"This Year a New Era Has Commenced & You Can Say You Have Been Present" -- Goethe, the Cannonade of Valmy and Charm Dynamics

Ikaros Bigi (Notre Dame du Lac)

Cannonade of Valmy: 1792 battle in Northern France that saved `New' France from having (that era's) Standard Model of governance imposed by the `Old' powers.

Tactically a draw, strategically a French victory

Goethe's statement to the Prussian soldiers at camp fire: 'From this place and from this day forth commences a new era in the world's history, and you can all say that you were present at its birth.'

But written up much later; i.e. Goethe -- not unheard of for a theorist -- bragged about a *post*-diction.

in 2007: Strong evidence has surfaced for Doscillations, which could become conclusive by the summer/fall.

A tactical draw in the struggle for gaps in the SM -x_D & y_D while possibly generated by SM alone,
could contain large contributions from NP -yet a strategic victory in sight:

CP studies in the future will decide the issue possibly paving the way for a New SM to emerge!

A historical analogy:

We had been talking about \mathcal{C}^p in B decays for years without much resonance - till B oscill. were observed!

- (B) numerical size much smaller in D decays,
- 10 no definitive predictions for Prom New Physics
- yet SM `background' even tinier &
- come more experienced

The Menu

Prologue: New Physics Scenarios & Uniqueness of Charm

I Inconclusiveness in Interpretation of D^o Oscillations

II P with & without Do Oscillations

III Conclusions & Outlook

Prologue: New Physics Scenarios & Uniqueness of Charm

- New Physics in general induces FCNC
 - their couplings could be substantially stronger for Up-type than for Down-type quarks
 - (actually happens in some models which `brush the dirt of FCNC in the down-type sector under rug of the up-type sector')
- 2 conceivable scenarios
 - specific New Physics effects observable/identifiable
 in charm decays only (much smaller SM `background')
 - New Physics effects observable in dynamics of down-type quarks -- B & K -- as well as up-type quarks
 still essential complementary info on New Physics!

up-type quarks: u c t

only up-type quark allowing full range of probes for New Phys.

- top quarks do not hadronize \longrightarrow no T^0 T^0 oscillations hadronization while hard to force under theor. control enhances observability of \mathcal{L}
- up quarks: no π^0 - π^0 oscillations possible CP asymmetries basically ruled out by CPT

basic contention:

charm transitions are a unique portal for obtaining a novel access to flavour dynamics with the experimental situation being a priori favourable (apart from absence of Cabibbo suppression)!

I Inconclusiveness in Interpretation of D^o Oscillations

(1.1) Basics

- © fascinating quantum mechanical phenomenon
- ambiguous probe for New Physics (=NP)
- important ingredient for NP CP asymm. in Do decays

$$x_D = \frac{\Delta m_D}{\Gamma_D}$$
 $y_D = \frac{\Delta \Gamma_D}{2\Gamma_D}$

general expectations

- \circ $\Delta\Gamma$: on-shell contributions
 - → ~ insensitive to New Physics
- o ∆m: virtual intermediate states
- \Rightarrow sensitive to New Physics $x_D \sim O(\text{few \%})$ conceivable in models

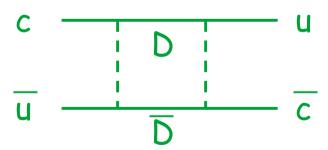
central theoretical issue:

duality at the charm scale?

- more averaging in x_D than in y_D
- \rightarrow duality better in x_D than in y_D

```
D<sup>0</sup>-D<sup>0</sup> oscillations `slow' in the SM How `slow' is `slow'?  x_D, \quad y_D \sim SU(3)_{Fl} \times 2\sin^2\theta_C < few \times 0.01 \\  on-shell transitions  off-shell transitions
```

While the history of predicting x_D , y_D does not fill one of the glory pages of theoret. HEP, we are not completely off the mark either -- see for example:

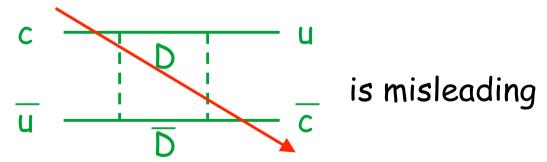

hep-ph/9712475 (Lecture notes from 1997): `CP Violation -- an Essential Mystery in Nature's Grand Design' p.57f: "It is often stated that the SM predicts ... $x_D, y_D \le 3 \times 10^{-4}$ I myself am somewhat flabbergasted by the boldness of such predictions... I cannot see how anyone can make such a claim with the required confidence... [my estimate] $x_D, y_D|_{SM} \le 10^{-2}$."

2 general comments:

(A) $x_D \leftrightarrow y_D$ not a natural scenario! If $D^0 \to f \to \overline{D^0}$ via an on-shell final state then $D^0 \to f \to \overline{D^0}$ via an off-shell final state dispersion relation connects Δm_D and $\Delta \Gamma_D$ (B)

GIM suppression $(m_s/m_c)^4$ of usual quark box diagram un-typically severe!

statement oscillations of mesons built from up-type quarks teach us about down-type quark dynamics



2 general comments:

(A) $x_D < y_D$ natural in SM, yet $x_D < < y_D$ not! If $D^0 \to f \to \overline{D^0}$ via an on-shell final state then $D^0 \to "f" \to \overline{D^0}$ via an off-shell final state • dispersion relation connects Δm_D and $\Delta \Gamma_D$ (B)

GIM suppression $(m_s/m_c)^4$ of usual quark box diagram un-typically severe!

statement oscillations of mesons built from up-type quarks teach us about down-type quark dynamics

(1.2) Theoretical Predictions

2 complement. approaches to evaluating Δm_D and $\Delta \Gamma_D$ in the SM:

`inclusive' vs. `exclusive'

→ `inclusive':

quarks & gluons + nonperturb. contributions

OPE in powers of $1/m_c$, m_s , μ_{had} (quark condensates)

Uraltsev, IB, Nucl. Phys. B592('01)

$$m_s^2 m_{had}^4 / m_c^6 (vs. m_s^4 / m_c^4)$$

power counting in 1/m_c can be quite iffy

leading contrib. not given by partonic term

- $x_{D}(SM)|_{OPE}, y_{D}(SM)|_{OPE} \sim O(10^{-3})[x_{D}(SM) < y_{D}(SM)]$
- unlikely uncertainties can be reduced
- ullet violations of quark-hadron duality due to proximity of thresholds could enhance in particular y_D

→ 'exclusive':

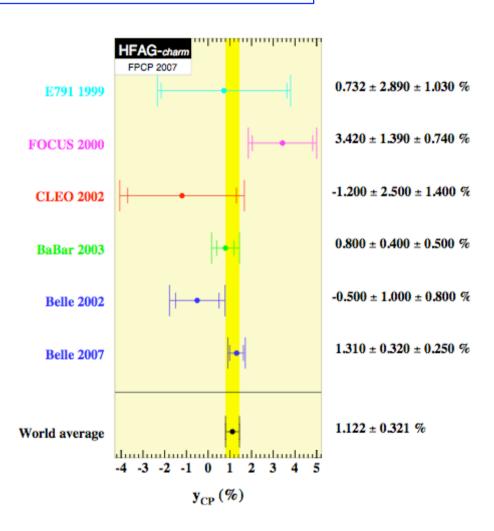
hadrons

 $SU(3)_{FI}$ breaking from phase space for 2-, 3-, 4-body modes

A. Falk et al., Phys. Rev. D65 (`02)

$$y_D$$
 (SM) ~ 0.01 \longrightarrow 0.001 $\leq |x_D$ (SM)| \leq 0.01 dispersion relation

- my judgment: 2 questions
 - □ most likely value in SM? x_D (SM), y_D (SM)~ O (10-3)!
 - a can one rule out 0.01?


(1.3) Data

(1.3.1) Lifetimes of D⁰
$$\rightarrow$$
 K⁺K⁻, π ⁺ π ⁻ vs. K⁻ π ⁺

$$y_{CP} = \overline{\tau}/\tau_{CP+} - 1$$
with CP invariance $y_{CP} = y_D$

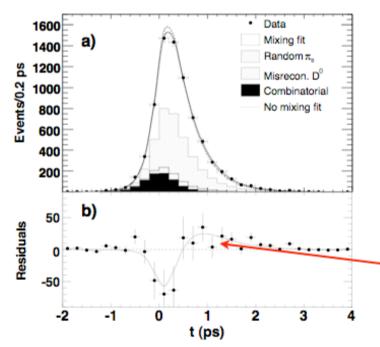
BELLE:

 $y_{CP} = (1.31 \pm 0.30 \pm 0.15)\%$ [\$\neq 0\$ with 3.2 \sigma\$]

(1.3.2) $D^0(t) \rightarrow K^+\pi^-$

Rate(D⁰(†)
$$\rightarrow$$
 K⁺ π ⁻) \propto [|T_{DCS}|² + y'_D († Γ)T_{DCS}T_{osc}+ R_M († Γ)² |T_{osc}|²]

$$y'_D = -x_D \sin\delta + y_D \cos\delta$$
, $x'_D = x_D \cos\delta + y_D \sin\delta$
 $R_M = (x_D^2 + y_D^2)/2$


BABAR:

$$y'_{D}$$
= (0.97±0.44±0.31) x 10⁻¹
(x'_D)²=(-2.2±3.0±2.1) x 10⁻⁴
[3.9 σ]
 R_{M} =(-0.6 ± 1.7) x 10⁻⁴

Decay-time distribution deviates from a pure exponential

$$\frac{\Gamma_{\rm WS}(t)}{\Gamma_{\rm RS}(t)} = R_D + y'\sqrt{R_D} (\Gamma t) + \frac{x'^2 + y'^2}{4} (\Gamma t)^2$$

interference

oscillation

$$y' = y \cos \delta - x \sin \delta$$

 $x' = x \cos \delta + y \sin \delta$

 δ is an unknown strong-phase differenc

BABAR observes positive interference (y' > 0)

8 June 2007

M. G. Wilson

(1.3.3) D⁰ (t) \rightarrow K_S $\pi^+ \pi^-$

_	_			
Resonance	Amplitude	Phase (deg)	Fit fraction	
$K^*(892)^-$	1.629 ± 0.005	134.3 ± 0.3	0.6227	
$K_0^*(1430)^-$	2.12 ± 0.02	-0.9 ± 0.5	0.0724	
$K_2^*(1430)^-$	0.87 ± 0.01	-47.3 ± 0.7	0.0133	Cabibbo favored
$K^*(1410)^-$	0.65 ± 0.02	111 ± 2	0.0048	
$K^*(1680)^-$	0.60 ± 0.05	147 ± 5	0.0002	
$K^*(892)^+$	0.152 ± 0.003	-37.5 ± 1.1	0.0054	
$K_0^*(1430)^+$	0.541 ± 0.013	91.8 ± 1.5	0.0047	
$K_2^*(1430)^+$	0.276 ± 0.010	-106 ± 3	0.0013	doubly Cabibbo suppressed
$K^*(1410)^+$	0.333 ± 0.016	-102 ± 2	0.0013	
$K^*(1680)^+$	0.73 ± 0.10	103 ± 6	0.0004	
$\rho(770)$	1 (fixed)	0 (fixed)	0.2111	
$\omega(782)$	0.0380 ± 0.0006	115.1 ± 0.9	0.0063	
$f_0(980)$	0.380 ± 0.002	-147.1 ± 0.9	0.0452	
$f_0(1370)$	1.46 ± 0.04	98.6 ± 1.4	0.0162	
$f_2(1270)$	1.43 ± 0.02	-13.6 ± 1.1	0.0180	
$\rho(1450)$	0.72 ± 0.02	40.9 ± 1.9	0.0024	
σ_1	1.387 ± 0.018	-147 ± 1	0.0914	
σ_2	0.267 ± 0.009	-157 ± 3	0.0088	Dalla
NR	2.36 ± 0.05	155 ± 2	0.0615	Belle

$$D^0 o K^0_s \pi^+ \pi^-$$
 features

Doubly Cabibbo suppressed contributions are enhanced at high masses

$$\frac{A_{K^*(892)^+}}{A_{K^*(892)^-}} pprox 0.1$$
 seen by CLEO

$$\frac{A_{K_0^*(1430)^+}}{A_{K_0^*(1430)^-}} \approx 0.3$$

$$\frac{A_{K_2^*(1430)^+}}{A_{K_2^*(1430)^-}} \approx 0.3$$

$$\frac{A_{K^*(1410)^+}}{A_{K^*(1410)^-}} \approx 0.5$$

$$\frac{A_{K^*(1680)^+}}{A_{K^*(1680)^-}} \approx 1.2$$

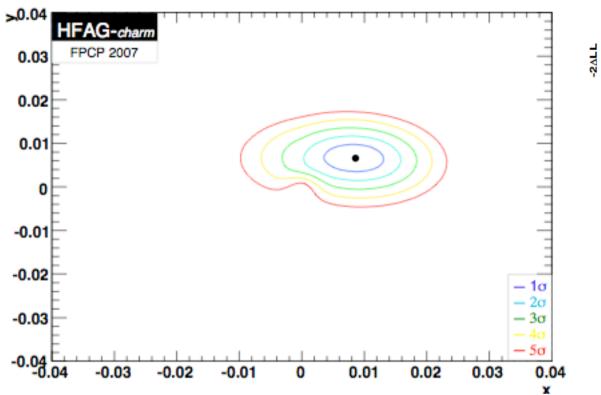
makes no sense to me -- Orsay group, check it!

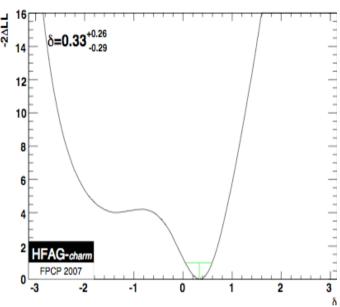
each corresponds to ~700 events; comparable to BaBar's

$$D^0 o K^+ \rho^- o K^+ \pi^- \pi^0$$
 signal size

$D^0 o K^0_s \pi^+ \pi^-$ results

Possible CP violation not investigated; assuming CP invariance


$$x = (0.80 \pm 0.29 \text{ (stat)})^{+0.09}_{-0.07} \text{ (syst)} ^{+0.15}_{-0.14} \text{ (model)})\%$$


$$y = (0.33 \pm 0.24 \text{ (stat)} ^{+0.07}_{-0.12} \text{ (syst)} ^{+0.08}_{-0.09} \text{ (model)})\%$$

Reported systematics are much smaller than in other analyses.

(Belle KK,pipi)
$$y = (1.31 \pm 0.32 \, (\text{stat}) \pm 0.25 \, (\text{syst}))\%$$

(BaBar Kpi)
$$y' = (0.97 \pm 0.44 \, (\text{stat}) \pm 0.31 \, (\text{syst}))\%$$

I in this exercise
$$(x_D, y_D) \neq (0,0)$$
 emerges with 5 σ

$$x_D = (0.87^{+0.30}_{-0.34})\%$$
, $y_D = (0.66^{+0.21}_{-0.20})\%$, $\delta = 0.33^{+0.26}_{-0.29}$

(1.4) Interpretation?

- $x_D > 1 \% >> y_D$ could be interpreted as manifestation of New physics -- yet such a scenario has basically been ruled out
- data suggest: x_D , y_D can be in range ~ 0.5 1%
- could be due 'merely' to SM dynamics -
 - even then it would be a great discovery &
 - it should be measured accurately -
 - must know (i) whether $(x_D, y_D) \neq 0$ & (ii) $x_D = ?$ vs. $y_D = ?$ irrespective of theory -- like for $\epsilon'/\epsilon_K!$
- yet might also contain large contributions from NP!

How to resolve this conundrum?

- theoretical breakthrough?
- OP violation!

II P with & without Do Oscillations

- © baryon # of Universe implies/requires NP in \mathcal{S}^{p} dynamics
- existence of three-level Cabibbo hierarchy

```
SM rate CF: CS: DCS ~ 1: 1/20: 1/400
```

- within SM:
 - \bowtie tiny weak phase in 1x Cabibbo supp. modes: $V(cs) = 1 ... + i\lambda^4$
 - no weak phase in Cab. favoured & 2 x Cab. supp. modes
 - (except for $D^{\pm} \rightarrow K_S h^{\pm}$)
- © CP asymmetry linear in NP amplitude
- © D⁰ oscillations at an observable rate! I
- of final state interactions large
- BR's for CP eigenstates large
- \odot flavour tagging by $D^{\pm^*} \rightarrow D\pi^{\pm}$
- \odot many $H_c \rightarrow \geq 3 P$, VV... with sizeable BR's
 - CP observables also in final state distributions

(2.1) OP without Do Oscillations

direct CP

(2.1.1) time integrated partial widths

- final state interact.

 © necessary evil
 cannot fake signal
 very evil
 arge in charm
- © Cabibbo favour. (CF) modes: need New Physics (except *)
- © 2x Cabibbo supp. modes (DCS): need New Physics (except *)

```
exception *: D^{\pm} \rightarrow K_{S[L]} \pi^{\pm}
interference between D+ \rightarrow \overline{K^0}\pi^+ and D+ \rightarrow K^0\pi^+ in KM only effect from CF in K^0 - \overline{K^0}: A_S = [+]_S - [-]_S = -3.3 \times 10^{-3}
```

exists model by G. D'Ambrosio ('01), which creates observable effect in DCS while not affecting oscillations.

LHCb specific: $D^{\pm} \rightarrow K^{\pm} \pi^{+} \pi^{-}$

- \cong 1x Cabibbo supp. modes (SCS) possible with KM -- benchmark: $\mathcal{O}(\lambda^4) \sim \mathcal{O}(10^{-3})$ New Physics models: $\mathcal{O}(\%)$ conceivable useful & detailed: Grossman, Kagan, Nir hep-ph/0609178 if observe direct $\mathscr{CP} \sim 1\%$ in SCS decays --
- Is it New Physics for sure?
- Size of weak phase (and chirality) of its effective operator?
 must analyze host of channels in an exercise in theor. engineering

```
\begin{array}{c}
 \text{known from CKM}
\end{array}

\begin{array}{c}
 \text{sin}\Delta\alpha_{\text{strong}} \times M_1 \times M_2 \\
 \text{shaped by strong forces}
\end{array}
```

- o choose set of reduced ME -- involves judgment of decay top.
- o fit to comprehensive data on $D \rightarrow PP$, PV, VV
- o quality control provided by over-redundancy in fit
- Cleo-c & BESIII will provide data base

(2.1.2) Final state distributions: Dalitz plots, T-odd moments

Dalitz plots asymmetries

- final state interact. © will be there cannot fake signal

considerable initial overhead -- yet will pay handsome dividends in the long run due to overconstraints

T-odd moments

- final state interact.

 ighthat{interact}

 ighthat{imal state interact.}

 ighthat{imal state i

very promising -- most effective theoretical tools not developed yet for small asymmetries (except Dalitz plot) Pilot study by Focus (CLEO-c?)

- `local' asymmetry likely to be larger than integrated one
- on angular asymmetry can provide info on chirality of underlying effective operator!

An example for a Todd distribution

$$K_L \to \pi^+ \pi^- e^+ e^-$$
 BR ~ 3 x 10⁻⁷

BR ~
$$3 \times 10^{-7}$$

interference between PE1 & CP M1 amplitude

 ϕ = angle between $\pi^{+}\pi^{-}$ & $e^{+}e^{-}$ planes forward-backward asymmetry in ϕ : A= 14 % driven by ε =0.002 -- i.e. trade BR for size of asymmetry!

$$D \to K \ \overline{K} \ \pi^{\scriptscriptstyle +} \pi^{\scriptscriptstyle -}$$

 ϕ = angle between $\pi^{\dagger}\pi^{-}$ & K K planes $d\Gamma/d\phi$ (D \rightarrow K K $\pi^{+}\pi^{-}$) = $\Gamma_{1} \cos^{2}\phi + \Gamma_{2} \sin^{2}\phi + \Gamma_{3} \cos\phi \sin\phi$ $d\Gamma/d\phi$ (D \rightarrow K K $\pi^{+}\pi^{-}$) = $\Gamma_{1} \cos^{2}\phi + \Gamma_{2} \sin^{2}\phi - \Gamma_{3} \cos\phi \sin\phi$ •• Γ_3 drops out after integrating over ϕ $\rightarrow \Gamma_1$ vs. Γ_1 & Γ_2 vs. Γ_2 : C^p in partial widths

 \bullet Todd moments Γ_3 , Γ_3 ≠ 0 can be faked by FSI yet $\Gamma_3 \neq \Gamma_3 \longrightarrow \mathcal{C}P!$

even closer analogy

$$D \rightarrow K^+ K^- \mu^+ \mu^-$$

BR ~
$$O(10^{-6})$$

A few general remarks on $\mathcal{C}P$ in *final state distributions*

$$D \rightarrow PPP$$

A Catholic Scenario:

single path to heaven: asymmetries in the Dalitz plot

$$D \rightarrow PPPP$$

A Calvinist Scenario

many paths to heaven -- success reveals Heaven's blessing

$$D \rightarrow K^+K^-\pi^+\pi^-$$

 $D \rightarrow K^+K^-\pi^+\pi^ \phi$ = angle between $\pi^+\pi^-$ & K K planes

- 1 Integrated (over 2 quadrants) Todd moment $\langle A \rangle = 2\Gamma_3/\pi(\Gamma_1 + \Gamma_2)$ vs. $\langle A \rangle = 2\Gamma_3/\pi(\Gamma_1 + \Gamma_2)$
- 2 Differential Todd moment $d\Gamma/d\phi(D \rightarrow K K \pi^{+}\pi^{-}) = \Gamma_{1}\cos^{2}\phi + \Gamma_{2}\sin^{2}\phi + \Gamma_{3}\cos\phi\sin\phi$ same dynamical info, yet valuable experim. check
- 8 Full amplitude analysis
 - more dynamical info
 - ® more model dependence (?)

(2.2) CP with Do Oscillations

All the previously given justifications for CP searches plus

$$L(\Delta C=2) \neq 0$$

- provides a much wider stage for P to surface
- allowing us to decide whether NP is involved.

Analogies with two other cases, one from the past & one from the present: $K^0 \& B_s$ oscillations

ΔS=2:

Assume -- contrary to history -- that people had accepted the SM with 2 families when $\Delta M_K \neq 0$ was observed & knew about possibility of CP.

They would have reasoned that LD dynamics could produce $\sim 1/3$ of ΔM_K via $K^0 \to "\pi, \eta, \eta', \pi\pi, ..." \to \overline{K^0}$ and SD dynamics via the quark box diagram the rest. This might have led to the proposal to search for $K_L \to \pi\pi$ to establish the presence of NP, namely the 3rd family (which is irrelevant for ΔM_K).

$\Delta B=2$ -- the topical example:

The observed value of $\Delta M(B_s)$ is fully consistent with SM expectations -- within sizable uncertainties. Yet a subdominant NP contribution to $\Delta M(B_s)$ could still provide the dominant source of time dependent \mathcal{L}^p in $B_s \to \psi \phi$!

oscillations can generate time dependent CP asymmetries

- none seen so far down to the 1% (1%/tg² $\theta_{\mathcal{C}}$) level --
- they are ~ $(x_D \text{ or } y_D) (t/\tau_D) \sin \phi_{\text{weak}}$;
 - with x_D , $y_D \le 0.01$ a signal would not have been credible
 - → yet now it is getting interesting!

Scenario (A)

```
LD dynamics (involving barely 2 families) cannot generate CP! I.e., minimal scenario: no significant CP in L(\Delta C=2), direct CP only: (i) |q|=|p|, whereas (ii) |T(D \to f)| \neq |T(\overline{D} \to \overline{f})| (iii) Im (q/p)\overline{\rho}(f) \neq 0

CF: K_S\pi^0, K_S\rho^0, \overline{K_S\varphi} ImV(cs)V(ud) = \eta |V(cb)|^2 \sim 0.6 \times 10^{-3}
```

- □ DCS: $D^0 \rightarrow K^+\pi^-$ -- ImV(cd)V(us) = 0 yet NP models a la D'Ambrosio
- \Box CS: $D^0 \rightarrow K^+K^-, \pi^+\pi^-$ -- time depend. & indep. CP

Scenario (B)

NP contributes significantly to $L(\Delta C=2)$

- \rightarrow expect significant source for \mathscr{L}^{p} in $L(\Delta C=2)$:
- (i) $|q| \neq |p|$, (ii) $|T(D \rightarrow f)| \neq |T(D \rightarrow f)|$, (iii) Im $(q/p)\overline{\rho}(f) \neq 0$
- $\Box \quad CF: D^{0} \rightarrow K_{S} \phi \qquad A_{CP}(t) = (x_{D} sin \phi_{NP} y_{D} \epsilon_{NP} cos \phi_{NP})(t/\tau_{D})$ $L(\Delta C=2) \rightarrow \phi_{NP} \& \epsilon_{NP} = 1 |q/p|$
- $CS: D^{0} \rightarrow K^{+}K^{-}, \pi^{+}\pi^{-} \quad A_{CP}(t) = (x_{D}\sin\phi'_{NP} y_{D}\epsilon_{NP}\cos\phi'_{NP})(t/\tau_{D})$ $D^{0} \rightarrow K^{+}K^{-}\pi^{+}\pi^{-} \quad \Gamma_{3}(t), \quad \overline{\Gamma}_{3}(t) \quad time \ dependence!$
- □ DCS: $D^0 \rightarrow K^+\pi^-$ -- ditto (+NP models a la D'Ambrosio)

the SM amplitude suppressed by $tg^2\theta_C$

The 'Dark Horse'

SL:
$$D^0 \rightarrow \Gamma \nu K^+ \nu s$$
. $D^0 \rightarrow \Gamma^+ \nu K^-$

$$R_M^{SL} = (1.7 \pm 3.9) \times 10^{-4}, R_M^{WA} = (2.1 \pm 1.1) \times 10^{-4}$$

$$if x_D = y_D = 7 \times 10^{-3}, \text{ then } R_M = 5 \times 10^{-5}$$

$$a_{SL} \sim \text{Min}[\Delta\Gamma/\Delta M, \Delta M/\Delta\Gamma] \sin \phi_{NP}, \qquad \Delta\Gamma/\Delta M \sim O(1)$$

- $\bullet \bullet$ $a_{SL} \sim 0.1$ conceivable (even few $\times 0.1$)
 - -- i.e. relatively few wrong-sign leptons, yet with a large asymmetry! **VS.**

$$a_{SL}(K_L) = 3.3 \times 10^{-3}$$
 with $\Delta\Gamma/\Delta M \sim O(1) \& \sin\phi_{CKM,eff} \ll 1$
 $\Delta a_{SL}(B_d) \sim 4 \times 10^{-4}$ with $\Delta\Gamma/\Delta M \sim O(few \times 10^{-3})$
 $\Delta a_{SL}(B_s) \sim 2 \times 10^{-5}$ with $\Delta\Gamma/\Delta M \sim O(few \times 10^{-3})$ $\Delta a_{SL}(B_s) \sim 0(few \times 10^{-2})$

(2.3) Benchmarks

- Allowed New Physics scenarios could produce P close to present experim. bounds, but hardly higher!
- o time dependant CP asymmetries in
 - \rightarrow D⁰ \rightarrow K⁺K⁻, π ⁺ π ⁻, K₅ ϕ down to $O(10^{-4})$
 - → D⁰ → K⁺ π ⁻ down to \mathcal{O} (10⁻³) LHCb: ~ 10⁶ D* → D π → [KK]_D π in 10⁷ sec
- o direct <u>CP</u> in partial widths of
 - → D^{\pm} → $K_{S[L]}\pi^{\pm}$ down to $O(10^{-3})$
 - in a host of 1xCS channels down to $O(10^{-3})$
 - \rightarrow in 2xCS channels down to $O(10^{-2})$
- o direct $\mathcal{L}P$ in the final state distributions: Dalitz plots, T-odd correlations etc. down to \mathcal{O} (10-3)

IV Conclusions & Outlook

- a lot of work of great importance to be done
 - establish (x_D,y_D) ≠ 0
 - determine $x_D = ?$ vs. $y_D = ?$
 - go after \mathcal{C}^{p} main message
 - o in all of its possible manifestations
 - time dependent & independent,
 - partial widths, Dalitz plots, Todd moments ...
 - o and on all Cabibbo levels
 - (i) $D^0 \to K_S \pi^+\pi^-/K_S K^+K^-$
 - (ii) $D^0 \rightarrow \pi^+\pi^-/K^+K^-$
 - (iii) $D^0 \rightarrow K^+ \pi^-$
 - o down to the 0.001 (or even better) level
 - present no-signal not telling!
- can expect a positive learning curve for theorists -- 33 yet do not count on miracles

The Big Picture

- detailed study of charm decays provides a novel & possibly unique window onto flavour dynamics
 - need the statistical muscle of the LHCb interesting and worthy challenge for LHCb $D^0 \to K^+K^-, \pi^+\pi^-, K^+\pi^-, K^+K^-\mu^+\mu^- \text{ good channels for LHCb}$
 - yet need more statistics & channels!

"Ceterum Censeo Fabricam Super Saporis Esse Faciendam"
"Moreover I Advise a Super-Flavour Factory has to be Built"

example for a unique capability:

$$e^+e^- \rightarrow \psi''(3770) \rightarrow D\overline{D} \rightarrow (K^+K^-)_DD_L$$
 $\downarrow K^+K^-\mu^+\mu^-$

It is the task of the physicist to make the greatest use of a special gift from Nature

Do oscillations are such a gift

 \rightarrow it is your duty -- & there is fame within your grasp!