
The global electroweak fit in a new era of precision

Roman Kogler University of Hamburg

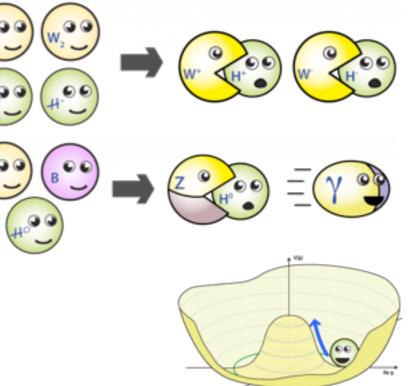
Séminaire du Laboratoire de l'Accélérateur Linéaire Orsay, Nov 14, 2014

- Prerequisites and ingredients
- Results and status of the EW fit
- Future prospects

Electroweak interactions described by SU(2)×U(1)

- 4 gauge bosons: 3 massive (Z,W[±]), I massless (γ)
- I scalar (H)
 - extremely successful theory
 - taught in each particle physics course

Electroweak interactions described by SU(2)×U(1)


- 4 gauge bosons: 3 massive (Z,W[±]), 1 massless (γ)
- I scalar (H)
 - extremely successful theory
 - taught in each particle physics course

Let's take one step back...

- it's a complicated, highly non-trivial theory
 - massive gauge bosons
 - parity (and CP) violation
 - Higgs field, results in a scalar particle

Why do we believe it?

- we physicists always had a hard time believing anything... [Philip Tanedo, quantum diaries.org]
- we want to test the theory to ultimate precision!

Electroweak sector given by 3 parameters

- ▶ g, g' : coupling constants of SU(2)_L and U(1)_Y
- v : vacuum expectation value
- weak mixing angle : fixed by the massless photon

Use the three most precise parameters

$$\alpha : \Delta \alpha / \alpha = 3 \times 10^{-10}$$

- $G_F : \Delta G_F / G_F = 5 \times 10^{-7}$
- $M_Z: \Delta M_Z/M_Z = 2 \times 10^{-5}$
- measure more than the minimal set of parameters to test the theory!

$$M_Z = \frac{v\sqrt{g^2 + g'^2}}{2}$$
$$\cos \theta_W = \frac{M_W}{M_Z}$$

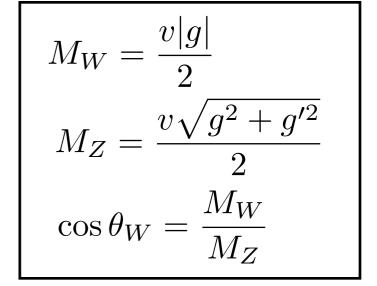
 $M_W = \frac{v|g|}{2}$

$$M_W^2 = \frac{M_Z^2}{2} \left(1 + \sqrt{1 - \frac{\sqrt{8\pi\alpha}}{G_F M_Z^2}} \right)$$

Electroweak sector given by 3 parameters

- ▶ g, g' : coupling constants of SU(2)_L and U(1)_Y
- v : vacuum expectation value
- weak mixing angle : fixed by the massless photon

Use the three most precise parameters

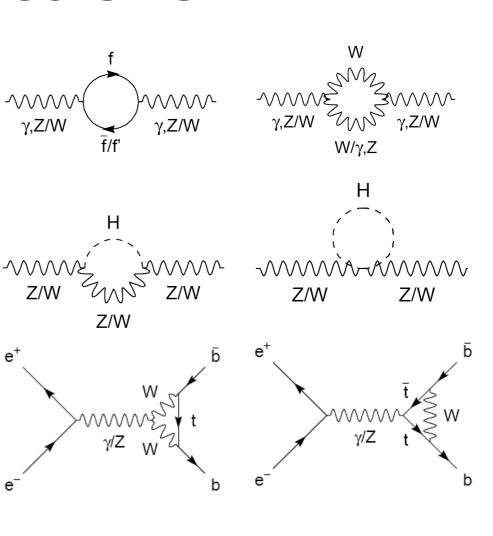

$$\alpha : \Delta \alpha / \alpha = 3 \times 10^{-10}$$

- $G_F : \Delta G_F / G_F = 5 \times 10^{-7}$
- $M_Z: \Delta M_Z/M_Z = 2 \times 10^{-5}$
- measure more than the minimal set of parameters to test the theory!

Calculate M_W and compare with experiment

- M_W(theo) = 80.939 ± 0.003 GeV
- M_W(exp) = 80.385 ± 0.015 GeV
- difference = $0.554 \text{ GeV} \sim 35\sigma !! \text{ new physics}?$

 $M_W^2 = \frac{M_Z^2}{2} \left(1 + \sqrt{1 - \frac{\sqrt{8}\pi\alpha}{G_F M_Z^2}} \right)$


UHI #

Radiative Corrections

Modification of propagators and vertices

- Parametrisation of radiative corrections: electroweak form factors ρ , κ , Δr
- Effective couplings at the Z-pole:

$$g_{V,f} = \sqrt{\rho_Z^f} \left(I_3^f - 2Q^f \sin^2 \theta_{\text{eff}}^f \right)$$
$$g_{A,f} = \sqrt{\rho_Z^f} I_3^f$$
$$\sin^2 \theta_{\text{eff}}^f = \kappa_Z^f \sin^2 \theta_W$$

Mass of the W boson $M_W^2 = \frac{M_Z^2}{2} \left(1 + \sqrt{1 - \frac{\sqrt{8}\pi\alpha(1 + \Delta r)}{G_F M_Z^2}} \right)$

• $\rho, \kappa, \Delta r$ depend on all parameters of the theory (m_t, M_H, $\alpha_{s...}$) $\Delta r = -\frac{3\alpha c_W^2}{16\pi s_W^4} \underbrace{m_t^2}_{M_W^2} + \frac{11\alpha}{48\pi s_W^2} \ln \underbrace{M_H^2}_{M_W^2} + \dots$

Free Parameters

EW sector

$$\mathbf{G}_{\mathrm{F}}: \Delta \mathrm{G}_{\mathrm{F}}/\mathrm{G}_{\mathrm{F}} = 5 \times 10^{-7}$$

 $M_{z}: \Delta M_{z}/M_{z} = 2 \times 10^{-5}$

• evolution of fine structure constant ($\Delta \alpha / \alpha = 3 \times 10^{-10}$) to scale s

$$\Delta \alpha(s) = \Delta \alpha_{\text{lep}}(s) + \Delta \alpha_{\text{had}}^{(5)}(s) + \Delta \alpha_{\text{top}}(s)$$

precision = |\x\10⁻⁶| 2×10⁻⁴ |\x\10⁻⁷

Fermion masses

relative

- ▶ m_c, m_b : precision of about 7% and 1%, sufficient (see later)
- m_t crucial parameter, experimental precision of 0.5% (more later)

Strong sector

α_s: can be constrained using Z-pole measurements

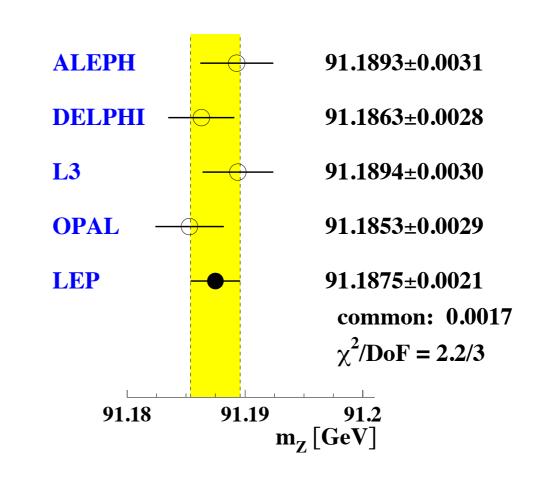
Higgs sector

▶ M_H : precision of LHC measurements is 0.3%

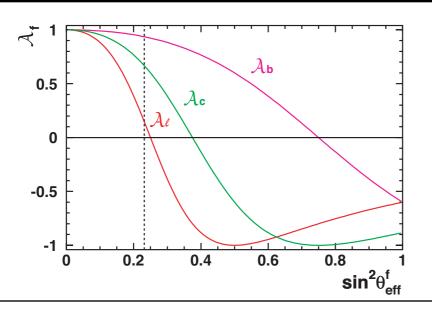
Measure more than minimal set to constrain the theory

Measurements at e⁺e⁻ Colliders

Z-pole measurements at LEP-I and SLC ΛΛΛΛΛ νIZ LEP : running near the Z-pole, four experiments, 4×10⁶ Zs / experiment [ADLO, Phys. Rep. 427, 257 (2006)] 10 5 SLC : one experiment, 500.000 Zs, polarized beams 10⁴ e⁺e[−]→hadrons Cross Section [pb] **Precision measurements** 10³ exactly known initial state E DORIS 10² W^+W^- • precise beam energy, $\Delta E_{beam} = \pm 0.2 \text{ MeV}$ PETRA TRISTAN **SLC** KEKB PEP-II 10 LEP I **Cross section** LEP II 100 120 140 160 180 200 60 80 220 • $\sigma_{f\bar{f}}^{Z} = \sigma_{f\bar{f}}^{0} \frac{s\Gamma_{Z}^{2}}{(s - M_{Z}^{2})^{2} + s^{2}\Gamma_{Z}^{2}/M_{Z}^{2}} \frac{1}{R_{\text{QED}}}$ \sqrt{s} [GeV] with $\sigma_{f\bar{f}}^0 = \frac{12\pi}{M_{\pi}^2} \frac{\Gamma_{ee}\Gamma_{f\bar{f}}}{\Gamma_{\pi}^2}$ and $\Gamma_Z = \Gamma_{ee} + \Gamma_{\mu\mu} + \Gamma_{\tau\tau} + \Gamma_{had} + \Gamma_{inv}$


Observables

$\sigma_{had} \left[nb \right]$ Minimal correlated set of parameters ALEPH mass and total width of Z⁰ M_Z, Γ_Z DELPHI OPAL 30 $\sigma_{\rm had}^0$ hadronic pole cross section $R_{\ell}^0 = R_e^0 = \Gamma_{\rm had} / \Gamma_{ee}$ 20 Ieptonic decay ratios $R^0_{c,b} = \Gamma_{c\bar{c},b\bar{b}}/\Gamma_{\rm had}$ measurements (error bars increased by factor 10) hadronic width ratios σ from fit 86 88 92 Asymmetries 90 94 E_{cm} [GeV] • $A_f = \frac{g_{L,f}^2 - g_{R,f}^2}{g_{T,f}^2 + g_{D,f}^2} = 2 \frac{g_{V,f}/g_{A,f}}{1 + (a_{V,f}/g_{A,f})^2}$ directly related to $\sin^2 \theta_{\text{eff}}^{f\bar{f}}$ • forward/backward asymmetry $A_{FB}^f = \frac{N_F^f - N_B^f}{N_F^f + N_D^f}$, $A_{FB}^{0,f} = \frac{3}{4}A_eA_f$ $A_{LR}^f = \frac{N_L^f - N_R^f}{N_L^f + N_R^f} \frac{1}{\langle |P|_e \rangle}$ Ieft/right asymmetry


[ADLO, Phys. Rep. 427, 257 (2006)]

Measurements at the Z-Pole

[ADLO, Phys. Rep. 427, 257 (2006)]

91.1875 ± 0.0021
2.4952 ± 0.0023
41.540 ± 0.037
20.767 ± 0.025
0.0171 ± 0.0010
0.1499 ± 0.0018
0.2324 ± 0.0012
0.670 ± 0.027
0.923 ± 0.020
0.0707 ± 0.0035
0.0992 ± 0.0016
0.1721 ± 0.0030
0.21629 ± 0.00066

- precision of up to 0.002%!
- LEP/SLD measurements will stay the most precise for quite some time
- allow for precision tests of the SM and constrain new physics

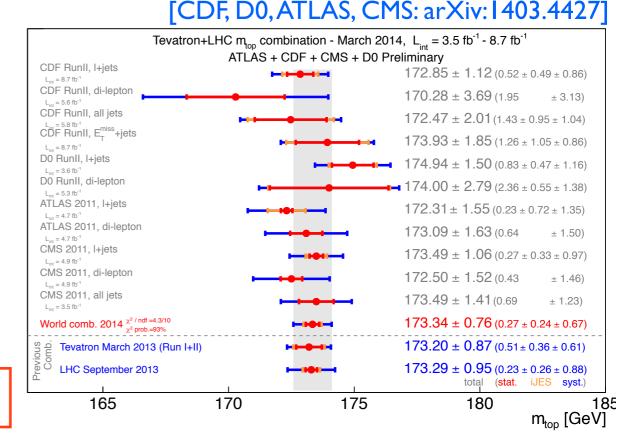
Ш

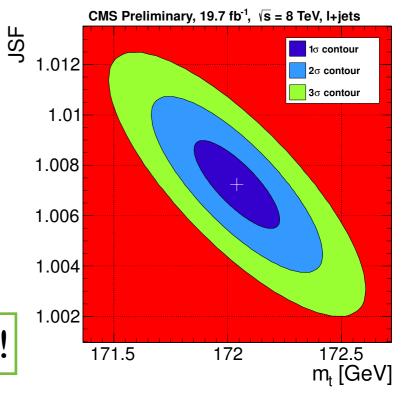
븸

Prediction of top quark mass

Measurements of m_t

Tevatron pioneered measurements of a "kinematic" mass in t decays

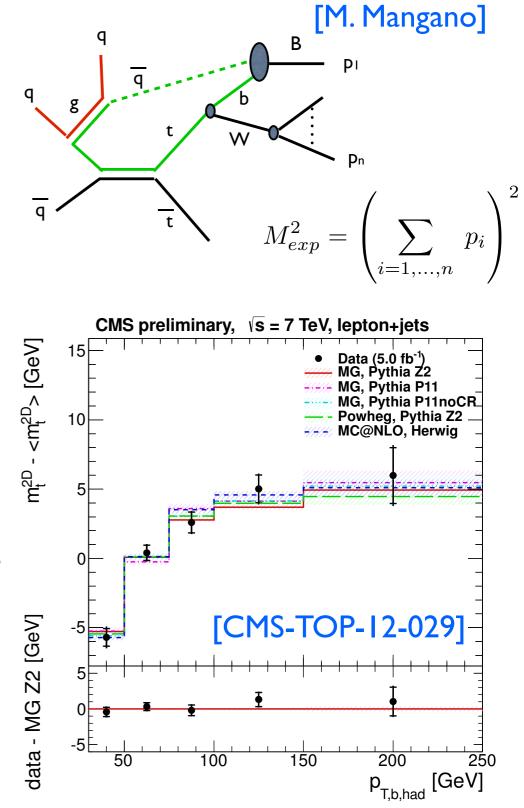

Tevatron


- exceeding all expectations (expected precision: 2-3 GeV)
- LHC collaborations taking over
 - re-use of methods, high statistics

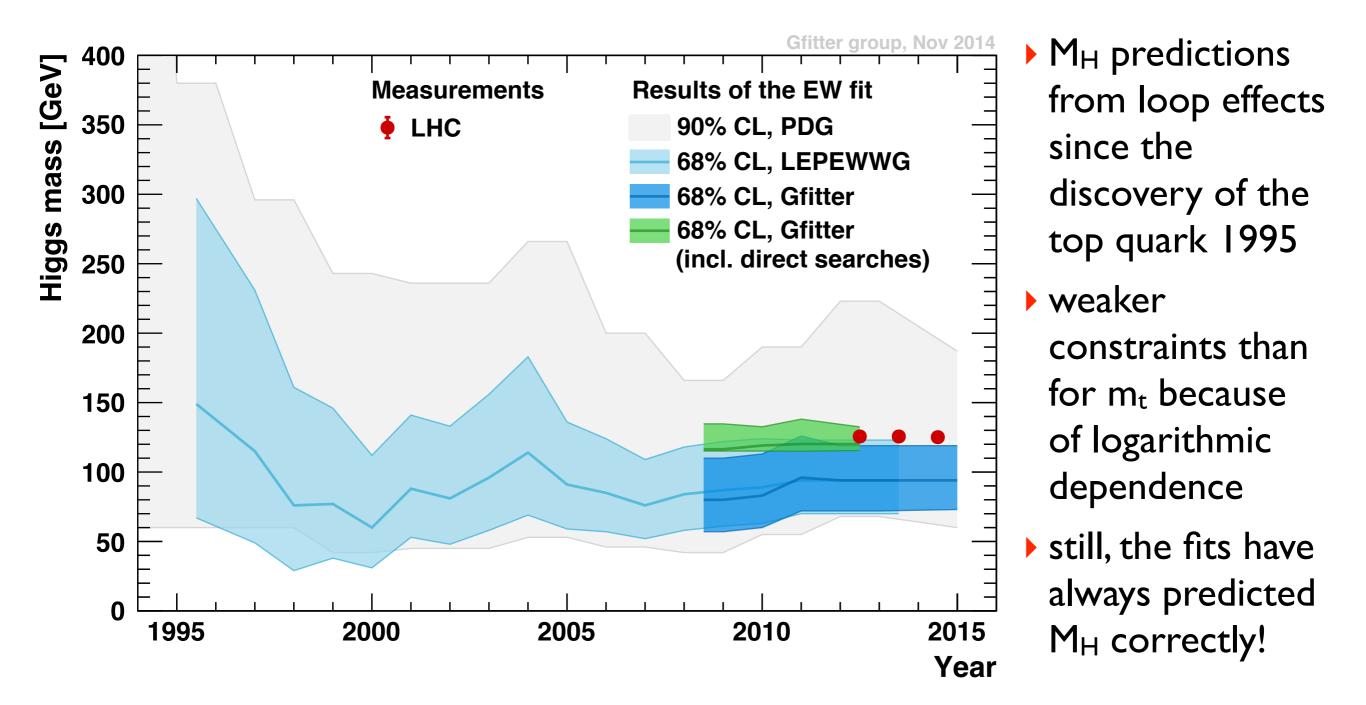
world average: m_t = 173.34 ± 0.76 GeV

- single best measurement in WA from CMS in I+jets channel
- recently updated [CMS-PAS-TOP-14-001] $m_t = 172.04 \pm 0.19 \text{ (stat.+JES)} \pm 0.75 \text{ (syst.) GeV}$
 - crucial: JER, pile-up, flavour dependence of JES
- Tevatron 2014: $\Delta m_t = 0.64 \text{ GeV} [D0, CDF, arXiv:1407.2682]$

welcome to the community of precision measurements!

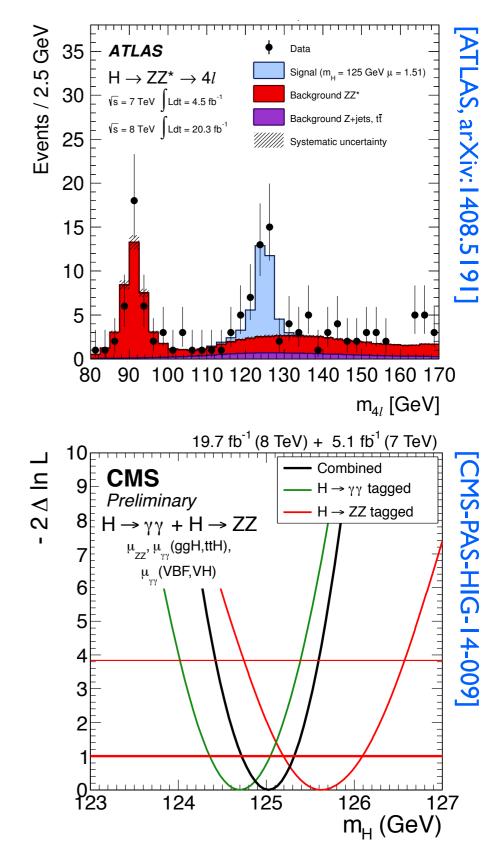


Interpreteation of m_t measurements


What about accuracy?

- kinematic top mass definition
 - factorization: hard function, universal jet-function, non-pert. soft function [Moch et al, arXiv:1405.4781]
 - MC mass is (may be) related to the low scale short-distance mass in the jet function
 - but: no quantitative statement available
 - relating m_t^{kin} to $m_t^{pole} : \Delta m_t \ge \Lambda_{QCD}$
- colour structure and hadronisation
 - partly included in experimental uncertainties
 - study on kinematic dependencies of m_t
- calculating m_t(m_t) from m_t^{pole}
 - QCD (three-loop): $\Delta m_t \approx 0.02 \text{ GeV}$
 - EW (two-loop): $\Delta m_t \approx 0.1 \text{ GeV}$

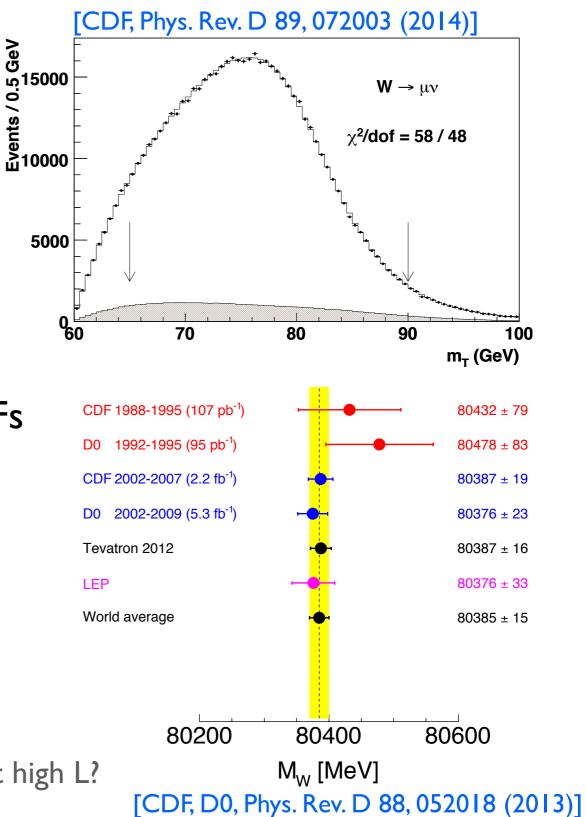
[Kniehl et al., arXiv:1401.1844]


Prediction of Higgs mass

Measurements of M_H

Discovery of a Higgs boson

- cross section times branching ratios, spin, parity: compatible with SM Higgs boson
 - assume it's the SM Higgs boson
 - (or a BSM Higgs boson h in the decoupling region)
 - test the consistency of the SM including it
- best mass measurements: $H \rightarrow \gamma \gamma$, $H \rightarrow 4I$
 - ATLAS: 125.4 ± 0.4 GeV [ATLAS, 1406.3827]
 - CMS: 125.0 ± 0.3 GeV [CMS-PAS-HIG-14-009]
 - weighted average: 125.14 ± 0.24 GeV
 - change between fully uncorrelated and fully correlated systematic uncertainties is minor: $\delta M_H : 0.24 \rightarrow 0.32 \text{ GeV}$
 - accuracy: 0.2% !
 - sufficient for electroweak fit (more later)

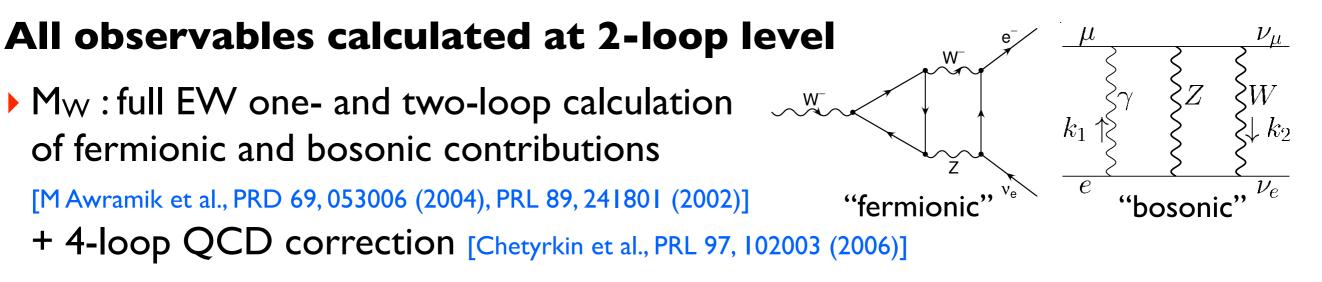

$\label{eq:measurements} \textbf{Measurements of } \textbf{M}_w$

Mw : key parameter in the SM $\Delta r = -\frac{3\alpha c_W^2}{16\pi s_W^4} \underbrace{m_t^2}_{M_W^2} + \frac{11\alpha}{48\pi s_W^2} \ln \underbrace{M_H^2}_{M_W^2} + \dots$ Final LEP-2 measurement (2013):

- $\Delta M_{W} = 33 \text{ MeV} [ADLO, Phys. Rept. 532:119,2013]$
- Tevatron : most precise result so far
 - Jacobean peak in M_T and $p_{T,I}$ in $W \rightarrow Iv$
 - ΔM = 16 MeV, accuracy: 0.02% !!
 - crucial: lepton energy and resolution, PDFs
- LHC : no result so far
 - (optimistic) scenarios: [arXiv:1310.6708]

ΔM_W [MeV]	LHC		
$\sqrt{s} [\text{TeV}]$	8	14	14
$\mathcal{L}[\mathrm{fb}^{-1}]$	20	300	3000
Total <	15	8	5

- very challenging
 - PDFs, momentum scale, hadronic recoil, pile-up at high L?


Experimental Input

Fit is overconstrained

- all free parameters measured
 - most input from e⁺e⁻ colliders
 - but crucial input from hadron colliders:
 - m_t : 0.4%
 - M_W: 0.02%
 - M_H : 0.2%
 - remarkable experimental precision (<1%)
- require precision calculations!

$M_H \; [\text{GeV}]^{(\circ)}$	125.14 ± 0.24	LHC
M_W [GeV]	80.385 ± 0.015	
Γ_W [GeV]	2.085 ± 0.042	Tev.
$\overline{M_Z \; [\text{GeV}]}$	91.1875 ± 0.0021	
$\Gamma_Z [{\rm GeV}]$	2.4952 ± 0.0023	
$\sigma_{ m had}^0~[{ m nb}]$	41.540 ± 0.037	LEP
R^0_ℓ	20.767 ± 0.025	
$A_{ m FB}^{0,\ell}$	0.0171 ± 0.0010	
$A_\ell \ ^{(\star)}$	0.1499 ± 0.0018	SLD
$\sin^2\theta_{\rm eff}^\ell(Q_{\rm FB})$	0.2324 ± 0.0012	· · · · · · · · · · · · · · · · · · ·
A_c	0.670 ± 0.027	
A_b	0.923 ± 0.020	
$A_{ m FB}^{0,c}$	0.0707 ± 0.0035	
$A_{ m FB}^{0,b}$	0.0992 ± 0.0016	IED
R_c^0	0.1721 ± 0.0030	
R_b^0	0.21629 ± 0.00066	
$\overline{m}_c \; [\text{GeV}]$	$1.27^{+0.07}_{-0.11}$	
$\overline{m}_b [\text{GeV}]$	$4.20^{+0.17}_{-0.07}$	
$m_t [{ m GeV}]$	173.34 ± 0.76	Tev.+LHC
$\Delta \alpha_{\rm had}^{(5)}(M_Z^2)$	2757 ± 10	

Calculations

- sin²θ^I_{eff}: same order as M_W, calculations for leptons and all quark flavours [M Awramik et al, PRL 93, 201805 (2004), JHEP 11, 048 (2006), Nucl. Phys. B813, 174 (2009)]
- partial widths Γ_f : fermionic corrections known to two-loop level for all flavours (includes predictions for σ^0_{had}) [A. Freitas, JHEP04, 070 (2014)]
- Radiator functions: QCD corrections at N³LO [Baikov et al., PRL 108, 222003 (2012)]
- Γ_W: only one-loop EW corrections available, negligible impact on fit [Cho et al, JHEP 1111, 068 (2011)]
- Il calculations include one- and two-loop QCD corrections and leading terms of higher order corrections

All EWPOs calculated at two-loop level or better

Theoretical Uncertainties

Estimation

• assume that perturbative expansion follows a geometric series $(a_n = a r^n)$:

for example:
$$\mathcal{O}(\alpha^2 \alpha_s) = \frac{\mathcal{O}(\alpha^2)}{\mathcal{O}(\alpha)} \mathcal{O}(\alpha \alpha_s)$$

 other methods (e.g. scale variation) not always feasible

- but give similar results
- theoretical uncertainties smaller by a factor of 3-6 than measurements
 - for the first time, reasonable estimate for all observables
- important missing higher order terms:
 - $O(\alpha^2 \alpha_s)$, $O(\alpha \alpha_s^2)$, $O(\alpha^2_{bos})$ (in some cases), $O(\alpha_s^5)$ (rad. functions)

	important		
Observable	Exp. error	Theo. error	
M_W	15 MeV	4 MeV	
$\sin^2 \theta_{\text{eff}}^l$	$1.6 \cdot 10^{-4}$	$0.5 \cdot 10^{-4}$	
Γ _Z	2.3 MeV	0.5 MeV	
$\sigma_{\text{had}}^0 = \sigma[e^+e^- \rightarrow Z \rightarrow \text{had.}]$	37 pb	6 pb	
$R_b^0 = \Gamma[Z \to b\overline{b}]/\Gamma[Z \to had.]$	$6.6 \cdot 10^{-4}$	$1.5 \cdot 10^{-4}$	
m_t	0.76 GeV	0.5 GeV	
		1	
r terms:		new in fit	

important

UHI **À**

Fit method

Free parameters

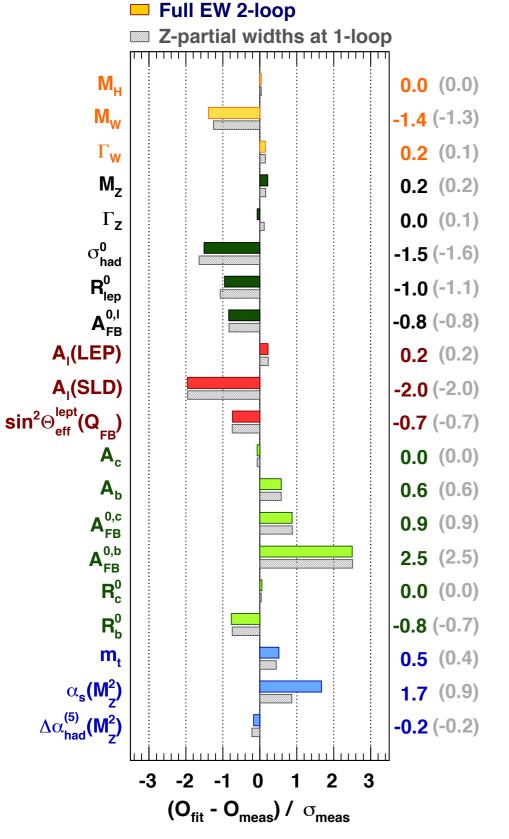
- M_Z , $\Delta \alpha_{had}$, M_H , m_c , m_b , m_t , α_s
 - G_F is fixed
 - α_s is unconstrained \rightarrow independent measurement

Treatment of theory uncertainties

- included as additional free parameters (10 parameters)
- different ways on how to treat their effect on the likelihood
 - Rfit : flat likelihood within uncertainties (box potential), corresponds to linear addition of uncertainties
 - Gaussian : corresponds to quadratic sum of uncertainties

Minimization

- pre-fitter : genetic algorithm (useful for many parameter fits)
- Minuit (standard)
- test of results using MC toy data


The global electroweak fit

disclaimer:

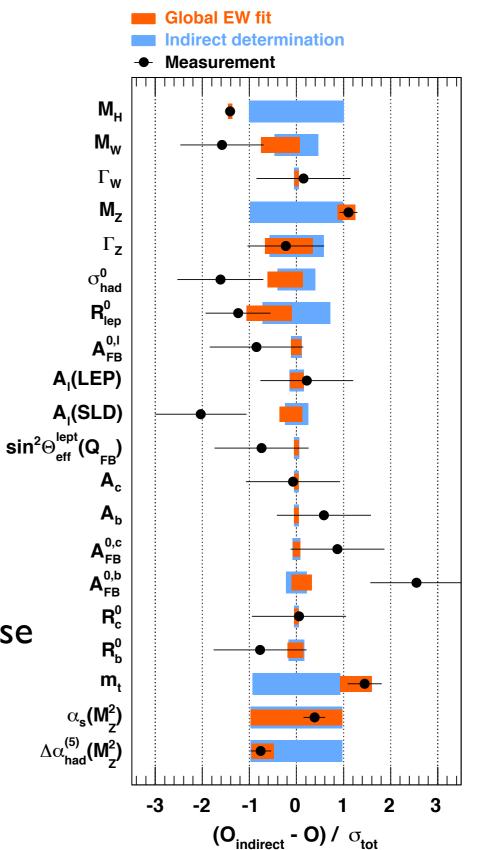
- there are several groups who routinely perform the electroweak fit
- there are small differences in the methodology, the results agree very well
- I will focus on results from the Gfitter group (<u>www.cern.ch/gfitter</u>)

Parameter	Input value	Free in fit	Fit Result	w/o exp. input in line	w/o exp. input in line, no theo. unc		
$M_H \; [\text{GeV}]^{(\circ)}$	125.14 ± 0.24	yes	125.14 ± 0.24	93^{+25}_{-21}	93^{+24}_{-20}		
M_W [GeV]	80.385 ± 0.015	_	80.364 ± 0.007	80.358 ± 0.008	80.358 ± 0.006		
Γ_W [GeV]	2.085 ± 0.042	_	2.091 ± 0.001	2.091 ± 0.001	2.091 ± 0.001		
$M_Z [{ m GeV}]$	91.1875 ± 0.0021	yes	91.1880 ± 0.0021	91.200 ± 0.011	91.2000 ± 0.010		
$\Gamma_Z [{\rm GeV}]$	2.4952 ± 0.0023	—	2.4950 ± 0.0014	2.4946 ± 0.0016	2.4945 ± 0.0016		
$\sigma_{ m had}^0~[{ m nb}]$	41.540 ± 0.037	—	41.484 ± 0.015	41.475 ± 0.016	41.474 ± 0.015		
R^0_ℓ	20.767 ± 0.025	—	20.743 ± 0.017	20.722 ± 0.026	20.721 ± 0.026		
$A_{ m FB}^{0,\ell}$	0.0171 ± 0.0010	—	0.01626 ± 0.0001	0.01625 ± 0.0001	0.01625 ± 0.0001		
$A_\ell \ ^{(\star)}$	0.1499 ± 0.0018	—	0.1472 ± 0.0005	0.1472 ± 0.0005	0.1472 ± 0.0004		
$\sin^2 \theta_{\rm eff}^{\ell}(Q_{\rm FB})$	0.2324 ± 0.0012	_	0.23150 ± 0.00006	0.23149 ± 0.00007	0.23150 ± 0.00005		
A_c	0.670 ± 0.027	_	0.6680 ± 0.00022	0.6680 ± 0.00022	0.6680 ± 0.00016		
A_b	0.923 ± 0.020	_	0.93463 ± 0.00004	0.93463 ± 0.00004	0.93463 ± 0.00003		
$A_{ m FB}^{0,c}$	0.0707 ± 0.0035	_	0.0738 ± 0.0003	0.0738 ± 0.0003	0.0738 ± 0.0002		
$A_{ m FB}^{0,b}$	0.0992 ± 0.0016	_	0.1032 ± 0.0004	0.1034 ± 0.0004	0.1033 ± 0.0003		
R_c^0	0.1721 ± 0.0030	_	$0.17226^{+0.00009}_{-0.00008}$	0.17226 ± 0.00008	0.17226 ± 0.00006		
R_b^0	0.21629 ± 0.00066	—	0.21578 ± 0.00011	0.21577 ± 0.00011	0.21577 ± 0.00004		
$\overline{m}_c [{\rm GeV}]$	$1.27^{+0.07}_{-0.11}$	yes	$1.27^{+0.07}_{-0.11}$	_	_		
$\overline{m}_b [{\rm GeV}]$	$4.20^{+0.17}_{-0.07}$	yes	$4.20^{+0.17}_{-0.07}$	—	—		
$m_t [{ m GeV}]$	173.34 ± 0.76	yes	173.81 ± 0.85	$177.0^{+2.3}_{-2.4}(\bigtriangledown)$	$177.0\pm2.3^{(\bigtriangledown)}$		
$\Delta \alpha_{\rm had}^{(5)} (M_Z^2)^{(\dagger \triangle)}$	2757 ± 10	yes	2756 ± 10	2723 ± 44	2722 ± 42		
$\alpha_s(M_Z^2)$	_	yes	0.1196 ± 0.0030	0.1196 ± 0.0030	0.1196 ± 0.0028		
[Gfitter group, EF	[Gfitter group, EPJC 74, 3046 (2014)]						

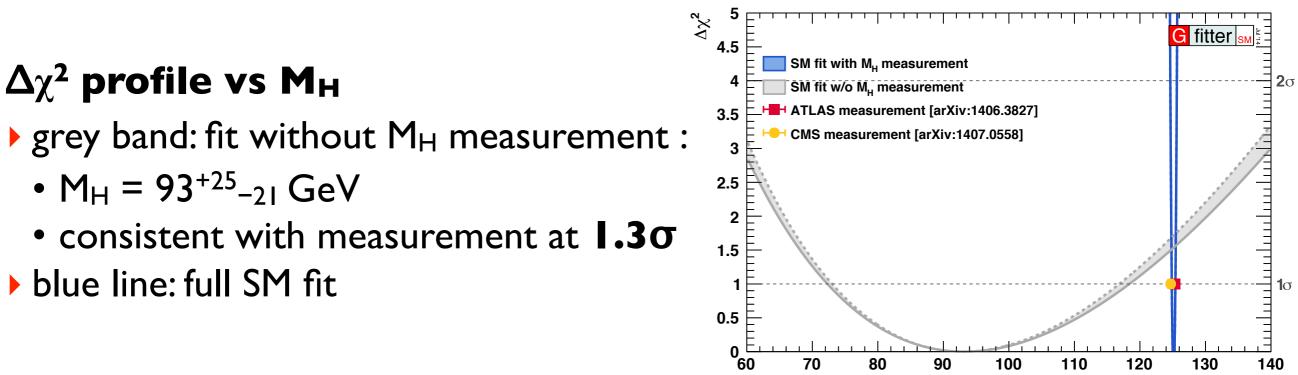
SM Fit Results

- \blacktriangleright no individual value exceeds 3σ
- Iargest deviations in b-sector:
 - $A^{0,b}_{FB}$ with 2.5σ
 - \rightarrow largest contribution to χ^2
- ► Small pulls for M_H, M_Z, m_c, m_b
 - input accuracies exceed fit requirements
- Goodness of fit, p-value: χ^2_{min} = 17.8 Prob(χ^2_{min} , 14) = 21% Pseudo experiments: 21 ± 2 (theo)%
- Small changes from switching between I and 2-loop calc. for partial Z widths and small M_W correction:
 - $\chi^2_{min}(Z \text{ widths in I-loop}) = 18.0$
 - χ^2_{min} (no $O(\alpha m_t \alpha_s^3) M_W$ correction) = 17.4
 - χ^{2}_{min} (no theory uncertainties) = 18.2

SM Fit Results

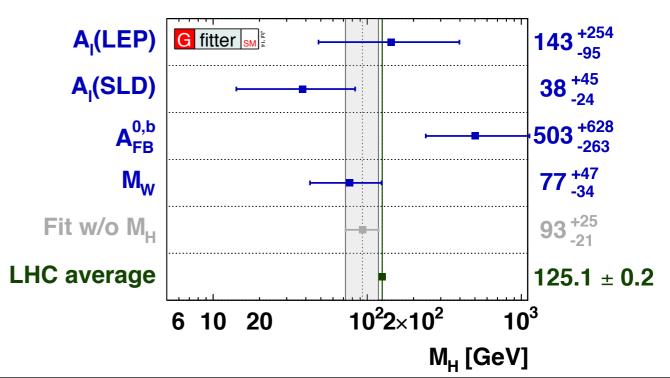

Results drawn as pull values

- deviations to the indirect determinations, divided by total error
- total error:


error of direct measurement plus error from indirect determination

black: direct measurement (data) orange: full fit light-blue: fit excluding input from the row

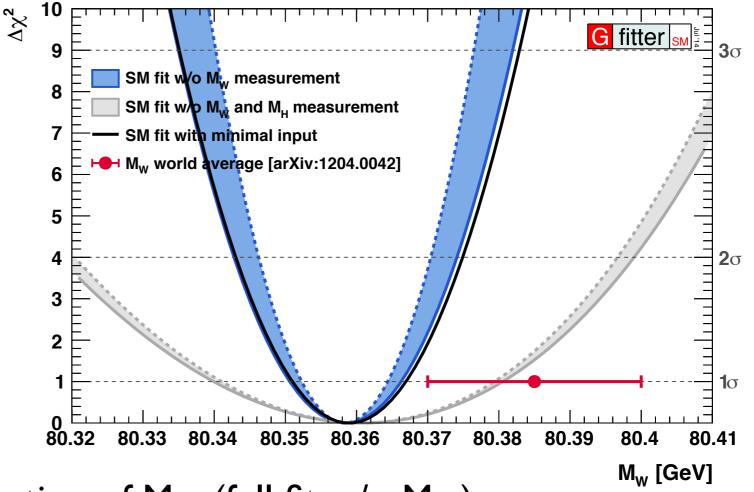
- the prediction (light blue) is often more precise than the measurement
 - important exceptions: M_H, M_Z, m_t, $\Delta \alpha_{had}^{(5)}(M_Z)$



Higgs results

impact of most sensitive observables

- determination of M_H, removing all sensitive observables except the given one
- known tension (3σ)
 between A_I(SLD), A^{0,b}_{FB},
 and M_W clearly visible

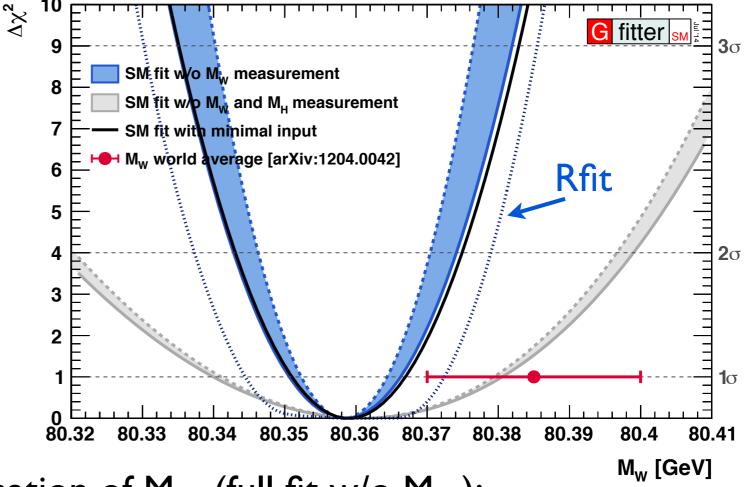

M_µ [GeV]

Indirect determination of W mass

$\Delta\chi^2$ profile vs M_W

- also shown: SM fit with minimal input: M_Z, G_F, Δα_{had}⁽⁵⁾(M_Z), α_s(M_Z), M_H, and fermion masses
 - good consistency
- M_H measurement allows for precise constraint on M_W
 - agreement at 1.4σ

▶ fit result for indirect determination of M_W (full fit w/o M_W):


$$M_W = 80.3584 \pm 0.0046_{m_t} \pm 0.0030_{\delta_{\text{theo}}m_t} \pm 0.0026_{M_Z} \pm 0.0018_{\Delta\alpha_{\text{had}}}$$
$$\pm 0.0020_{\alpha_S} \pm 0.0001_{M_H} \pm 0.0040_{\delta_{\text{theo}}M_W} \text{ GeV},$$
$$= 80.358 \pm 0.008_{\text{tot}} \text{ GeV}$$

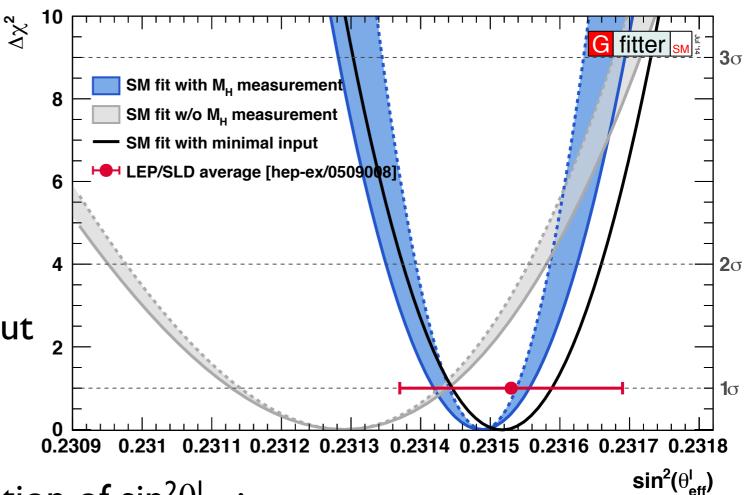
more precise than direct measurement (15 MeV)

Indirect determination of W mass

$\Delta\chi^2$ profile vs M_W

- also shown: SM fit with minimal input: M_Z, G_F, Δα_{had}⁽⁵⁾(M_Z), α_s(M_Z), M_H, and fermion masses
 - good consistency
- M_H measurement allows for precise constraint on M_W
 - agreement at 1.4σ

▶ fit result for indirect determination of M_W (full fit w/o M_W):


$$M_W = 80.3584 \pm 0.0046_{m_t} \pm 0.0030_{\delta_{\text{theo}}m_t} \pm 0.0026_{M_Z} \pm 0.0018_{\Delta\alpha_{\text{had}}} \\ \pm 0.0020_{\alpha_S} \pm 0.0001_{M_H} \pm 0.0040_{\delta_{\text{theo}}M_W} \text{ GeV},$$

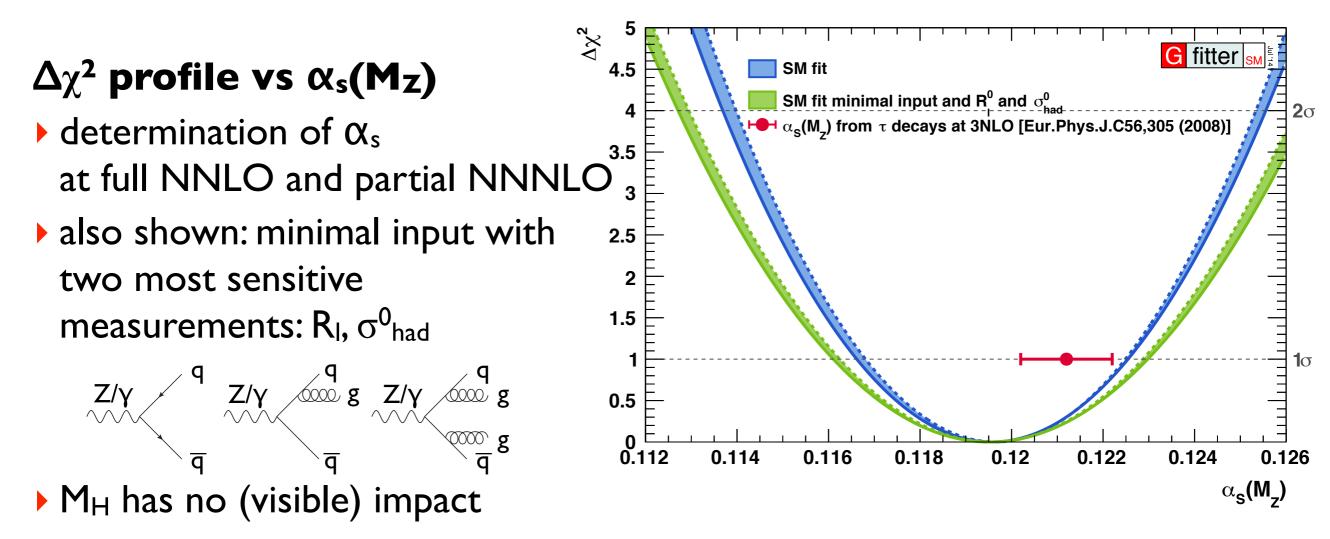
$$= 80.358 \pm 0.008_{\text{tot}} \text{ GeV} \quad \text{(Rfit: \pm 13 MeV)}$$

more precise than direct measurement (15 MeV)

The effective weak mixing angle

$\Delta \chi^2$ profile vs sin² θ^{I}_{eff}

- all measurements directly sensitive to sin²θ^leff removed from fit (asymmetries, partial widths)
 - good agreement with min input
- M_H measurement allows for precise constraint



• fit result for indirect determination of $sin^2\theta^{l}_{eff}$:

$$\sin^2 \theta_{\text{eff}}^{\ell} = 0.231488 \pm 0.000024_{m_t} \pm 0.000016_{\delta_{\text{theo}}m_t} \pm 0.000015_{M_Z} \pm 0.000035_{\Delta\alpha_{\text{had}}} \\
\pm 0.000010_{\alpha_S} \pm 0.000001_{M_H} \pm 0.000047_{\delta_{\text{theo}}\sin^2\theta_{\text{eff}}^{f}} \\
= 0.23149 \pm 0.00007_{\text{tot}}$$

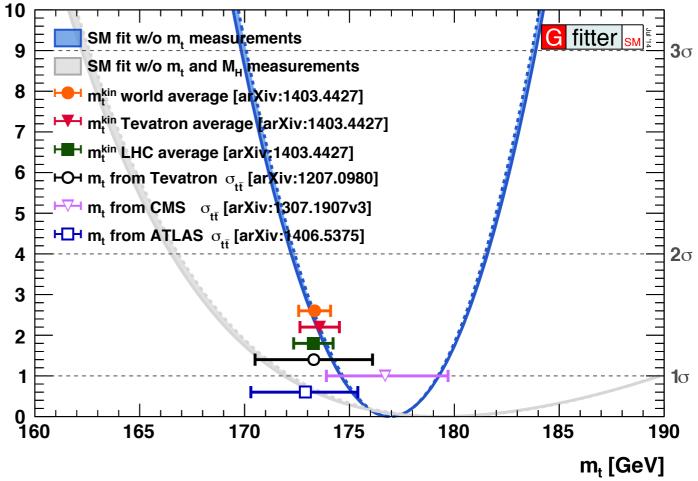
more precise than determination from LEP/SLD (1.6×10⁻⁴)

The strong coupling $\alpha_s(M_z)$

$$\alpha_{s}(M_{Z}^{2}) = 0.1196 \pm 0.0028_{\exp} \pm 0.0006_{\delta_{\text{theo}}\mathcal{R}_{V,A}} \pm 0.0006_{\delta_{\text{theo}}\Gamma_{i}} \pm 0.0002_{\delta_{\text{theo}}\sigma_{\text{had}}^{0}}$$
$$= 0.1196 \pm 0.0030_{\text{tot}} \qquad \text{More accurate estimation of theo. uncertainties}$$
$$(previously: \delta_{\text{theo}} = 0.0001 \text{ from scale variations})$$

good agreement with WA, dominated by exp. uncertainty

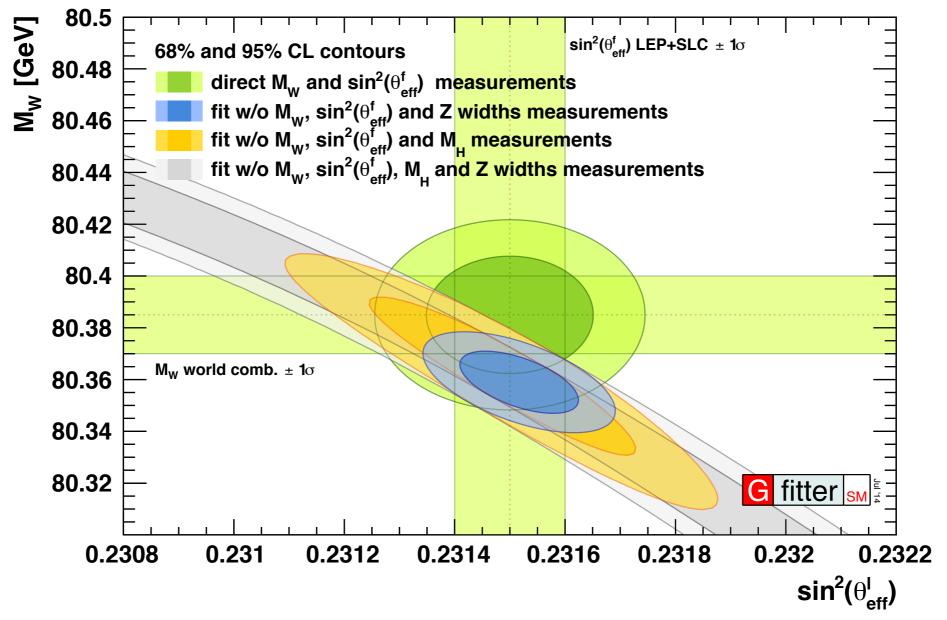
Indirect determination of m_t


 $\Delta\chi^2$

$\Delta \chi^2$ profile vs m_t

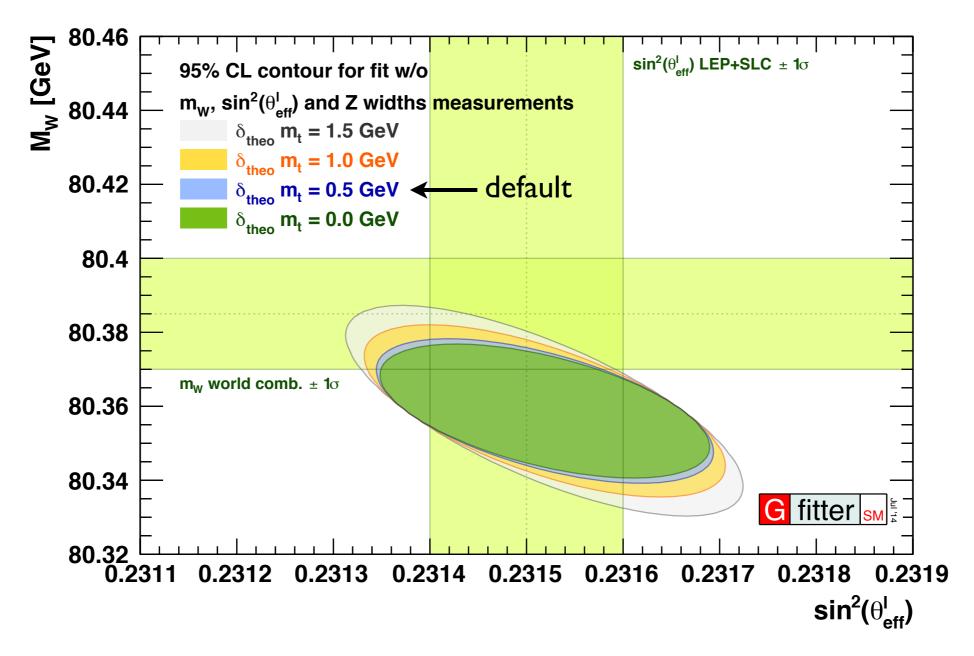
- determination of mt from Z-pole data (fully obtained from rad. corrections ~mt²)
- alternative to direct
 measurements (suffer ambiguities)

largely correlated


M_H allows for significantly more precise determination of m_t

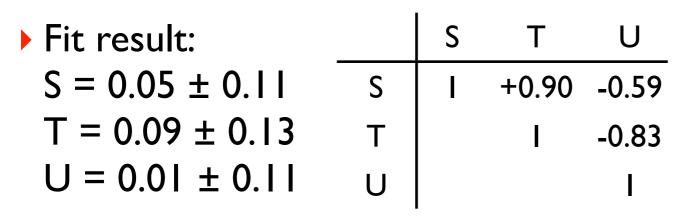
$$m_t = 177.0 \pm 2.3_{M_W} \pm 2.3_{\sin^2 \theta_{\text{eff}}^f} \pm 0.6_{\alpha_s} \pm 0.5_{\Delta \alpha_{\text{had}}} \pm 0.4_{M_Z} \text{ GeV}$$
$$= 177.0 \pm 2.4_{\text{exp}} \pm 0.5_{\text{theo}} \text{ GeV}$$

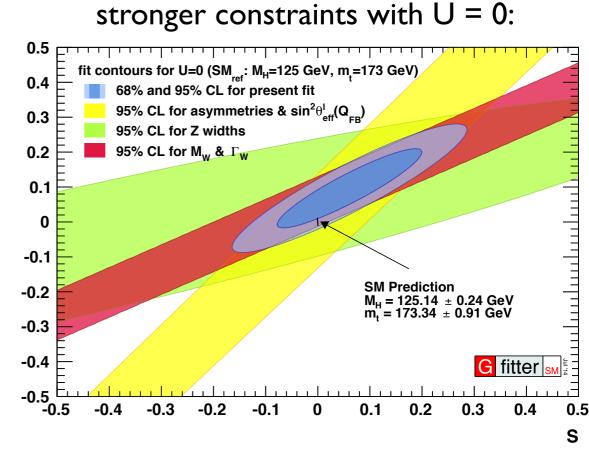
- \blacktriangleright similar precision as determination from $\sigma_{t\overline{t}}$, good agreement
- dominated by experimental precision


State of the SM: $M_W vs sin^2 \theta_{eff}^{I}$

sensitive probes of new physics

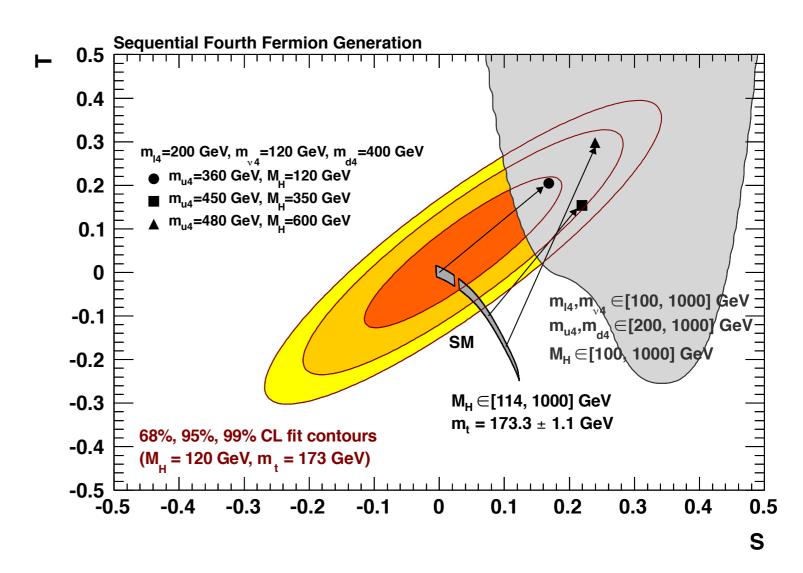
- significant reduction of parameter space due to knowledge of M_H
- Predictions are more precise than the direct measurements


Theoretical uncertainty on m_t



impact of variation in $\delta_{\text{theo}}\,\textbf{m}_{\text{t}}\,\textbf{between}\,\textbf{0}$ and 1.5 GeV

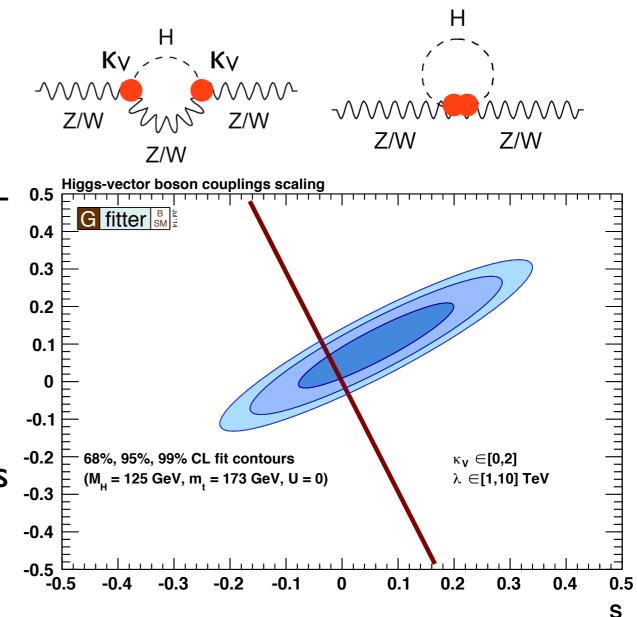
- better assessment of uncertainty on mt important for the fit
- uncertainty of 0.5 GeV small impact on result


- If energy scale of NP is high, BSM physics could appear dominantly through vacuum polarisation corrections
- described by STU parameters [Peskin and Takeuchi, Phys. Rev. D46, 1 (1991)]
- SM: M_H = 125 GeV, m_t = 173 GeV this defines (S,T,U) = (0,0,0)
- S,T depend logarithmically on MH



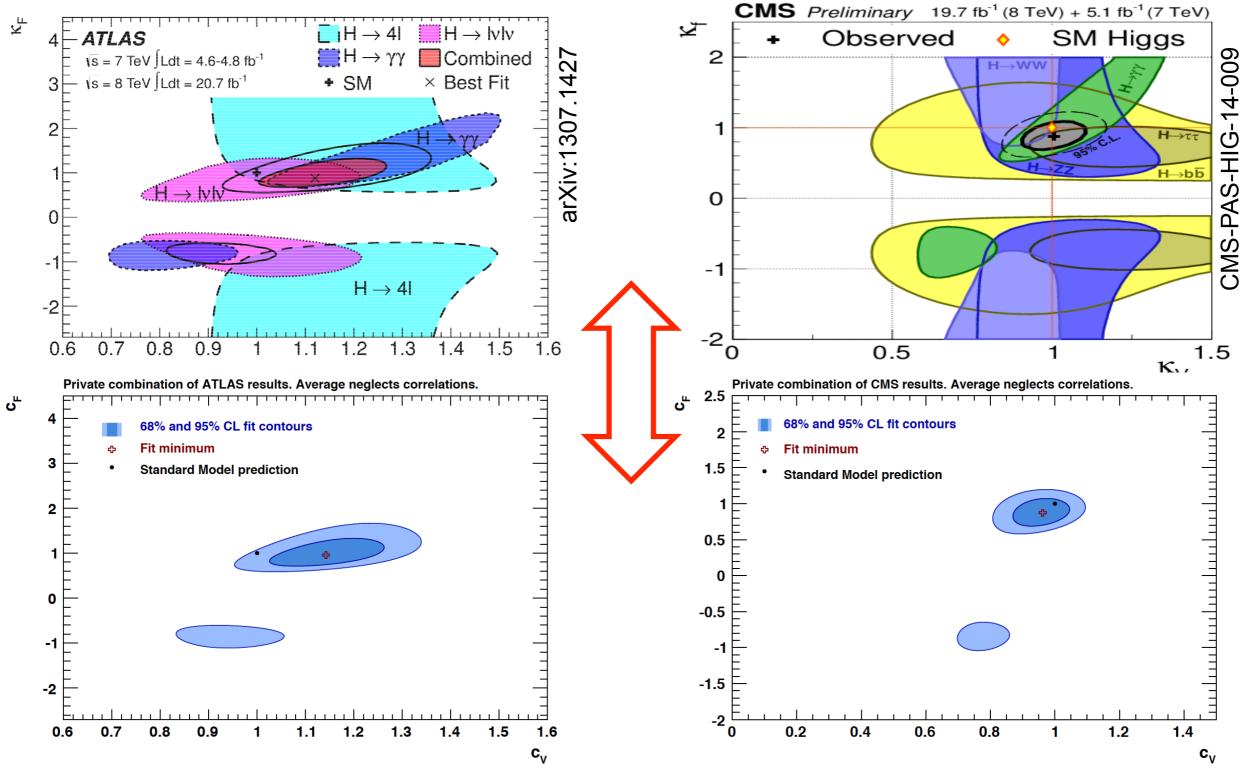
- no indication for new physics
- use this to constrain parameter space in BSM models

- with M_H unknown, changes in S,T and U could often be compensated by changes in M_H
- rather weak limits: e.g. large parameter space for sequential fourth generation open



- with M_H unknown, changes in S,T and U could often be compensated by changes in M_H
- rather weak limits: e.g. large parameter space for sequential fourth generation open

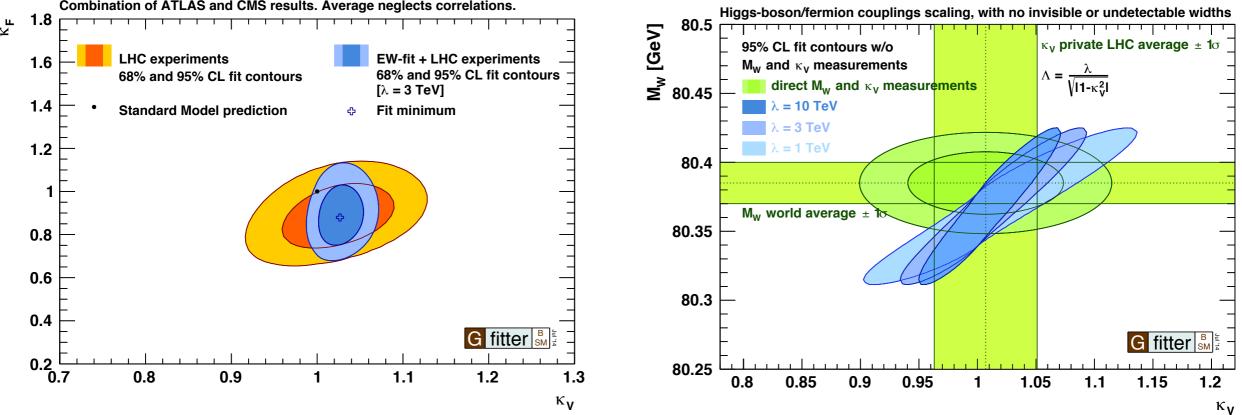
Pulls of the Higgs signal strengths


- study of potential deviations of Higgs couplings from SM
- BSM modelled as extension of SM through effective Lagrangian
- Consider leading corrections only
- Model considered here:
 - Scaling of Higgs-vector boson (K_V) and Higgs-fermion couplings (K_F), with no invisible/undetectable widths
 - custodial symmetry is assumed
 - "kappa parametrization"

Main effect on EWPO due to modified Higgs coupling to gauge bosons (K_V) [Espinosa et al (arXiv:1202.3697), [Falkowski et al (arXiv:1303.1812)], etc

$$S = \frac{1}{12\pi} (1 - \kappa_V^2) \ln \frac{\Lambda^2}{M_H^2} , \quad T = -\frac{3}{16\pi \cos^2 \theta_{\text{eff}}^\ell} (1 - \kappa_V^2) \ln \frac{\Lambda^2}{M_H^2} , \quad \Lambda = \frac{\lambda}{\sqrt{|1 - \kappa_V^2|}}$$

Reproduction of ATLAS and CMS

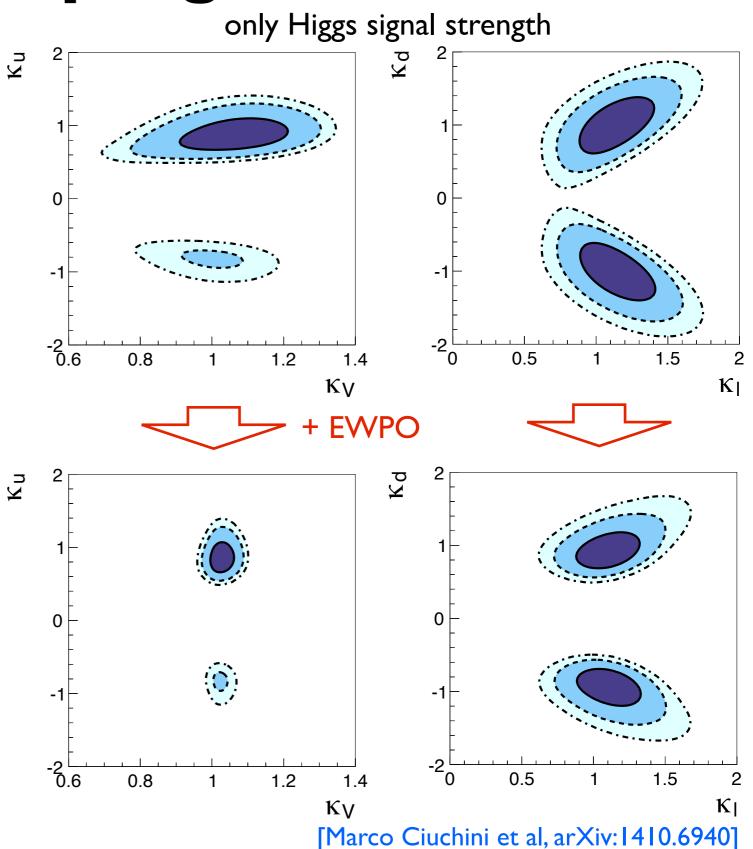

Approximate reproduction of ATLAS/CMS results within limited publicly available info

Higgs coupling results

Private LHC combination:

• $\kappa_V = 1.026^{+0.043}_{-0.043}$ • $\kappa_F = 0.88^{+0.10}_{-0.09}$

Result from stand-alone EW fit: $\kappa_V = 1.03 \pm 0.02$ (using $\lambda = 3 \text{ TeV}$) $\epsilon_V = 1.03 \pm 0.02$ (using $\lambda = 3 \text{ TeV}$)

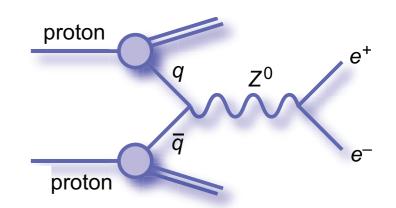

- some dependency for K_V in central value [1.02-1.04] and error [0.02-0.03] on cut-off scale λ [1-10 TeV]
 - EW fit sofar more precise result for κ_V than current LHC experiments
 - EW fit has positive deviation of $\kappa_{\rm V}$ from 1.0
 - many BSM models: $\kappa_V < 1$

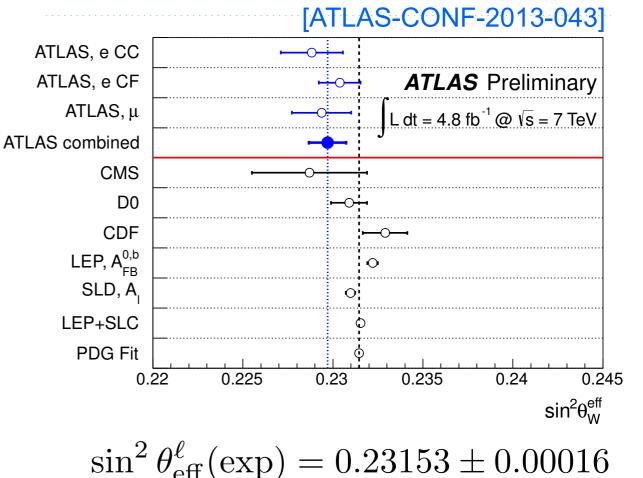
Higgs coupling results

- allowing for different couplings to up- and downtype quarks K_u and K_d
- stricter constraints due to EWPO, some gain also in the fermion sector

	68%	95%	Correlations
κ_V	1.03 ± 0.02	[0.99, 1.07]	1.00
Kℓ	1.10 ± 0.14	[0.82, 1.38]	0.14 1.00
К _и	0.88 ± 0.12	[0.66, 1.15]	0.09 0.23 1.00
Ка	0.92 ± 0.15	[0.65, 1.26]	0.28 0.35 0.81 1.00

 also possible to constrain coefficients of dimension-6 operators


The Future



$sin^2 \theta_{eff}$ measurements at the LHC

- Drell-Yan: A_{FB} sensitive to distribution of polar angle of lepton w.r.t. *quark* direction
 - LHC: quark direction unknown!
- assume: dilepton boost is quark direction
 - often: interaction of valence quark with sea antiquark
 - important: reach in $|y_{II}|$, ie. $|\eta_{I}|$
- ambiguity due to PDFs dilution of A_{FB}
- $sin^2\theta_{eff}$ from MC templates
 - accuracy of 9.8×10⁻⁴
 - consistent with LEP/SLD result (accuracy 1.6×10⁻⁴)
- prediction for LHC 14/300
 - accuracy of 3.6×10⁻⁴ [arXiv:1310.6708]

substantial contribution from LHC difficult

 $\sin^2 \theta_{\text{eff}}^{\ell}(\text{fit}) = 0.23149 \pm 0.00007$

What can we expect?

LHC 14/300 + Tevatron

► M_W

- ultimate precision from Tevatron (~10 MeV)
- combination with measurements from the LHC (total: ~8 MeV)

▶ m_t

- experimental improvements (JES, modelling uncertainties) (~0.6 GeV)
- improve theoretical understanding to interpret the measurements

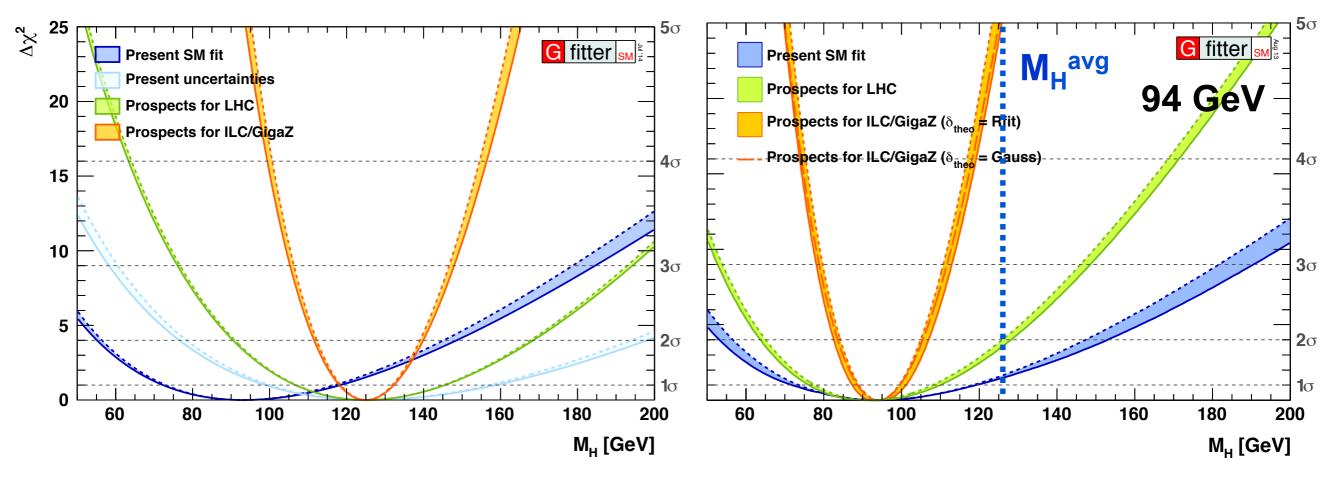
ILC/GigaZ

- future e⁺e⁻ collider, with option to run on the Z-pole (with polarized beams)
- large improvements on m_t , M_W , $sin^2\theta^{I}_{eff}$, R_I
- no improvement on M_Z (beam energy!) and other widths expected

Theory

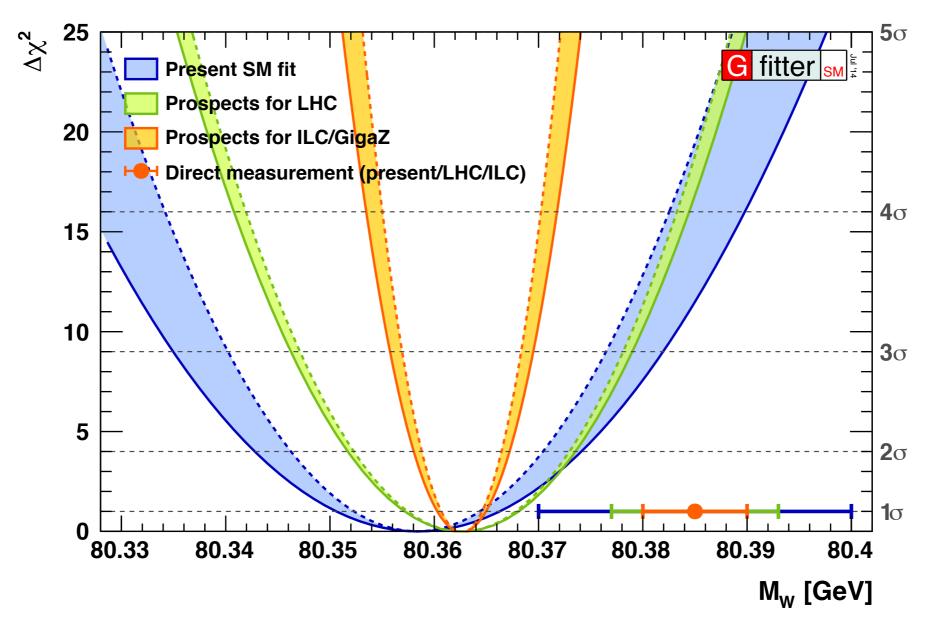
- with increasing precision, higher order calculations needed
 - three-loop corrections for M_W and $sin^2\theta^l_{eff}$

[Baak et al, arXiv:1310.6708]

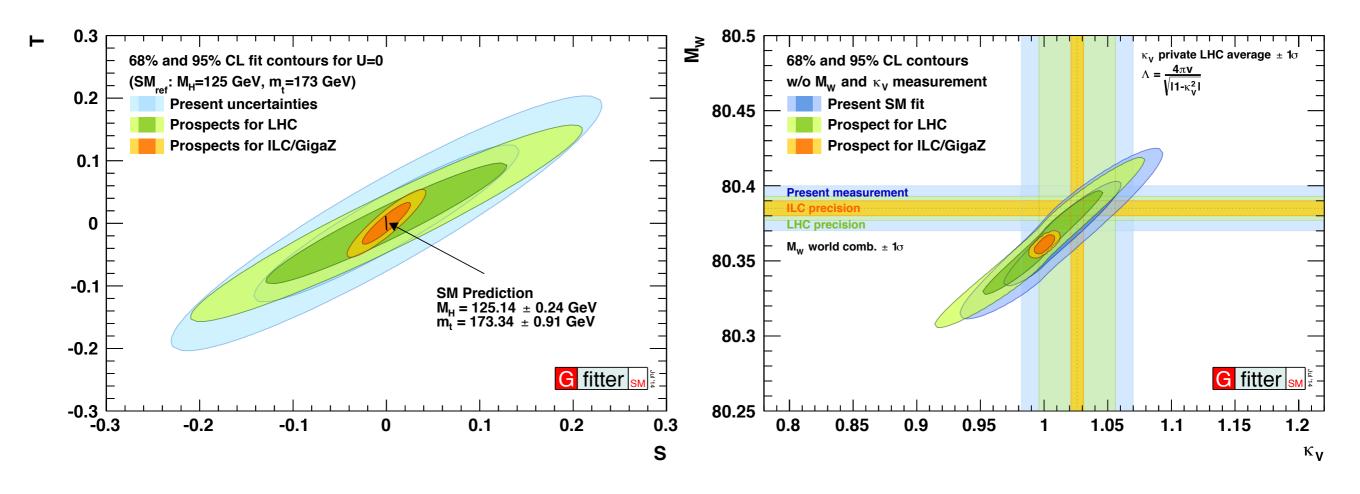

Future improvements

Parameter	Present LHC	ILC/Giga	
M_H [GeV]	$0.2 \rightarrow < 0.1$	< 0.1	
M_W [MeV]	$15 \longrightarrow 8$	\rightarrow 5	WW threshold
$M_Z [{ m MeV}]$	2.1 2.1	2.1	
$m_t [{ m GeV}]$	$0.8 \longrightarrow 0.6$	→ 0.1	tt threshold scan
$\sin^2 \theta_{\mathrm{eff}}^{\ell} \ [10^{-5}]$	16 16	→ 1.3	$\delta A^{0,f}_{LR} \colon 0^{-3} \rightarrow 0^{-4} $
$\Delta \alpha_{\rm had}^5 (M_Z^2) \ [10^{-5}]$	$10 \rightarrow 4.7$	4.7	low energy data, better α_s
$R_l^0 [10^{-3}]$	25 25	\rightarrow 4	high statistics on Z-pole
$\kappa_V \ (\lambda = 3 \mathrm{TeV})$	$0.05 \longrightarrow 0.03$	→ 0.01	direct measurement of BRs

• theoretical uncertainties reduced by a factor of 4 (esp. M_W and $sin^2\theta_{eff}$)


- implies three-loop calculations!
- exception: $\delta_{\text{theo}} m_t (LHC) = 0.25 \text{ GeV} (factor 2)$
- central values of input measurements adjusted to M_H = 125 GeV

Higgs mass


- Logarithmic dependency on MH \rightarrow cannot compete with direct M_H meas.
 - no theory uncertainty: $M_H = 126 \pm 7 \text{ GeV}$
 - present day theory uncertainty: $M_H = 126^{+20}_{-17} \text{ GeV}$
 - future theory uncertainty (Rfit): $M_H = 126 + \frac{10}{-9} \text{ GeV}$
- If EWPO central values unchanged, i.e. keep favouring low value of M_H (94 GeV), ~5σ discrepancy with measured Higgs mass

Prospects for M_w

- improvement of a factor of 3 with the ILC (similar to measurement)
- stringent test of internal consistency of SM
- moderate improvement with LHC (~30%)
 - nevertheless, if at present values, theory uncertainties already important

BSM Prospects of EW fit

- For STU parameters, improvement of factor of >3 is possible at ILC
- again, at ILC a deviation between the SM predictions and direct measurements would be prominently visible.
- competitive results between EW fit and Higgs coupling measurements!
 - precision of about 1%

Summary of indirect predictions

	Exper	imental i	input $[\pm 1\sigma_{exp}]$	Indirect determination $[\pm 1\sigma_{exp}, \pm 1\sigma_{theo}]$			
Parameter	Present	LHC	ILC/GigaZ	Present	LHC	ILC/GigaZ	
M_H [GeV]	0.2	< 0.1	< 0.1	$+31 +10 \\ -26, -8$	$^{+20}_{-18}, {}^{+3.9}_{-3.2}$	$^{+6.8}_{-6.5}, {}^{+2.5}_{-2.4}$	
M_W [MeV]	15	8	5	6.0, 5.0	$5.2, \ 1.8$	$1.9, \ 1.3$	
$M_Z~[{ m MeV}]$	2.1	2.1	2.1	11, 4	$7.0, \ 1.4$	$2.5, \ 1.0$	
$m_t [{ m GeV}]$	0.8	0.6	0.1	$2.4, \ 0.6$	$1.5, \ 0.2$	$0.7, \ 0.2$	
$\sin^2 heta_{ m eff}^\ell$ $[10^{-5}]$	16	16	1.3	4.5, 4.9	2.8, 1.1	$2.0, \ 1.0$	
$\Delta \alpha_{\rm had}^5 (M_Z^2) \ [10^{-5}]$	10	4.7	4.7	$42, \ 13$	36, 6	$5.6, \ 3.0$	
$R_l^0 [10^{-3}]$	25	25	4	-	_	—	
$\alpha_{S}(M_{Z}^{2}) \ [10^{-4}]$	_	_	_	40, 10	$39,\ 7$	$6.4, \ 6.9$	
$\overline{S _{U=0}}$	_	_	_	$0.094, \ 0.027$	0.086, 0.006	$0.017, \ 0.006$	
$T _{U=0}$	—	_	_	0.083, 0.023	$0.064, \ 0.005$	$0.022, \ 0.005$	
$\kappa_V \ (\lambda = 3 \mathrm{TeV})$	0.05	0.03	0.01	0.02	0.02	0.01	

Summary of indirect predictions

	Exper	imental i	Indirect determination $[\pm 1\sigma_{exp}, \pm 1\sigma_{theo}]$			
Parameter	Present	LHC	ILC/GigaZ	Present	LHC	ILC/GigaZ
M_H [GeV]	0.2	< 0.1	< 0.1	$+31 +10 \\ -26 , -8$	$^{+20}_{-18}, ^{+3.9}_{-3.2}$	$^{+6.8}_{-6.5}, {}^{+2.5}_{-2.4}$
M_W [MeV]	15	8	5	6.0, 5.0	5.2, 1.8	1.9, 1.3
M_Z [MeV]	2.1	2.1	2.1	11, 4	7.0, 1.4	$2.5, \ 1.0$
$m_t [{ m GeV}]$	0.8	0.6	0.1	$2.4, \ 0.6$	(1.5, 0.2)	0.7, 0.2
$\sin^2 \theta_{\mathrm{eff}}^{\ell} \ [10^{-5}]$	16	16	1.3	4.5, 4.9	2.8, 1.1	2.0, 1.0
$\Delta \alpha_{\rm had}^5 (M_Z^2) \ [10^{-5}]$	10	4.7	4.7	42, 13	36, 6	$5.6, \ 3.0$
$R_l^0 \ [10^{-3}]$	25	25	4	_	—	_
$\alpha_{S}(M_{Z}^{2}) \ [10^{-4}]$	_	_	_	$40, \ 10$	39, 7	$6.4, \ 6.9$
$\overline{S _{U=0}}$	_	_	_	$0.094, \ 0.027$	0.086, 0.006	0.017, 0.006
$T _{U=0}$	_	—	_	0.083, 0.023	$0.064, \ 0.005$	0.022, 0.005
$\kappa_V \ (\lambda = 3 \mathrm{TeV})$	0.05	0.03	0.01	0.02	0.02	0.01

theory uncertainty needs to be reduced if we want to achieve the ultimate precision with the LHC!

ILC/GigaZ offers fantastic possibilities to test the SM and constrain NP

Impact of individual uncertainties

					Experimental uncertainty source $[\pm 1\sigma]$					$1\sigma]$
Parameter	$\delta_{\rm meas}$	$\delta_{ m fit}^{ m tot}$	$\delta_{\mathrm{fit}}^{\mathrm{theo}}$	$\delta_{\mathrm{fit}}^{\mathrm{exp}}$	δM_W	δM_Z	δm_t	$\delta \sin^2 \theta_{\rm eff}^f$	$\delta\Deltalpha_{ m had}$	$\delta lpha_S$
		Present uncertainties								
M_W [MeV]	15	7.8	5.0	6.0	_	2.5	4.3	5.1	1.6	2.5
$\sin^2 heta_{ m eff}^{\ell}$ (0)	16	6.6	4.9	4.5	3.7	1.2	2.0	_	3.4	1.2
$m_t [{ m GeV}]$	0.8	2.5	0.6	2.4	2.3	0.4	_	2.3	0.5	0.6
				-	LHC prosp	oects				
M_W [MeV]	8	5.5	1.8	5.2	_	2.5	3.5	4.8	0.8	2.6
$\sin^2 heta_{ m eff}^{\ell}$ (0)	16	3.0	1.1	2.8	2.5	1.1	1.4	—	1.5	0.9
$m_t [{ m GeV}]$	0.6	1.5	0.2	1.5	1.3	0.4	_	1.2	0.2	0.5
	ILC/GigaZ prospects									
$\overline{M_W [{ m MeV}]}$	5	2.3	1.3	1.9	_	1.7	0.1	1.2	0.6	0.3
$\sin^2 heta_{ m eff}^{\ell}$ (0)	1.3	2.3	1.0	2.0	1.7	1.2	0.1	_	1.5	0.1
$m_t [{ m GeV}]$	0.1	0.8	0.2	0.7	0.6	0.5	_	0.3	0.4	0.2

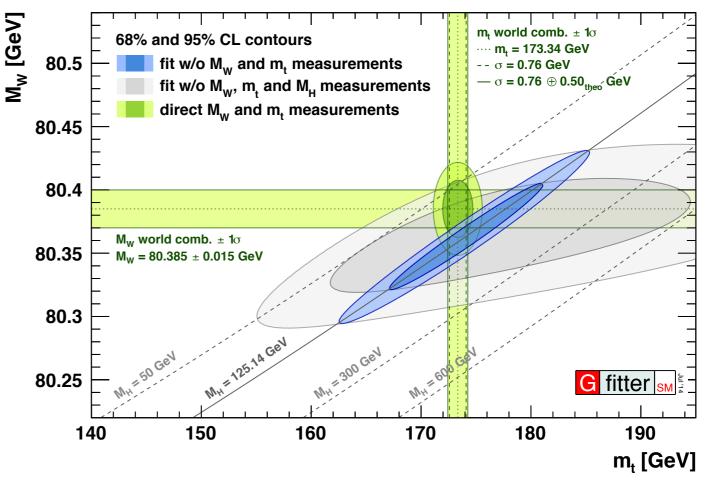
 $^{(\circ)}$ In units of 10^{-5} .

Impact of individual uncertainties

					Experimental uncertainty source $[\pm 1\sigma]$					1σ]
Parameter	$\delta_{\rm meas}$	$\delta_{ m fit}^{ m tot}$	$\delta_{\mathrm{fit}}^{\mathrm{theo}}$	$\delta_{\mathrm{fit}}^{\mathrm{exp}}$	δM_W	δM_Z	δm_t	$\delta \sin^2 \theta_{ m eff}^f$	$\delta\Deltalpha_{ m had}$	$\delta lpha_S$
				Pre	esent uncer	tainties				
M_W [MeV]	15	7.8	5.0	6.0	_	2.5	4.3	5.1	1.6	2.5
$\sin^2 heta_{ m eff}^{\ell}$ (°)	16	6.6	4.9	4.5	3.7	1.2	2.0	_	3.4	1.2
$m_t [{ m GeV}]$	0.8	2.5	0.6	2.4	2.3	0.4	—	2.3	0.5	0.6
			LHC prospects							
M_W [MeV]	8	5.5	1.8	5.2	_	2.5	3.5	4.8	0.8	2.6
$\sin^2 heta_{ m eff}^{\ell}$ (0)	16	3.0	1.1	2.8	2.5	1.1	1.4	_	1.5	0.9
$m_t [{ m GeV}]$	0.6	1.5	0.2	1.5	1.3	0.4	_	1.2	0.2	0.5
		ILC/GigaZ prospects								
M_W [MeV]	5	2.3	1.3	1.9	_	1.7	0.1	1.2	0.6	0.3
$\sin^2 heta_{ m eff}^{\ell}$ (0)	1.3	2.3	1.0	2.0	1.7	1.2	0.1	_	1.5	0.1
$m_t [{ m GeV}]$	0.1	0.8	0.2	0.7	0.6	0.5	_	0.3	0.4	0.2

 $^{(\circ)}$ In units of 10^{-5} .

We cannot know M_W precise enough!


Summary

Huge success of the SM

- knowledge of M_H and two-loop calculations lead to unprecedented precision
- cannot know M_W and $sin^2 \theta^{I}_{eff}$ precise enough

LHC 14/300:

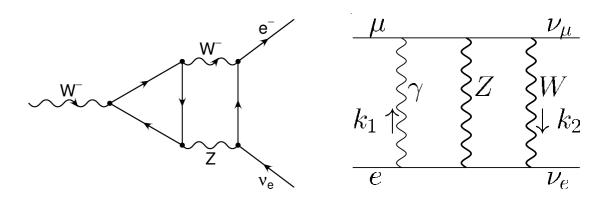
► ΔM_W (indirect) = 5.5 MeV ΔM_W (exp) = 8 MeV

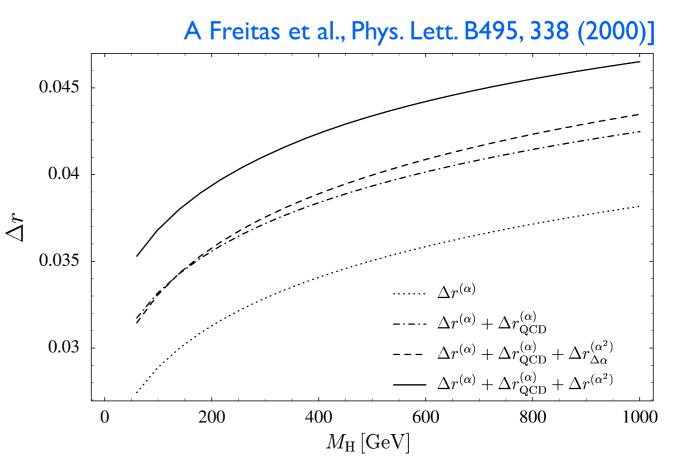
 $\rightarrow \Delta m_t \text{ (indirect)} = 1.5 \text{ GeV}$

ILC with GigaZ:

▶ Δm_t (exp) = 100 MeV → measurement of M_Z will become important again ($\Delta \alpha_{had}$ as well)

• indirect determinations of M_Z and $\Delta \alpha_{had}$ will match exp. precision

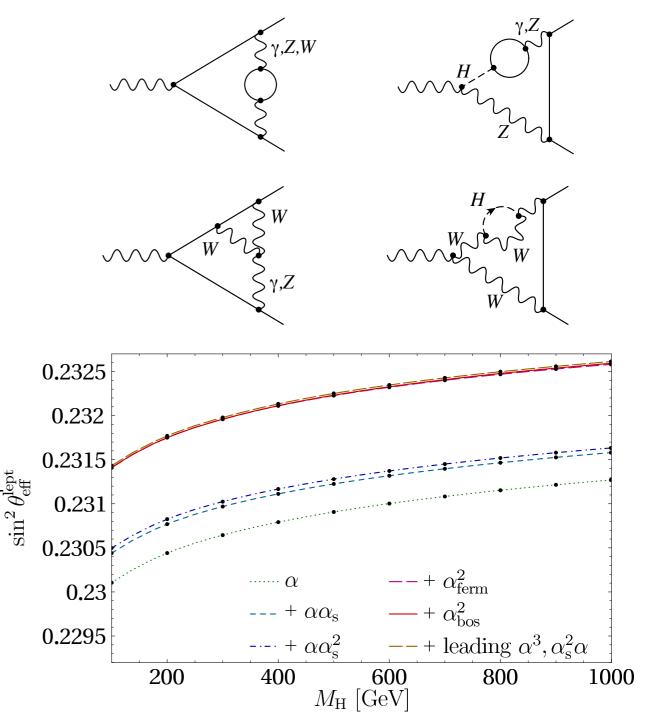

Additional Material


$\textbf{Calculation of } \textbf{M}_{W}$

- Full EW one- and two-loop calculation of fermionic and bosonic contributions
- One- and two-loop QCD corrections and leading terms of higher order corrections
- Results for Δr include terms of order
 O(α), O(αα_s), O(αα_s²), O(α²_{ferm}),
 O(α²_{bos}), O(α²α_smt⁴), O(α³mt⁶)
- Uncertainty estimate:
 - missing terms of order O(α²α_s): about 3 MeV (from O(α²α_sm_t⁴))
 - electroweak three-loop correction *O*(α³): < 2 MeV
 - three-loop QCD corrections $O(\alpha \alpha_s^3)$: < 2 MeV
 - Total: $\delta M_W \approx$ 4 MeV

Ш

[M Awramik et al., Phys. Rev. D69, 053006 (2004)] [M Awramik et al., Phys. Rev. Lett. 89, 241801 (2002)]

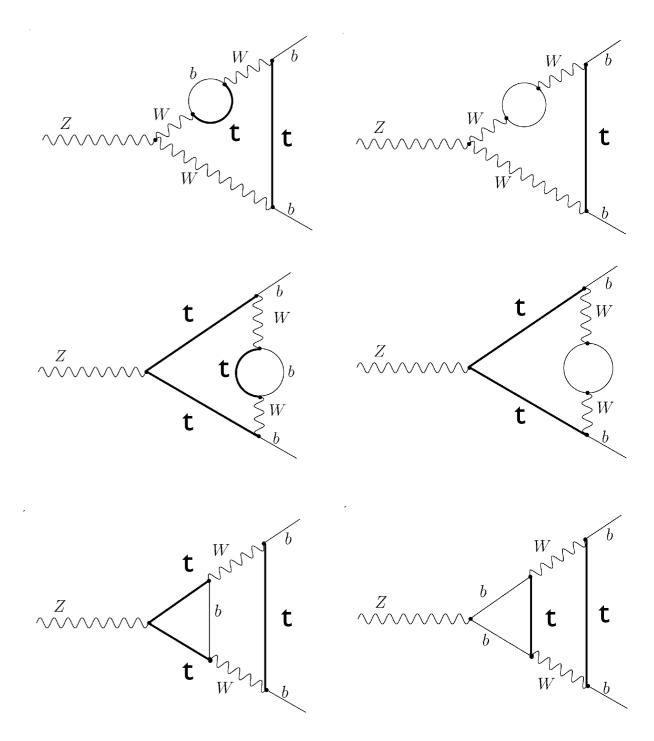

47

Calculation of $sin^2(\theta_{eff})$

- Effective mixing angle: $\sin^2 \theta_{\text{eff}}^{\text{lept}} = \left(1 - M_{\text{W}}^2 / M_{\text{Z}}^2\right) \left(1 + \Delta \kappa\right)$
- Two-loop EW and QCD correction to Δκ known, leading terms of higher order QCD corrections
- fermionic two-loop correction about 10⁻³, whereas bosonic one 10⁻⁵
- Uncertainty estimate obtained with different methods, geometric progression:

 $\mathcal{O}(\alpha^2 \alpha_{\rm s}) = \frac{\mathcal{O}(\alpha^2)}{\mathcal{O}(\alpha)} \mathcal{O}(\alpha \alpha_{\rm s}).$ $\mathcal{O}(\alpha^2 \alpha_{\rm s}) \text{ beyond leading } m_{\rm t}^4 \quad 3.3 \dots 2.8 \times 10^{-5}$ $\mathcal{O}(\alpha \alpha_{\rm s}^3) \qquad 1.5 \dots 1.4$ $\mathcal{O}(\alpha^3) \text{ beyond leading } m_{\rm t}^6 \qquad 2.5 \dots 3.5$ $\text{Total: } \delta \sin^2 \theta^1_{\rm eff} \approx 4.7 \ 10^{-5}$

[M Awramik et al, Phys. Rev. Lett. 93, 201805 (2004)] [M Awramik et al., JHEP 11, 048 (2006)]


Calculation of $sin^2(\theta^{bb}_{eff})$

- Calculation of sin²θ_{eff} for b-quarks more involved, because of top quark propagators in the Z→bb vertex
- Investigation of known discrepancy between sin²θ_{eff} from leptonic and hadronic asymmetry measurements
- Two-loop EW correction only recently completed, effect of O(10⁻⁴)
- Now sin²θ^{bb}_{eff} known at the same order as sin²θ_{eff} for leptons and light quarks
- Uncertainty assumed to be of same size as for sin²θ_{eff}:

$\delta \sin^2 \theta^{bb}_{eff} \approx 4.7 \ 10^{-5}$

Ш

[M Awramik et al, Nucl. Phys. B813, 174 (2009)]

Calculation of R⁰_b

Full two-loop calculation of $Z \rightarrow b\overline{b}$

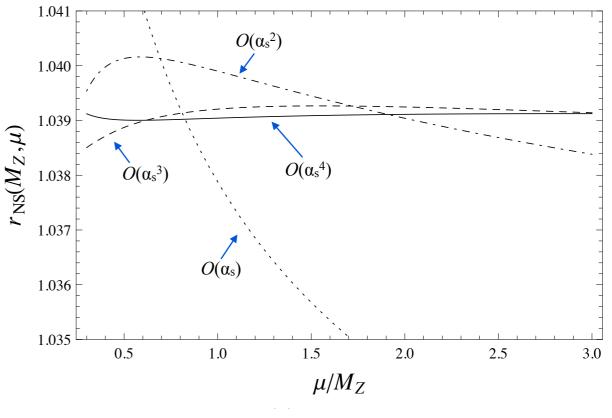
[A. Freitas et al., JHEP 1208, 050 (2012) Erratum ibid. 1305 (2013) 074]

• The branching ratio R^{0}_{b} : partial decay width of $Z \rightarrow b\overline{b}$ and $Z \rightarrow q\overline{q}$

$$R_b \equiv \frac{\Gamma_b}{\Gamma_{\text{had}}} = \frac{\Gamma_b}{\Gamma_d + \Gamma_u + \Gamma_s + \Gamma_c + \Gamma_b} = \frac{1}{1 + 2(\Gamma_d + \Gamma_u)/\Gamma_b}$$

- Contribution of same terms as in the calculation of $\sin^2\theta^{bb}_{eff}$ \rightarrow cross-check the two results, found good agreement
- ► Two-loop corrections small compared to experimental uncertainty (6.6 · 10⁻⁴)

	I-loop EW and QCD correction to FSR	2-loop EW correction	2-loop EW and 2+3-loop QCD correction to FSR	I+2-loop QCD correction to gauge boson selfenergies
$M_{\rm H}$ [GeV]	$\mathcal{O}(\alpha) + \mathrm{FSR}_{\alpha,\alpha_{\mathrm{s}},\alpha_{\mathrm{s}}^{2}}$ $[10^{-4}]$	$ \begin{bmatrix} \mathcal{O}(\alpha_{\rm ferm}^2) \\ [10^{-4}] \end{bmatrix} $	$ \begin{array}{c} \mathcal{O}(\alpha_{\text{ferm}}^2) + \text{FSR}_{\alpha_{\text{s}}^3, \alpha \alpha_{\text{s}}, m_b^2 \alpha_{\text{s}}, m_b^4} \\ [10^{-4}] \end{array} $	$ \begin{array}{c} \mathcal{O}(\alpha\alpha_{\rm s},\alpha\alpha_{\rm s}^2) \\ [10^{-4}] \end{array} $
100	-35.66	-0.856	-2.496	-0.407
200	-35.85	-0.851	-2.488	-0.407
400	-36.09	-0.846	-2.479	-0.406

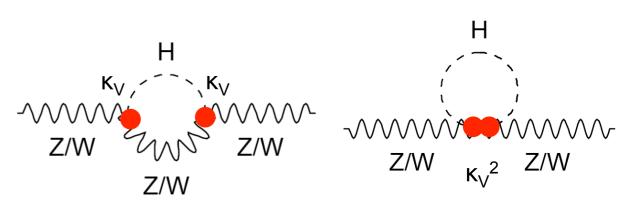

Radiator Functions

- Partial widths are defined inclusively: they contain QCD and QED contributions
- Corrections can be expressed as radiator functions $R_{A,f}$ and $R_{V,f}$

$$\Gamma_{f\bar{f}} = N_c^f \frac{G_F M_Z^3}{6\sqrt{2}\pi} \left(|g_{A,f}|^2 R_{A,f} + |g_{V,f}|^2 R_{V,f} \right)^2$$

- High sensitivity to the strong coupling α_s
- Full four-loop calculation of QCD Adler function available (N³LO)
- Much reduced scale dependence
- Theoretical uncertainty of 0.1 MeV, compare to experimental uncertainty of 2.0 MeV

[D. Bardin, G. Passarino, "The Standard Model in the Making", Clarendon Press (1999)]


[P. Baikov et al., Phys. Rev. Lett. 108, 222003 (2012)] [P. Baikov et al Phys. Rev. Lett. 104, 132004 (2010)]

Modified Higgs Couplings

Study of potential deviations of Higgs couplings from SM

- BSM modelled as extension of SM through effective Lagrangian
 - Leading corrections only
- Benchmark model:
 - Scaling of Higgs-vector boson (K_V) and Higgs-fermion couplings (K_F)
 - No additional loops in the production or decay of the Higgs, no invisible Higgs decays and undetectable width
- Main effect on EWPO due to modified Higgs coupling to gauge bosons (Ky)
 - Involving the longitudinal d.o.f.
- Most BSM models: κ_V < 1</p>
- \blacktriangleright Additional Higgses typically give positive contribution to $M_{\rm W}$

$$L_{V} = \frac{h}{v} \left(2\kappa_{V} m_{W}^{2} W_{\mu} W^{\mu} + \kappa_{V} m_{Z}^{2} Z_{\mu} Z^{\mu} \right)$$
$$L_{F} = -\frac{h}{v} \left(\kappa_{F} m_{t} \bar{t}t + \kappa_{F} m_{b} \bar{b}b + \kappa_{F} m_{\tau} \bar{\tau}\tau \right)$$

