Supernova Neutrino Nucleosynthesis

Takashi YOSHIDA

National Astronomical Observatory of Japan Institute de Physique Nucleaire d'Orsay

Collaborators

Toshitaka Kajino (NAOJ) Toshio Suzuki (Nihon Univ.), Satoshi Chiba (JAEA) Hidekazu Yokomakura, Keiichi Kimura (Nagoya Univ.) Akira Takamura (Toyota National College of Tech.) Dieter H. Hartmann (Clemson Univ.) October 25, 2007 GDR neutrino

Supernova Explosion

Supernova Explosion

Supernova Explosion

N 1987A

Production site of many elements O ~ Fe peak elements r-process elements p-process elements

© Anglo-Australian Observatory

Sk 202-69

Abundance distribution of major elements

16.2 M_{\odot} SN model corresponding to SN 1987A (Result of our study)

Supernova Neutrino Nucleosynthesis

Supernova (SN) neutrinos

- $N_{\rm V} \sim 10^{58}$ from a proto-neutron star
- Interactions with nuclei in surrounding materials The v-process

(e.g., Woosley et al., 1990; WW95; Heger et al. 2005; Yoshida et al. 2004, 2005)

Outline

We investigate the nucleosynthesis of light elements through the ν -process in supernovae.

 Supernova explosion and neutrino models for nucleosythesis.

The abundance distributions, production process, and yields of light elements, especially ⁷Li & ¹¹B.

Supernova light element nucleosynthesis with neutrino oscillations; the dependence of the ⁷Li & ¹¹B yields on *mass hierarchies* and the mixing angle θ13.

Supernova Explosion Model

- Supernova explosion model (Shigeyama & Nomoto 1990)
 - → 16.2 M_{\odot} star corresponding to SN 1987A Explosion energy : 1 × 10⁵¹ ergs Mass cut : 1.61 M_{\odot}

 Nucleosynthesis calculations
Nuclear reaction network of 291 species of nuclei (Yoshida et al. 2004)

Supernova Neutrino Model

• Neutrino luminosity $L_{\nu i}(t) = \frac{1}{6} \frac{E_{\nu}}{\tau_{\nu}} \exp\left(-\frac{t - r/c}{\tau_{\nu}}\right) \Theta(t - r/c)$ $E_{\nu} = 3 \times 10^{53} \text{ ergs}$ $\tau_{\nu} = 3 \text{ s}$ $\nu i : \nu e \mu \tau, \overline{\nu} e \mu \tau$ (After Woosley et al. 1990)

Neutrino energy spectra at the neutrinosphere

Fermi distributions 0.25 $\eta_v = \mu_v / kT_v = 0$ 0.2 $(kT_{\rm Ve}, kT_{\rm \overline{V}e}, kT_{\rm V}\mu\tau) =$ $\begin{array}{c} \mathfrak{s} \\ \mathfrak{s} \\ \mathfrak{s} \\ \mathfrak{s} \end{array} \left(\begin{array}{c} \mathfrak{s} \\ \mathfrak{s} \\ \mathfrak{s} \end{array} \right)$ 0.1 (3.2 MeV, 5 MeV, 6 MeV) (Yoshida et al. 2004, 2005, 2006) $v_{\mu,\tau}, \overline{v}_{\mu,\tau}$ 0.05 0 50 10 20 30 0 40 60 ϵ_{v} (MeV)

Neutrino-Nucleus Cross Sections

¹²C New shell model for *p*-shell nuclei SFO (Suzuki-Fujimoto-Otsuka) Hamiltonian

⁴He → WBP (Warburton-Brown) Hamiltonian

Other neutrino-nucleus reaction rates Tables in Hoffman & Woosley (1992)

Mass fraction distribution of Light elements $16.2 M_{\odot}$ SNe : $E_{\nu}=3\times10^{53}$ ergs, $T_{\nu\mu,\tau}=6$ MeV

• ⁴He(v,v'p)³H, ⁴He(v,v'n)³He, ¹²C(v,v'p)¹¹B, ¹²C(v,v'n)¹¹C • ⁴He(ve,e⁻p)³He, ⁴He($\bar{v}e,e^+n$)³H, ¹²C(ve,e⁻p)¹¹C, ¹²C($\bar{v}e,e^+n$)¹¹B

Mass fraction distribution of Light elements $16.2 M_{\odot}$ SNe : $E_{\nu}=3\times10^{53}$ ergs, $T_{\nu\mu,\tau}=6$ MeV

► ⁴He(v,v'p)³H, ⁴He(v,v'n)³He, ¹²C(v,v'p)¹¹B, ¹²C(v,v'n)¹¹C ⁴He(ve,e⁻p)³He, ⁴He($\bar{v}e,e^+n$)³H, ¹²C(ve,e⁻p)¹¹C, ¹²C($\bar{v}e,e^+n$)¹¹B

Mass fraction distribution of Light elements $16.2 M_{\odot}$ SNe : $E_{\nu}=3\times10^{53}$ ergs, $T_{\nu\mu,\tau}=6$ MeV

• ⁴He(v,v'p)³H, ⁴He(v,v'n)³He, ¹²C(v,v'p)¹¹B, ¹²C(v,v'n)¹¹C ⁴He($ve,e^{-}p$)³He, ⁴He($\bar{v}e,e^{+}n$)³H, ¹²C($ve,e^{-}p$)¹¹C, ¹²C($\bar{v}e,e^{+}n$)¹¹B

Light Element Yields

Yields of Light elements in SN 1987A model

SN contribution of ¹¹B from Galactic chemical evolution models

(Fields et al. 2000, Ramaty et al. 2000)

Yields of ⁷Li & ¹¹B are on the order of 10-⁷ M_☉.
Yields of ⁶Li, ⁹Be, & ¹⁰B are much smaller.

3-Flavor Neutrino Oscillations in SNe

Neutrino Oscillations in SNe

Yoshida et al. (2006; PRL 96, 091101; ApJ 649, 319)

Normal mass hierarchy

MSW-H adiabatic

All ve in the He layer have changed from $\nu_{\mu\tau}$. MSW-H *nonadiabatic*

Neutrino flavors gradually changes in the He layer.

Mass Fraction Distribution of Light Elements in SNe

Normal mass hierarchy & MSW-H adiabatic

 $E_{v}=3\times10^{53}$ ergs, $T_{v\mu,\tau}=6$ MeV, $\sin^{2}2\theta_{13}=0.01$ Increase in the mass fractions of ⁷Be & ¹¹C in the He layer Increase in the rates of ⁴He(ve,e⁻p)³He, ¹²C(ve,e⁻p)¹¹C ⁷Be & ¹¹C yields increase by factors of 2.5 & 1.4 Yield Ratios of ⁷Li, ¹¹B

sin²2θ13 dependence

⁷Li & ¹¹B yields increase by factors of 1.7 and 1.2.

⁷Li/¹¹B abundance ratio

⁷Li/¹¹B ratio Including uncertainties of neutrino temperatures

• Normal mass hierarchy & MSW-H *adiabatic* $N(^{7}Li)/N(^{11}B) > 0.8$ **Can Oscillation parameters be constrained?**

• Normal mass hierarchy & MSW-H *adiabatic*

N(⁷Li)/N(¹¹B) > 0.8 Including the uncertainties of neutrino temperatures

Problems

- Stellar mass dependences
- Dependence on stellar evolution model

 Attempt of observations
Observations of ¹¹B/¹⁰B ratio (Rebull et al. 1998, 2000)
➡ Large ¹¹B/¹⁰B ratio may indicate traces of SNe. It has not been observed.

Summary

We investigate the nucleosynthesis of light elements through the ν -process in supernovae.

⁷Li & ¹¹B are mainly produced among light elements. v-process reactions ⁴He(v,v'p)³H, ⁴He(v,v'n)³He, ¹²C(v,v'p)¹¹B, ¹²C(v,v'n)¹¹C **Production during Galactic chemical evolution** ⁷Li & ¹¹B yields depend on neutrino oscillations. Normal mass hierarchy & $sin^2 2\theta_{13} > 0.002$ ⁷Li & ¹¹B yields increase by factors 1.7 and 1.2. $\sim N(^{7}\text{Li})/N(^{11}\text{B}) > 0.8$ Possibility for constraining *mass hierarchy* and the mixing angle θ_{13} .