LCLS Commissioning (Phase I)

C.Limborg-Deprey LCLS, SLAC

Sept.24th 2007

limborg@slac.stanford.edu

Sept. 24th 07, LAL Talk

Outline

- 1. LCLS Project Overview
- 2. Injector Commissioning
 - Laser, Gun, Cathode, ...
 - Electron Beam Measurements
 - Some interesting beam physics ...
- 3. Comparison with simulations

PART 1: LCLS Project

Linac Coherent Light Source at SLAC X-FEL based on last 1-km of existing linac

Injector (35°) at 2-km point

> Advanced Photon Source

Existing 1/3 Linac (1 km) (with modifications)

New e⁻ Transfer Line (340 m)

Transport Liñe (200 m)

1.5-15 Å

- Undulator (130 m) - Near Experiment H (underground)

-Far Experiment Hall (underground)

3rd vs 4th Generation Light Sources

APS, USA

ESRF, Europe

Spring8, Japan

. . .

~ 15 years old

+ newer SLS, SPEAR3, SOLEIL...

	3 rd GLS	4th GLS
Peak Brilliance	5.10 ²³	10 ³³
Coherent flux	10 ¹⁰ /s /0.01%	10 ¹³ / s/0.01%
Pulse Length	σ~10ps	σ ~ 100 fs (*)

(*) or less with less flux

construction

under

LCLS, USA

Sept. 24th 07, LAL Talk

4th Generation Light Sources

Peak Brilliance 10 orders of magnitude > that of 3rd GLS

2 from ➤ bunch length (10ps → 100fs)
2 from ➤ in horizontal emittance (3nm→ 0.03nm)
1 from smaller divergence (SASE)
2 from longer undulator (~ 100m)
3 from FEL gain (SASE)

<u>But:</u> 3rd GLS High repetition rate & High average brilliance Stability decoupled from that of injector

Nominal LCLS Parameters

Fundamental FEL Radiation Wavelength	<u>1.5</u>	15	Å
Electron Beam Energy	14.3	4.5	GeV
Normalized RMS Slice Emittance	1.2	1.2	mm-mrad
Peak Current	3.4	3.4	kA
Bunch/Pulse Length (FWHM)	230	230	fs
Relative Slice Energy Spread	<0.01	0.025	%
Saturation Length	87	25	m
FEL Fundamental Saturation Power	8	17	GW
FEL Photons per Pulse	1.1	29	10 ¹²
Peak Brightness @ Undulator Exit	0.8	0.06	10 ³³ *
Transverse Coherence	Full	Full	
RMS Slice X-Ray Bandwidth	0.06	0.24	%
RMS Projected X-Ray Bandwidth	0.13	0.47	%

* photons/sec/mm²/mrad²/ 0.1%-BW

LCLS e-beam requirements

- High Peak Current
- Stability %)

Sept. 24th 07, LAL Talk

limborg@slac.stanford.edu

dQ/Q < 2% rms (P ➤ 30

LCLS -

Nominal LCLS Parameters

Single bunch, 1-nC charge, 1.2- μ m *slice* emittance, 120-Hz repetition rate...

PART 2: LCLS Injector Commissioning

Injector and 1st Bunch Compressor commissioning

First Photo-Electrons, April 5, 2007

Sept. 24th 07, LAL Talk

Commissioning Milestones

- Spring 2006: Civil construction of buildings/shielding completed
- Summer 2006: Drive Laser Installed
- Fall 2006: Drive laser commissioned & Gun1 high power conditioning in Klystron Lab
- Spring 2007: Injector & BC1 beamline installed
- March 16, 2007: RF gun installed & RF processing started
- April 5, 2007: First Photo-electrons
- April 9, 2007: E-beam to 135 MeV
- April 16, 2007: E-beam to 250 MeV & compressed in BC1
- June 24, 2007: E-Beam to 15 GeV (200pC)
- July 24, 2007: E-Beam studies at 1 nC
- July 26, 2007: E-Beam at 1nC to 15 GeV
- August 8, 2007: Compressed 1 nC e-beam to 15 GeV
- August 2007: Injector Meets LCLS Requirements

Thales Drive Laser System

Drive Laser Performances

Laser reliability is very good: Up-time > 90%
Excellent support from Thales & Femtolasers
E ~ 400 μJ to cathode (250 μJ spec)
Shaping needs work, but still producing good emittances

•Excellent energy stability (1.1%) •Position stability on cathode, ~10-20 μm

9-AUG-07 22:33:36

RF Gun: 1.6 cell S-Band

Modified from BNL/UCLA/SLAC design

- Z-coupling:
 - reduces pulsed heating
 - increases vacuum pumping
- Racetrack to minimize quadrupole fields
- Deformation tuning to eliminate field emission from tuners
- Increased 0- π mode separation to 15MHz
- Iris reshaped, reduces field 10% below cathode

RF Parameters	
f _p (GHz)	2.855987
Q0	13960
β	2.1
Mode Sep. ⊿f (MHz)	15

RF Gun: Processing and Operation

- Conditioning
 - 60Hz, 120 MV/m
 - 120Hz , 107 MV/m due to heating of probes
- Operation
 - 30 Hz, 110MV/m, 1 μs klystron pulse
 - 3.10⁸ pulses
 - (from April to Aug 07)

Sept. 24th 07, LAL Talk

Cathode Non-Uniformity

June 6, 2007 White light cathode image

Emission is very non-uniform on the 10-µm scale
Perform ~weekly inspection of the cathode surface

courtesy D.Dowell

Laser Cleaning: QE from 2.10⁻⁶ to 4.10⁻⁵

Sept. 24th 07, LAL Talk

Projected Emittances at 1nC

Slice Emittances at 1nC

Transverse Cavity (RF-Deflector) Measurements of Bunch Length

Sept. 24th 07, LAL Talk

Linearization of Longitudinal Phase Space Measured Using RF Deflector & OTR Screen in Center of BC1

Sept. 24th 07, LAL Talk

Bunch Length Measurements at 135MeV & 15GeV

Sept. 24th 07, LAL Talk

Strong Optical Microbunching with BC1 Set to Maximum Compression

•Generation of COTR in the Visible indicates Microbunching •COTR Interferes with OTR Profiles for Emittance Measurements.

Sept. 24th 07, LAL Talk

limborg@slac.stanford.edu

1000

Coherent Optical Transition Radiation after DL1 Bend Even With No BC1 Compression

Sept. 24th 07, LAL Talk

PART 3:

Simulations:

- effects of tails truncation in emittance computation
- comparison of emittance data along solenoid scan

Initial Distribution

Spatial distribution based on laser profile (transverse and longitudinal)

Quiet start routine based on Halton sequences

Sept. 24th 07, LAL Talk

limborg@slac.stanford.edu

LCLS -

"Thermal" Emittance

Based on Measurements

At 30 pC ,May 19th

30pC, July 3rd , after "cleaning"

Simulations used 0.6mm-mrad per mm

Beamline Matched

Simulations try to represent at best experimental conditions

Sept. 24th 07, LAL Talk

Transverse Tails

Sept. 24th 07, LAL Talk

Emittance for various cut levels

Measurements give ~ 1-1.5 mm-mrad using 5 % area cut on beam size (highly reproducible result at 1nC)

Simulations predict similar result at 7.5% cut level

Emission distribution used in simulations

Emission distribution needed for accurate distribution

Sept. 24th 07, LAL Talk

Longitudinal Profile

Sept. 24th 07, LAL Talk

Solenoid Scan

Sept. 24th 07, LAL Talk

Bunch length

Laser Profile was 5ps FWHM

Sept. 24th 07, LAL Talk

Emittance measurements

220 pC, projected emittance , in early commissioning

May 20th 2007, from LCLS commissioning team

Sept. 24th 07, LAL Talk

Comparison of Required and Demonstrated Beam Properties

Parameter	Sym	dsgn	meas.	unit
Final e ⁻ energy	γ mc ²	15	15	GeV
Bunch charge	Q	1000	1000	pС
Init. bunch length (fwhm)	Δt_0	10	10	ps
Fin. bunch length (fwhm)	Δt_{f}	2.3	1.5	ps
Initial peak current	I _{pk0}	100	100	A
Projected norm emittance	$\gamma \varepsilon_{x,y}$	1.2	1.1 to 1.3	μm
Slice norm. emittance	γε ^s _{x,y}	1.0	0.8, 0.9	μm
Single bunch rep. rate	f	120	10-30	Hz
RF gun field at cathode	E _{cathode}	120	115	MV/m
Laser energy on cathode	U,	250	450	μJ
Laser wavelength	λ,	255	255	nm
Laser diameter on cathode	2R	1.5	1.3	mm
Cathode material	-	Си	Cu	
Cathode quantum eff.	QE	6	3	10 ⁻⁵
Commissioning duration	-	8	5	то

Sept. 24th 07, LAL Talk

The LCLS Injector Commissioning Team:

Special Thanks to the LCLS Injector Team who allowed me to show their results.

R. Akre J. Castro Y. Ding D. Dowell P. Emma J. Frisch S. Gilevich G. Hays Ph. Hering Z. Huang R. Iverson C. Limborg-Deprey H. Loos A. Miahnahri J. Schmerge J. Turner J. Welch W. White J. Wu

And Our Visitors:

DESY

L. Froelich T. Limberg E. Prat M. Roehrs

Trieste

P. Craevich G. Penco M. Trovo

BESSY T. Kamps

• Merci pour votre attention

