Synergies between atmospheric and long-baseline neutrino data

Michele Maltoni

Departamento de Física Teórica (UAM) & Instituto de Física Teórica (UAM/CSIC) Universidad Autónoma de Madrid

GDR Neutrino, Bordeaux, France - October 25, 2007

- I. Introduction: atmospheric neutrino data
- II. Water Cerencov: physics reach of electron-like events
- III. Magnetized Iron: potentialities of muon-like events
- IV. Results: synergies with long-baseline experiments

Conclusions

Neutrino oscillations: where we are

- Global six-parameter fit (including δ_{CP}):
 - Solar: Cl + Ga + SK + SNO-I + SNO-II;
 - Atmospheric: SK-I + SK-II;
 - Reactor: Chooz + KamLAND (2881 ton-yr);
 - Accelerator: K2K + Minos (2.5×10^{20} p.o.t.);
- best-fit point and 1σ (3σ) ranges:

$$\begin{split} \theta_{12} &= 34.5 \pm 1.4 \begin{pmatrix} +4.8 \\ -4.0 \end{pmatrix}, \quad \Delta m_{21}^2 = 7.67 \begin{smallmatrix} +0.22 \\ -0.21 \end{pmatrix} \times 10^{-5} \text{ eV}^2, \\ \theta_{23} &= 42.3 \begin{smallmatrix} +5.1 \\ -3.3 \end{pmatrix} \begin{pmatrix} +11.3 \\ -7.7 \end{pmatrix}, \quad \Delta m_{31}^2 = \begin{cases} -2.37 \pm 0.15 \begin{pmatrix} +0.43 \\ -0.46 \end{pmatrix} \times 10^{-3} \text{ eV}^2, \\ +2.46 \pm 0.15 \begin{pmatrix} +0.47 \\ -0.42 \end{pmatrix} \times 10^{-3} \text{ eV}^2, \\ \theta_{13} &= 3.9 \end{smallmatrix}$$

• neutrino mixing matrix:

$$U|_{90\%} = \begin{pmatrix} 0.80 \to 0.84 & 0.53 \to 0.60 & 0.00 \to 0.17 \\ 0.29 \to 0.52 & 0.51 \to 0.69 & 0.61 \to 0.76 \\ 0.26 \to 0.50 & 0.46 \to 0.66 & 0.64 \to 0.79 \end{pmatrix}$$
$$|U|_{3\sigma} = \begin{pmatrix} 0.77 \to 0.86 & 0.50 \to 0.63 & 0.00 \to 0.22 \\ 0.22 \to 0.56 & 0.44 \to 0.73 & 0.57 \to 0.80 \\ 0.21 \to 0.55 & 0.40 \to 0.71 & 0.59 \to 0.82 \end{pmatrix}$$

GDR NEUTRINO, BORDEAUX, 25/10/2007

[KamLAND analysis courtesy of T. Schwetz]

- Present reactor and accelerator data dominate |Δm²₃₁| and θ₁₃ but give no info on:
 - the **mass hierarchy** (sign of Δm_{31}^2);
 - the octant (sign of $\theta_{23} \pi/4$);
 - the CP phase;
- note the high degree of symmetry of the gray regions;
- conversely, regions including ATM are visibly sensitive to:
 - octant: definite shift from maximal mixing;
 - **hierarchy**: relevant for the bound on θ_{13} ;
 - **CP phase**: impact on θ_{13} bound;
- ⇒ present data suggest that future atmospheric experiments may provide complementary information to experiments using man-made neutrinos.

2

 Δm^2_{31} [10⁻³ eV²]

Atmospheric neutrinos: a laboratory for neutrino oscillations

M. Maltoni <michele.maltoni@uam.es>

GDR NEUTRINO, BORDEAUX, 25/10/2007

II. Water Cerencov: physics reach of electron-like events

Sensitivity to θ_{13}

- In principle, θ₁₃ can be measured by observing the MSW & parametric resonances;
- in practice, the sensitivity is limited by:
 - *statistics*: at $E_v \sim 6$ GeV the ATM flux is already suppressed;
 - *background*: the $v_e \rightarrow v_e$ events strongly dilute the $v_\mu \rightarrow v_e$ signal; also resonance occur only for v **OR** \bar{v} , not both;
 - *resolution*: need **precise determination** of resonance peak to measure θ_{13} , but E_v reconstruction is usually very poor;
- ⇒ sensitivity to θ_{13} may not be competitive with **dedicated** LBL and reactor experiments.

10

0.1

10

sin² 2θ₀₀ = 0.5 🔸

Ev [GeV]

3.2 2.5

1.6

1.3 1.15

1.05

 $\sin^2 2\theta_{13} = 0.125$

Sensitivity to the octant

- low-energy ($E_v < 1$ GeV) region:
 - $\theta_{13} = 0$: excess (deficit) of v_e flux for θ_{23} in the light (dark) side;
 - $\theta_{13} \neq 0$: lots of oscillations, but effect persist **on average**;
 - $-\,$ effect present for both ν AND $\bar{\nu};$
- high-energy ($E_v > 3 \text{ GeV}$) region:
 - $\theta_{13} = 0$: no effect;
 - $\theta_{13} \neq 0$: MSW resonance produces an excess of v_e events; effect is smaller (larger) with for θ_{23} in the light (dark) side;
 - resonance occurs only for ν OR $\bar{\nu}.$

Sensitivity to the hierarchy

- θ₁₃ ≠ 0 ⇒resonant enhancement of ν (ν̄) oscillations for normal (inverted) hierarchy;
- mainly visible for high-energy: $E_v > 6 \text{ GeV}$;
- effect can be observed if:
 - detector has charge discrimination;
 - detector has **no** charge discrimination but number v and \bar{v} events **is different**;
- in Water Cerenkov, at *multi-GeV* energies, we have $N_{v_e}^{\text{tot}}/N_{\bar{v}_e}^{\text{tot}} \approx 2.5$ for *all CC interactions*;
- however, in *single-ring* sample this ratio can be considerably reduced: $N_{\nu_e}^{1-\text{ring}}/N_{\bar{\nu}_e}^{1-\text{ring}} \approx 1.7 \Rightarrow$ sensitivity is decreased.

Single-ring versus multi-ring events

• Single-ring:

- only one track \Rightarrow event is "clean";
- small scattering angle;
- final lepton carry most of the v energy;
- final hadronic system has little energy;
- enriched in $\bar{\mathbf{v}} \Rightarrow N_{\mathbf{v}_e}/N_{\bar{\mathbf{v}}_e}$ decreased.

• Multi-ring:

- many tracks \Rightarrow event is "messy".
- the scattering angle tend to be large;
- final lepton carry only a fraction of v energy;
- final hadronic system has a lot of energy;
- enriched in $v \Rightarrow N_{v_e}/N_{\bar{v}_e}$ increased.
- Use of <u>both</u> sets \Rightarrow statistical $\nu/\bar{\nu}$ separation.

Sensitivity to the CP phase

- $\theta_{13} \neq 0 \Rightarrow$ interference of Δm_{21}^2 and Δm_{31}^2 osc:
- $$\begin{split} &\delta_{e} \simeq (\bar{r}\cos^{2}\theta_{23} 1) P_{2\nu}(\Delta m_{21}^{2}, \theta_{12}) & [\Delta m_{21}^{2} \text{ term}] \\ &+ (\bar{r}\sin^{2}\theta_{23} 1) P_{2\nu}(\Delta m_{31}^{2}, \theta_{13}) & [\theta_{13} \text{ term}] \\ &- \bar{r}\sin\theta_{13}\sin2\theta_{23} \operatorname{Re}(A_{ee}^{*}A_{\mu e}); & [\delta_{CP} \text{ term}] \end{split}$$
- mainly visible in the intermediate-energy region: 1 GeV < E_v < 3 GeV;
- present for both $v \text{ AND } \bar{v}$;
- affected by everything: θ₁₃, θ₂₃, octant, mass hierarchy, ... ⇒ effects hard to disentangle;
- present analysis: effects of δ_{CP} on other parameters properly included.

Eventograms

• Consider a bin centered at (Θ_{ν}, E_{ν}) with size $\Delta \Theta_{\nu}$ and $\Delta \ln E_{\nu}$. We can write:

 $N_{\rm ex} \simeq \rho_{\rm ex}(\Theta_{\rm v}, E_{\rm v}) \Delta S$, $N_{\rm th} \simeq \rho_{\rm th}(\Theta_{\rm v}, E_{\rm v}) \Delta S$, $\Delta S \equiv \Delta \Theta_{\rm v} \cdot \Delta \ln E_{\rm v}$;

• the contribution of this bin to the total χ^2 is:

$$\begin{split} \Delta\chi^2 &= (N_{\text{th}} - N_{\text{ex}})^2 / N_{\text{ex}} = (\rho_{\text{th}} - \rho_{\text{ex}})^2 / \rho_{\text{ex}} \Delta S & \text{[Gauss]}, \\ \Delta\chi^2 &= 2[N_{\text{th}} - N_{\text{ex}} + N_{\text{ex}} \ln(N_{\text{ex}}/N_{\text{th}})] = [\rho_{\text{th}} - \rho_{\text{ex}} + \rho_{\text{ex}} \ln(\rho_{\text{ex}}/\rho_{\text{th}})] \Delta S & \text{[Poisson]}; \end{split}$$

• in both cases we can define a χ^2 density function:

$$\xi^2(\Theta_{\rm v}, E_{\rm v}) \equiv \lim_{\Delta S \to 0} \frac{\Delta \chi^2}{\Delta S}$$
 and $\xi \equiv {\rm sgn}(\rho_{\rm ex} - \rho_{\rm th}) \sqrt{\xi^2};$

• the function ξ shows which regions in the (Θ_{ν}, E_{ν}) plane mostly contribute to the total χ^2 :

$$\chi^2 = \iint \xi^2(\Theta_{\nu}, E_{\nu}) \, d\Theta_{\nu} \, d\ln E_{\nu};$$

• in the following we will present isocontours of ξ ("*eventograms*").

III. Magnetized Iron: potentialities of muon-like events

11

Sensitivity to the octant

- low-energy region (only WCD):
 - visible signal for both v_e and v_μ events, but
 - v_e signal four times stronger;
 - $-\,$ same sign between ν and $\bar{\nu}$ \Rightarrow no need for charge discrimination;
 - good resolution helps but not crucial;
 - signal independent of $\theta_{13} \Rightarrow$ guaranteed;
- high-energy region (both WCD and MIND):
 - again, v_e signal stronger than v_{μ} ;
 - signal present only for ν or $\bar{\nu} \Rightarrow$ chargeblind signal *diluted* but *not canceled*;
 - $-\,$ visible signal only for large $\theta_{13};$
- \Rightarrow Octant: WCD better than MIND.

Θ

Θ

2

0.5 0.2

0.1

0.05 0

-0.05 -0.1

-0.2 -0.5

-1 -1.5

Sensitivity to the hierarchy

- V_e channel (WCD only):
 - visible signal at high-energy;
 - wide region \Rightarrow no need for high resolution;
- v_{μ} channel (both WCD and MIND):
 - very strong signal at high-energy;
 - fast-oscillations \Rightarrow high resolution **crucial**;
- opposite sign between v and $\bar{v} \Rightarrow$ charge discrimination essential. However, for WCD multiring events can help;
- \Rightarrow Hierarchy: MIND better than WCD, but need very high resolution.

[Petcov & Schwetz, NPB 740 (2006) 1]

 $\sin^2 2\theta_{13} = 0.125$, $\sin^2 2\theta_{23} = 1$, True = NH, Fit = IH

20

3Ò

20

E_v [GeV]

III. Magnetized Iron: potentialities of muon-like events

Sensitivity to the CP phase

- effect stronger for v_e , but present also for v_{μ} ;
- opposite sign between v and v
 → charge discrimination important → bad for WCD;
- only at intermediate energy \Rightarrow bad for MIND;
- small-size structures ⇒ need good resolution to avoid dilution (but no danger of cancellation);
- ★ in summary: need v_e , at low energy, with charge discrimination and good detector resolution \Rightarrow **very hard to achieve**!

Comparison of the CERN-MEMPHYS and T2HK neutrino projects

• Beam: $\begin{cases} \beta B: \nu_e \text{ from } {}^{18}\text{Ne} (5 \text{ yr}) + \bar{\nu}_e \text{ from } {}^{6}\text{H} \\ \text{SPL: 4 MW SPL at CERN, } \nu_\mu (2 \text{ yr}) + \\ T2HK: 4 MW Super Beam from Tokain$	He (5 yr) @ $\gamma = 100$, $\langle E_{\nu} \rangle = 400$ MeV; + $\bar{\nu}_{\mu}$ (8 yr), $\langle E_{\nu} \rangle = 300$ MeV; , ν_{μ} (2 yr) + $\bar{\nu}_{\mu}$ (8 yr);
 Detector:	
• Baseline: $\left\{ \begin{array}{l} \beta \textbf{B} \& \textbf{SPL}: 130 \text{ km (CERN} \rightarrow Fréj \\ \textbf{T2HK}: 295 \text{ km (Tokai} \rightarrow Kamioka) \end{array} \right.$	us); ;
* simulation of LBL data: GLoBES software;	Fréjus
 simulation of ATM data: same as SK, but with real detectors geometry. 	Present Laboratory
[Campagne, MM, Mezzetto & Schwetz, JHEP 04 (2007) 003]	MEMPHYS

Solving parameter degeneracies with atmospheric data

- βB: complete 8-fold degeneracy due to:
 - lack of precise information on Δm_{31}^2 and θ_{23} (usually provided by v_{μ} disappearance);
 - spectral information not efficient enough to resolve the *intrinsic* degeneracy;
- SPL & T2HK: only 4-fold degeneracy appears if spectrum information is used;
- \Rightarrow all degeneracies disappear after inclusion of ATM data.

Resolving degeneracies in T2HK

- sensitivity to the **octant** (blue lines):
 - given by **sub-GeV** events for $\theta_{13} \approx 0$;
 - given by **multi-GeV** events for $\theta_{13} \gtrsim 0.04$;
 - $-\,$ only mildly dependent on $\delta_{\mbox{\tiny CP}};$
- sensitivity to the **hierarchy** (red lines):
 - dominated by **multi-GeV** for $\theta_{23} > 45^{\circ}$;
 - **sub-GeV** events relevant if $\theta_{23} < 45^{\circ}$;
 - $-\,$ strongly depends on $\delta_{\mbox{\tiny CP}}$ in the latter case;
- sensitivity to octant+hierarchy (gray regions):
 - mostly given by "sum" of blue and red lines;
 - $-~\delta_{\mbox{\tiny CP}}$ interference terms may be relevant.

[Huber, MM & Schwetz, PRD 71 (2005) 053006]

GDR NEUTRINO, BORDEAUX, 25/10/2007

Determining the mass hierarchy and the octant

- With ATM data included, the sensitivity to the hierarchy for the MEMPHYS project (both βB and SPL setup) is comparable to that of T2HK;
- complementarity between βB and SPL \Rightarrow maximum gain if combined;
- ATM sensitivity to the octant strongly enhanced by splitting of sub-GeV data into *low* and *high* momentum subsamples.

IV. Results: synergies with long-baseline experiments

Energy binning and multi-ring

- The sensitivity to octant, hierarchy, CPphase etc. proceeds from oscillation effects at different v energy;
- splitting data into different energy regions is crucial to improve the sensitivity;
- multi-ring events are essential for the determination of the mass hierarchy.

GDR NEUTRINO, BORDEAUX, 25/10/2007

- GREAT SALE: buy a LBL neutrino detector and get ATM data FOR FREE!
- ATM and LBL data provide **complementary** information on neutrino parameters:
 - LBL data will accurately determine $|\Delta m_{31}^2|$ and θ_{23} , and measure/bound θ_{13} ;
 - ATM data will provide information on the mass hierarchy and on the octant.
- sensitivity to the octant: WCD better than MIND (do not rely on size of θ_{13});
- sensitivity to the hierarchy:
 - MIND very promising but need high detector resolution;
 - charge discrimination very important, however combination of *different detectors types* (charge-blind but with different v/\bar{v} composition) may do the job.
- ⇒ [Gonzalez-Garcia, MM & Smirnov, PRD 70 (2004) 093005, hep-ph/0408170]
 [Huber, MM & Schwetz, PRD 71 (2005) 053006, hep-ph/0501037]
 [Campagne, MM, Mezzetto & Schwetz, JHEP 04 (2007) 003, hep-ph/0603172]
 [Akhmedov, MM & Smirnov, JHEP 05 (2007) 077, hep-ph/0612285]
 [Gonzalez-Garcia & MM, arXiv:0704.1800, submitted to Phys. Rept.]