac{187}{3} \zeta_{2}-\frac{1051}{27}\right)+N_{F}\left[C_{A}^{2}\left(-\frac{34}{3} \zeta_{2}+\frac{457}{54}\right)+\frac{1}{2} C_{A} C_{F}\right]-\frac{10}{27} N_{F}^{2} C_{A}\right\} \\
& +\left[\frac{\log ^{3}(1-z)}{1-z}\right]_{+}\left\{C_{A}^{3}\left(-56 \zeta_{2}+\frac{925}{27}\right)-\frac{164}{27} N_{F} C_{A}^{2}+\frac{4}{27} N_{F}^{2} C_{A}\right\} \\
& +\left[\frac{\log ^{4}(1-z)}{1-z}\right]_{+}\left(\frac{20}{9} N_{F} C_{A}^{2}-\frac{110}{9} C_{A}^{3}\right)+\left[\frac{\log ^{5}(1-z)}{1-z}\right]_{+} 8 C_{A}^{3} . \\
& \text { [Anastasiou, CD, Dulat, Furlan, } \\
& \text { Gehrmann, Herzog, Mistlberger] }
\end{aligned}
$$

Higgs soft-virtual @ N3LO

- Caveat!
- Source of ambiguity:
$\int d x_{1} d x_{2}\left[f_{i}\left(x_{1}\right) f_{j}\left(x_{2}\right) z g(z)\right]\left[\frac{\hat{\sigma}_{i j}(s, z)}{z g(z)}\right]$ $\lim _{z \rightarrow 1} g(z)=1$.

Going beyond soft-virtual

- Can we go beyond the soft-virtual approximation..?
\Rightarrow More terms in the expansion..?
\Rightarrow Result in full kinematics..?
- Can we improve the soft-virtual result and do phenomenology..?
\Rightarrow Recent approximate N3LO results..?
[Ball, Bonvini, Forte, Marzani, Ridolfi; de Florian, Mazzitelli, Moch, Vogt]
\Rightarrow How good are these approximations..?

Approximate cross sections at N3LO

Approximate N3LO results

- Recently, approximate results at N3LO have been presented that include terms beyond the soft-virtual approximation (gluons only).
- Ball, Bonvini, Forte, Marzani, Ridolfi:
\Rightarrow Soft-virtual term at N3LO.
\Rightarrow High-energy behaviour, including top-mass effects at N3LO.
\Rightarrow Analyticity.
- de Florian, Mazzitelli, Moch, Vogt:
\Rightarrow Soft-virtual term at N3LO.
\Rightarrow First three logarithms from the next term in the expansion, + numerical guesses for the missing logarithms.

Mellin-space vs. z-space

$$
\hat{\sigma}(N)=\int_{0}^{1} d z z^{N-1} \hat{\sigma}(z) \quad \hat{\sigma}(z)=\int_{c-i \infty}^{c+i \infty} \frac{d N}{2 \pi i} z^{-N} \hat{\sigma}(N)
$$

- Mellin-space is the natural language for resummation.
z-space
Soft / threshold limit:

High-energy limit:

- Experience from lower orders: numerical convergence of soft expansion better in Mellin-space.

The high-energy limit

- The leading behaviour of the cross section at small N is known at N3LO.
\Rightarrow In the infinite top-mass limit.
\Rightarrow Including finite top-mass effects.
[Hautmann]
[Ball, Del Duca, Forte, Marzani, Vicini]
- Infinite top-mass not compatible with the high-energy limit \Rightarrow Tension between $m_{t} \gg 1$ and $s \gg 1$.
- If one includes the correct high-energy limit (and requires the correct analytic behaviour in z-space), we find $\sim 16 \%$ increase compared to NNLO ($8 \mathrm{TeV}, \mu_{R}=m_{H}$, gluons only).
[Ball, Bonvini, Forte, Marzani, Ridolfi]
\Rightarrow To be compared to $\sim 6 \%$ from expanding resummation to N3LO.

Subleading soft terms

- Recently, the first three next-to-soft terms were published:

$$
\begin{gathered}
\hat{\sigma}(z)=\sigma_{-1}+\sigma_{0}+(1-z) \sigma_{1}+\mathcal{O}(1-z)^{2} \\
-512 C_{A}^{3} \ln ^{5}(1-z)+\left\{1728 C_{A}^{3}+\frac{640}{3} C_{A}^{2} \beta_{0}\right\} \ln ^{4}(1-z) \\
+\left\{\left(-\frac{1168}{3}+3584 \zeta_{2}\right) C_{A}^{3}-\left(\frac{2512}{3}+\frac{\xi_{H}^{(3)}}{3}\right) C_{A}^{2} \beta_{0}-\frac{64}{3} C_{A} \beta_{0}^{2}\right\} \ln ^{3}(1-z)
\end{gathered}
$$

$$
\xi_{H}^{(3)} \simeq 300 \quad \text { [de Florian, Mazzitelli, Moch, Vogt] }
$$

- In Mellin-space:

Estimated/guessed from DY

$$
\ln ^{5} N+5.701 \ln ^{4} N+18.9 \ln ^{3} N+46 \ln ^{2} N+18 \ln N+9
$$

- Leads to an increase of $\sim 10-13 \%\left(14 \mathrm{TeV}, \mu_{R}=m_{H}\right.$, gluons only).

Validity of approximation

- "... approximation works well at lower orders..."

[Plots from de Florian, Mazzitelli, Moch, Vogt]

Going beyond the soft-virtual approximation

State of the art at N3LO

- gg Soft-virtual
[Moch, Vogt; Anastasiou, CD, Dulat, Furlan, Gehrmann, Herzog, Mistlberger]

First 3 next-to-soft logs [de Florian, Mazzitelli, Moch, Vogt]
Full next-to-soft Full first three logs (exact)

- gq First next-to-soft log [Almasy, Lo Presti, Vogt]

Full next-to-soft Full first three logs (exact)

- qqbar Full first three logs (exact)
- qq Full first three logs (exact)
- qQ Full first three logs (exact)

Towards full kinematics

- We have the full contribution from
\Rightarrow Emission of one parton at one loop, all channels.
[Anastasiou, CD, Dulat, Herzog, Mistlberger; Kilgore]
\Rightarrow Emission of one parton at two loops, all channels.
[Dulat, Mistlberger; CD, Gehrmann]
\Rightarrow UV and PDF counterterms, all channels.
[Höschele, Hoff, Pak, Steinhauser, Ueda; Bühler, Lazopoulos]
- We know that all the poles must cancel when we combine ALL contribution.
\Rightarrow The knowledge of the previous contributions is enough to fix the first three logarithm in all channels.
[Anastasiou, CD, Dulat, Furlan, Gehrmann, Herzog, Mistlberger]

Next-To-Soft Contribution (gg)

$$
\begin{aligned}
\hat{\eta}_{g g}^{(3)}(z) & \left.\right|_{(1-z)^{0}}=-8 N^{3} \log ^{5}(1-z)+\left(\frac{353}{9} N^{3}-\frac{20}{9} N^{2} N_{f}\right) \log ^{4}(1-z) \\
+ & {\left[\left(56 \zeta_{2}-\frac{3469}{54}\right) N^{3}+\frac{205}{18} N^{2} N_{f}-\frac{4}{27} N N_{f}^{2}\right] \log ^{3}(1-z) } \\
+ & \left\{\left(-181 \zeta_{3}-\frac{2147}{12} \zeta_{2}+\frac{2711}{27}\right) N^{3}+\left[\left(\frac{545}{48} \zeta_{2}-\frac{4139}{216}\right) N^{2}+\frac{1}{4}\right] N_{f}\right. \\
& \left.+\frac{59}{108} N N_{f}^{2}\right\} \log ^{2}(1-z) \\
+ & \left\{\left(77 \zeta_{4}+362 \zeta_{3}+\frac{2375}{18} \zeta_{2}-\frac{9547}{108}\right) N^{3}+\left[\left(-\frac{223}{12} \zeta_{3}-\frac{1813}{72} \zeta_{2}+\frac{8071}{324}\right) N^{2}\right.\right. \\
& \left.\left.+3 \zeta_{3}+\frac{1}{24} \zeta_{2}-\frac{17}{4}\right] N_{f}+\left(\frac{4}{9} \zeta_{2}-\frac{163}{324}\right) N N_{f}^{2}\right\} \log (1-z) \\
+ & \left(-186 \zeta_{5}+\frac{725}{6} \zeta_{2} \zeta_{3}-\frac{821}{12} \zeta_{4}-\frac{32849}{216} \zeta_{3}-\frac{11183}{162} \zeta_{2}+\frac{834419}{23328}\right) N^{3} \\
& +\left[\left(\frac{19}{8} \zeta_{4}+\frac{1789}{72} \zeta_{3}+\frac{4579}{324} \zeta_{2}-\frac{527831}{46656}\right) N^{2}-\frac{1}{4} \zeta_{4}-\frac{149}{72} \zeta_{3}-\frac{5}{24} \zeta_{2}+\frac{5065}{1728}\right] N_{f} \\
& +\left(-\frac{5}{27} \zeta_{3}-\frac{19}{36} \zeta_{2}+\frac{49}{729}\right) N N_{f}^{2} .
\end{aligned}
$$

[Anastasiou, CD, Dulat, Furlan, Gehrmann, Herzog, Mistlberger]

Next-To-Soft Contribution

- We can compute the full contribution to the second term in the threshold expansion

$$
\hat{\sigma}(z)=\sigma_{-1}+\sigma_{0}+(1-z) \sigma_{1}+\mathcal{O}(1-z)^{2}
$$

\Rightarrow Receives contribution from both gg and gq channels.

- Needed some rethinking of our technology for double-real emission at one loop.
\Rightarrow There are now contributions from collinear virtual gluons.
- We find full agreement with known results for leading logarithms.
[Almasy, Lo Presti, Vogt; de Florian, Mazzitelli, Moch, Vogt]
\Rightarrow In particular $\xi_{H}^{(3)}=\frac{896}{3} \simeq 298.666 \ldots$

Ambiguity in z-space

- Ambiguity:

$$
\sigma=\tau^{1+\alpha} \sum_{i j}\left(f_{i}^{(\alpha)} \otimes f_{j}^{(\alpha)} \otimes \frac{\hat{\sigma}_{i j}(z)}{z^{1+\alpha}}\right)(\tau) \quad f_{i}^{(\alpha)}(x) \equiv \frac{f_{i}(x)}{x^{\alpha}}
$$

\Rightarrow Full hadronic cross section cross section is independent order-by-order of α.

- Truncating the soft expansion introduces a dependence on α :

$$
\left.\frac{\hat{\sigma}_{i j}(z)}{z^{1+\alpha}} \simeq \hat{\sigma}_{i j}(z)\right|_{(1-z)^{-1}}+\left.\hat{\sigma}_{i j}(z)\right|_{(1-z)^{0}}+\left.\alpha(1-z) \hat{\sigma}_{i j}(z)\right|_{(1-z)^{-1}}+\mathcal{O}(1-z)^{1}
$$

\Rightarrow Soft-expansion introduces an ambiguity, which can have numerical impact.

- Is this ambiguity also present in Mellin-space..?

Ambiguity in Mellin-space

- Multiplying by z^{α} in z-space corresponds to shifting $N \rightarrow N+\alpha$ in Mellin-space.

$$
\hat{\sigma}(N)=\int_{0}^{1} d z z^{N-1} \hat{\sigma}(z)
$$

- The threshold limit $N \rightarrow \infty$ is obviously insensitive to this!
- In order to quantify the validity of approximate cross sections via threshold expansion, we study the dependence of the result on α.

Soft-virtual NNLO

Soft-virtual N3LO

Dependence on the truncation

α	$\mathrm{g}(\mathrm{z})$	Soft-virtual			Next-to-soft		
		NLO ~ 110\%	NNLO ~ 60\%	N3LO	NLO ~ 110\%	NNLO ~ 60\%	N3LO
-2	$\frac{1}{z^{3}}$	3331.71	1998.46	730.957	-54238.2	-32593.5	-12229.
$-\frac{9}{8}$	$\frac{1}{z^{17 / 8}}$	112.646	60.7583	18.7323	- 565.695	-413.316	-138.71
- 1	$\frac{1}{z^{2}}$	87.9371	43.9049	13.0597	-278.802	-235.064	-83.8003
- $\frac{1}{2}$	$\frac{1}{z^{3 / 2}}$	62.9118	23.0081	5.0715	66.2443	4.58479	-8.37025
0	$\frac{1}{z}$	71.2825	27.0973	5.84748	109.079	52.0453	13.1455
	$\frac{1}{\sqrt{z}}$	85.0509	38.4733	10.7073	113.637	65.7434	23.9023
1	1	99.2279	52.9352	18.5346	113.146	70.25	29.6145
$\frac{5}{4}$	$\mathrm{z}^{1 / 4}$	106.092	60.8134	23.3797	112.856	71.1298	31.1678
	\sqrt{z}	112.75	68.9784	28.7748	112.75	71.5425	32.04
2	z	125.418	85.9054	41.0442	113.177	71.6204	32.1418
$\frac{5}{2}$	$z^{3 / 2}$	137.253	103.339	55.0482	114.368	71.293	30.5585
	z^{2}	148.331	121.057	70.5521	116.148	70.9235	27.7393
[14 TeV, $\mu=m H$, gluons only]							

Dependence on the truncation

Conclusion

- The computation of the Higgs cross section at N3LO moves forward at a steady pace!
\Rightarrow Soft-virtual contribution known.
\Rightarrow Next-to-soft contribution known (noth gg \& gQ).
\Rightarrow First three logs known exactly for all channels.
\Rightarrow Contribution form single-real emission fully known.
- Approximate results should be taken with a grain of salt!
\Rightarrow Only full result for N3LO cross section will be the final judge!
- Stay tuned!

