Signal radio des gerbes atmosphériques : statut et nouvelles perspectives avec le phénomène de mort subite

Benoît Revenu, Subatech LAL, 9 décembre 2014

Plan

- I. Physique et astrophysique des rayons cosmiques d'ultra-haute énergie
- 2. Les gerbes atmosphériques
 - a. Contenu de la gerbe
 - b. Mesure par un détecteur de surface
 - c. Mesure par un détecteur de fluorescence
- Le signal radio 3.
 - a. Calcul théorique
 - b. Deux mécanismes
 - c. Jusqu'au GHz
 - d. Jusqu'au kHz : signal de mort subite !
- 4. Détection du signal radio
 - a. Antennes et amplificateurs bas bruit
 - b. Deconvolution du signal
 - c. Trigger externe, trigger interne, bruit de fond
 - d. Calibration des détecteurs
- e. Réseaux de détection : status expérimental 5. Reconstruction des caractéristiques du rayon cosmique primaire
 - a. Direction d'arrivée
 - b. Energie
 - c. Composition
- 6. Résumé et prespectives

Plan

- I. Physique et astrophysique des rayons cosmiques d'ultra-haute énergie
- 2. Les gerbes atmosphériques
 - a. Contenu de la gerbe
 - b. Mesure par un détecteur de surface
 - c. Mesure par un détecteur de fluorescence
- Le signal radio 3.
 - a. Calcul théorique
 - b. Deux mécanismes
 - c. Jusqu'au GHz
 - d. Jusqu'au kHz : signal de mort subite !
- 4. Détection du signal radio
 - a. Antennes et amplificateurs bas bruit
 - b. Deconvolution du signal
 - c. Trigger externe, trigger interne, bruit de fond
 - d. Calibration des détecteurs
 - e. Réseaux de détection : status expérimental
- 5. Reconstruction des caractéristiques du rayon cosmique primaire
 - a. Direction d'arrivée
 - b. Energie
 - c. Composition
- 6. Résumé et prespectives

Le spectre

origine galactique jusqu'à la cheville
entre le genou et la cheville : échappement des particules (R_L > R_{Gal}), du proton au fer
à partir de la cheville : origine extra-galactique

si l'origine est bien extra-galactique, alors :

coupure GZK (interaction avec le CMB)
sources proches

compréhension des phénomènes les plus violents de l'univers

physique des particules 3 ordres de grandeur audessus du LHC

énergie, sources, nature ?

HiRes mono cutoff = 5.3 σ HiRes stereo cutoff = 4σ TA cutoff = 3.9 σ

Pierre Auger Observatory cutoff > 20 σ

> Une coupure dans le spectre apparaît de façon non-ambigüe, origine inconnue (GZK+extinction ?)

 $E = (4.2 \pm 0.1) \times 10^{19} \text{ eV}$

A. Schulz, for the Pierre Auger Collaboration, Proc. 33rd ICRC, Rio de Janeiro (2013), arXiv:1307.5059

Directions d'arrivée, recherche des sources

hémisphère nord

HiRes stéréo : pas d'anisotropies

à toutes énergies, les données sont compatibles avec un flux isotrope à 95% CL

> TA : excès à 20° ? pas d'anisotropies

hémisphère sud

Auger : la significance de la corrélation avec les AGNs a décru depuis 2007 (31% de corrélation pour 21% attendus dans le scénario isotrope, significance = 2σ aujourd'hui)

0.1

fraction

Correlating

Composition

Xmax = f(A,E) ?rms(Xmax) = g(A,E) ?

Height a.s.l. (m)

HiRes : proton $\forall E \ge I EeV$

Auger : proton puis lourd à partir de E ≥ 5 EeV

E. J. Ahn, Proc. of the 33rd ICRC, Rio de Janeiro, 2013. arXiv: 1307.5059

Composition

TA : proton $\forall E \ge I EeV$

hémisphère nord : HiRes et TA compatibles avec des protons, à toutes les énergies

hémisphère sud : Auger voit des protons jusqu'à ~ 5 EeV puis des noyaux lourds

Composition

Composition de la gerbe

99 % : photons, electrons, positrons, 0.9 % : muons 90% de l'énergie sous forme électromagnétique

10¹⁵ eV proton, 45°

F. Schmidt, "CORSIKA Shower Images", <u>http://www.ast.leeds.ac.uk/~fs/showerimages.html</u>

Le signal radio

Trois observables :

I. particules secondaires qui atteignent le sol (SD) 2. lumière de fluorescence (FD)

> les ondes radio ne sont dues qu'à la composante électromagnétique de la gerbe : très intéressant pour contraindre la composition !

signal étudié entre 1965 et 1975 (abandon car technologie insuffisante)


```
3. champ électrique émis par tous les e<sup>+</sup>/e<sup>-</sup>: ondes radio !
```


Un modèle très simple : la source

Un modèle très simple : Doppler

Un modèle très simple : impulsions monopolaires

Un modèle très simple : impulsions bipolaires

Un modèle très simple : spectres

Un modèle très simple : conclusion

<u>ce modèle nous permet de comprendre que :</u>

- le signal prédit est une projection du profil longitudinal (ou de sa dérivée) : sensibilité au primaire
- signal monopolaire si le signal est produit par le profil
- signal bipolaire si le signal est produit par la dérivée du profil
- compression Doppler importante (durée = quelques dizaines de ns) : $f_{samp} \sim 100$ MS/s 1 GS/s
- signal cohérent entre quelques dizaines de kHz jusqu'à quelques centaines de MHz selon la position de l'observateur par rapport à la gerbe

Le signal radio : interférences, cohérence

Source du signal radio : les e⁺ et e⁻ de la gerbe les échelles carcatéristiques de la gerbe fixent les longueurs d'onde du signal

R

Le signal radio : interférences, cohérence

champ total α N_{particles} α E_{primary}

Image: Marce de la source

les champs se superposent avec des phases aléatoires : interférences destructives

coupure dans le spectre en fréquence ! (perte de cohérence au dessus d'une fréquence de coupure)

R

 $\lambda \gg d$

Le signal radio : interférences, cohérence

durée totale du développement de la gerbe = 10 km/c \leftrightarrow 30 μ s \leftrightarrow 30 kHz taille du front de gerbe = 50-1000 m/c + 300-3000 ns + 300 kHz-10 MHz épaisseur du front de gerbe = 1-10 m/c + 3-30 ns + 30-300 MHz

Cohérence !

in cohérence contributions individuelles durée fotale () largeur) épaisseur du front (du front 30-300 30

Le signal radio (approche théorique)

Pour une particule chargée à durée de vie finie

Densité de charge $\rho(x',t') = q[\theta(t'-t_1) - \theta(t'-t_2)]\delta^3(x'-x_0(t'))$

Densité de courant $J(x',t') = \rho(x',t')v(t')$

Solution des équations de Maxwell en jauge de Lorenz :

$$\vec{E}(\vec{x},t) = \frac{1}{4\pi\varepsilon_0} \int \mathrm{d}^3 x' \mathrm{d}^3 t' \frac{1}{R} \left(-\nabla' \rho - \frac{1}{R} \right) dt' = \frac{1}{4\pi\varepsilon_0} \left(-\nabla' \rho - \frac{1}{R} \right) dt' = \frac{1}{R} \left($$

$$\vec{E}(\vec{x},t) = \frac{1}{4\pi\varepsilon_0} \left(\frac{q\,\vec{n}}{R^2(1-\eta\vec{\beta}\cdot\vec{n})} + \frac{1}{c}\,\frac{\partial}{\partial t}\frac{q\,\vec{n}}{R(1-\eta\vec{\beta}\cdot\vec{n})} - \frac{1}{c}\,\frac{\partial}{\partial t}\frac{q\,\vec{\beta}}{R(1-\eta\vec{\beta}\cdot\vec{n})} \right)_{\rm ret}$$

code SELFAS, Marin & Revenu, Astropart. Phys. 35, 733 (2012)

$\frac{1}{c^2}\frac{\partial J}{\partial t'}\right) = \delta\left(t' - \left(t - \frac{|x - x'|}{c/n}\right)\right)$

ground

 $\vec{E}(\vec{x},t) = \frac{1}{4\pi\varepsilon_0} \left(\sum_{i=1}^N \frac{q_i \vec{n}_i}{R_i^2 (1-\eta \vec{\beta}_i \cdot \vec{n}_i)} \right)$ Coulombian contribution $+ \frac{1}{c} \frac{\partial}{\partial t} \sum_{i=1}^{N} \frac{q_i \vec{n}_i}{R_i (1 - \eta \vec{\beta}_i \cdot \vec{n}_i)}$ $-\frac{1}{c}\frac{\partial}{\partial t}\sum_{i=1}^{N}\frac{q_{i}\beta_{i}}{R_{i}(1-\eta\vec{\beta}_{i}\cdot\vec{n}_{i})}\right)$

~ direction de l'axe

champ magnétique terrestre

à énergie fixée, le champ électrique produit par ce mécanisme est maximal quand la direction d'arrivée est \perp à B

- indépendent de la position de l'observateur

calcul de l'angle de polarisation du champ à partir des mesures dans les directions

$$\phi_{\rm mes} = \arctan(E_{\rm NS}/E_{\rm EW})$$

que l'on compare à l'angle de polarisation attendu : $\phi_{\text{exp}} = \arctan((\vec{\beta} \times \vec{B})_{\text{NS}}/(\vec{\beta} \times \vec{B})_{\text{EW}})$

$$\vec{F}_{ansverse} - \frac{1}{c} \frac{\partial}{\partial t} \sum_{i=1}^{N} \frac{\partial}{\partial t} \sum_{i=1$$

Domination du mécanisme géomagnétique au l^{er} ordre !

CODALEMA data

D. Torres Machado for the CODALEMA collaboration, ICRC Rio de Janeiro, 2013

Pas de champ électrique si $n_{
m e^+} = n_{
m e^-}$

mais $n_{e^+} < n_{e^-}$ car :

- annihilation des e+ en vol
- extraction d'e- au milieu (Compton, Bhabha, Moeller)

 $+ \frac{1}{c} \frac{\partial}{\partial t} \sum_{i=1}^{N} \frac{q_i \vec{n}_i}{R_i (1 - \eta \vec{\beta}_i \cdot \vec{n}_i)}$

(Askaryan 1962, 1965)

Pas de champ électrique si $n_{e^+} = n_{e^-}$

mais $n_{e^+} < n_{e^-}$ car :

- annihilation des e+ en vol
- extraction d'e- au milieu (Compton, Bhabha, Moeller)

<u>cet excès d'électrons produit :</u>

- un champ électrique non nul caractérisé par un schéma de polarisation radial le champ dépend de la position de l'observateur

 $+ \frac{1}{c} \frac{\partial}{\partial t} \sum_{i=1}^{N} \frac{q_i \vec{n}_i}{R_i (1 - n\vec{\beta}_i \cdot \vec{n}_i)}$

(Askaryan 1962, 1965)

Bilan provisoire : 30 - 300 MHz

Jusqu'au GHz : géomagnétique, excès de charge

EW: Along East axis / n

B. Revenu, Subatech

contribution au GHz des mécanismes géomagnétique et excès de charge

300 MHz - 1.2 GHz

Jusqu'au GHz : géomagnétique, excès de charge

EW: Along East axis / n

B. Revenu, Subatech

contribution au GHz des mécanismes géomagnétique et excès de charge

300 MHz - I.2 GHz simulations en accord avec les données

Jusqu'au GHz : signal de Bremsstrahlung moléculaire ?

plasma stationnaire et faiblement ionisé formé par les e⁻ de faible énergie extraits du milieu (~ 10 eV) la décélération de ces e⁻ produit des photons au GHz : phénomène de MBR

théoriquement non polarisé et émission isotrope : potentiellement excellent pour détecter les gerbes !

Gorham et al., Phys. Rev. D, 78:032007 (2008)

Signal de Bremsstrahlung moléculaire ? (2014)

BEAM EXPERIMENTS

Name	location	year	freq. (GHz)	scaling	emission pattern
Gorham	SLAC	2004	1-8	quadratic	isotropic
MAYBE	Argonne	2012	1-15	linear	isotropic, \ll Gorham flux
AMY	Frascati	2012	1-20	MBR mud	h smaller than Cherenkov
Conti et al.	Padova	2014	11	linear	peaked forward
PARABOLA IN CR EXPERIMENTS					
AMBER	Auger	2011	no CR detection		
MIDAS	Auger	2012	no CR detection		
EASIER	Auger	2011-2012	3.4-4.2	5 CRs o very cl	detected at high energy, ose to the shower axis
CROME	KASCADE	2011-2012	3.4-4.2	35 CRs with ge excess require	s detected in agreement eomagnetic and charge mechanisms, no MBR ed

B. R., VHEPU Rencontres du Vietnam, Quy Nhon, 2014

Bilan provisoire : GHz

À basse fréquence : kHz-MHz

year	reference	frequency	message	
1970	Allan, Clay, Nature 225, 253	2 MHz	100 times higher than at 32 MHz	
1970	Prescott et al, 11th ICRC 3, 717	3.6 MHz, 10 MHz	higher than geomagnetic, no detection at 10 MHz	
1971	Stubbs, Nature 230, 172	2 MHz	250 times higher than at 44 MHz	
1971	Hough et al, Nature 232, 14	3.6 MHz	10 times higher than geomagnetic in 20-60 MHz	
1972	Felgate, Stubbs, Nature 239, 151	6 MHz	two polarizations, not only geomagnetic	
1973	Clay et al, 13th ICRC 4, 2420	I00 kHz	$\varepsilon_{\nu} \propto \nu^{-1.5}$	
1973	Gregory et al, Nature 245, 86	I00 kHz	large SNR, not only geomagnetic	
1985	Suga et al, 20th ICRC 7, 268	50 kHz, 170 kHz, 1.6 MHz	Akeno, huge field strength vs geo-magnetic/electric	
1987	Nishi, Suga, 20th ICRC 6, 125	26-300 kHz	Akeno, monopolar, 1/d, 2.5 km	
99	Castagnoli et al, 22nd ICRC 4, 363	470 kHz, 2.6 MHz	EASTOP/EASRadio, amplitude 🦯 when freq 🦒	
1992	Baishya et al, NCimC 16, 17	2 MHz, 9 MHz	TR is not the only mechanism	
1993	Kadota et al, 18th ICRC 4, 262	30 kHz-3 MHz	AGASA, mono/bi polar	

Mécanismes d'émission (kHz-MHz)

année	référence	mécanisme
1957	Wilson, Phys. Rev. 108, 155	géoélectrique
1968	Charman, J. Atm. Terr. Phys. 30, 195	géoélectrique
1972	Allan, Nature 237, 384	cohérence maximale
1983	Kaneko et al, 18th ICRC 11, 428	excès de charge au niveau du sol
1985	Nishimura, 20th ICRC 7, 308	TR des e⁻au sol
1985	Suga et al, 20th ICRC 7, 268	TR des e⁻au sol

Résumé

- forte augmentation du champ électrique à basse fréquence
- des signaux bipolaires et monopolaires ont été obtenus
- pas de mécanisme clair
- bande de fréquence inexploitée depuis plus de 20 ans

peu de données, pas de contrôle atmosphérique, pas de conclusion

Mort subite des gerbes atmosphériques

Mécanisme proposé (hors TR) : émission d'un champ électrique cohérent à basse fréquence lors du contact front de gerbe/sol

	$oldsymbol{E}(oldsymbol{x},t) = rac{1}{4\pi\epsilon_0}\int d^3x'dx'$
macroscopique	
	très foi ~ instantané à basse fré
microscopique	la décélération cohérent

 $J(x, y, z, t) \\ \rho(x, y, z, t)$

ground

Utilisation de la simulation avec SELFAS pour caractériser ce signal

 $\vec{E}(\vec{x}$

$$\frac{d}{dt} \left\{ \frac{n}{R^2} \left[\rho(\boldsymbol{x}', t') \right]_{\text{ret}} + \frac{n}{cR} \left[\frac{\partial \rho(\boldsymbol{x}', t')}{\partial t'} \right]_{\text{ret}} \right\} \\ - \frac{1}{c^2 R} \left[\frac{\partial \boldsymbol{J}(\boldsymbol{x}', t')}{\partial t'} \right]_{\text{ret}} \right\} \delta \left\{ t' - \left(t - \frac{|\boldsymbol{x} - \boldsymbol{x}'|}{c} \right) \right\}$$

The variation de J et ρ !
Suppose (< 20 MHz, >15 m) : cohérence

te (Bremsstrahlung) des électrons crée le champ électrique

$$ec{x},t) = rac{1}{4\pi\varepsilon_0 c} rac{\partial}{\partial t} \sum_{i=1}^N q_i \left(rac{ec{eta}_i - (ec{n}_i \cdot ec{eta}_i) ec{n}_i)}{R_i (1 - \eta ec{eta}_i \cdot ec{n}_i)}
ight)_{
m ret}$$

(jauge de Coulomb)

Modèle de mort subite : amplitude, structure temporelle

- modèle simple basé sur les particules au sol
- fonctionne pour des gerbes verticales et inclinées

$$s(t = r/c) \propto \int_0^{2\pi} \mathcal{L}(\rho) \,\mathrm{d}\phi$$

corrélé au nombre **total** d'e⁻/e⁺

Α

Signal de mort subite : quelques propriétés

Amplitude : varie linéairement avec E **Polarisation:** le champ est dans le plan \perp à la direction observateur/cœur, composante verticale

Le pulse "habituel" décroît ~ exponentiellement, l'amplitude du signal de mort subite décroît en 1/d_{core}

Amplitude attendue en fonction des caractéristiques du primaire (angle zénithal, énergie).

contribution au sol développement dans l'air

Signal de mort subite : spectre

B. Revenu, Subatech

(SELFAS simulations)

Signal de mort subite : timing absolu

D'après la simulation, le maximum de champ électrique est produit bien avant X_{max} (proche de X_{inf})

Bilan final

• réseau de 13 scintillateurs réseau de 57 stations radio autonomes • réseau compact de 10 stations LWA 150 m x 150 m

Recherche du signal de mort subite : **EXTASIS**

EXTinction of Air Shower Induced Signal financé par la Région Pays de Loire, CNRS/IN2P3

Statut à Nançay

<u>CODALEMA3 :</u>

premier prototype basse fréquence à Nançay (tour parasite, octobre 2014)

premier prototype antenne 3D à Nançay (octobre 2014)

