

Latest Results and Prospects for Higgs Searches at the Tevatron

Andy Haas DØ / ATLAS Columbia University

with results from the DØ and CDF Collaborations*

Saclay/Orsay Seminars March 10-11, 2008

*Mostly from Moriond EW 2008 (last week)

Outline

Standard Model Higgs searches

- Low mass
- High mass
- Improvements
- Prospects

MSSM Higgs searches

Other Higgs searches

μ+

Andy Haas Saclay/Orsay Seminars – March 10-11, 2008

The Standard Model

- 3 families of matter
- 3 forces
 - "gauge symmetries":
 U(1)_Y x SU(2)_L x SU(3)_C

Massive W,Z gauge bosons

Scalar Higgs field, non-zero VEV

- W,Z get masses through "Higgs mechanism"
- Fermions can get Yukawa masses:

$$-\frac{1}{v}m_f\bar{\psi}_f\phi_h\psi_f$$

Higgs boson: excitation of the Higgs field

- Scalar boson
- Couplings specified
- Unknown mass: m_H

Higgs Mass Constraints

m_H<182 GeV (including direct limit)

The Tevatron at Fermilab

Running (again) since ~2003 p-pbar, sqrt(s)=1.96 TeV Record luminosity: 2.9e32 cm⁻²s⁻¹! Expect 6 fb⁻¹ by '09 (maybe 8 fb⁻¹ by '10)

CDF and DØ experiments in RunII

- Both detectors are highly upgraded in RunII
 - New silicon micro-vertex tracker
 - New tracking system
 - Upgraded muon chambers

CDF: new Plug Calorimeters, new TOF

UNIVERSITY

OLUMBIA

IN THE CITY OF NEW YORK

 DØ: new solenoid, new preshowers, LØ for SMT in RunIIb, new L1Cal trigger

Needle in a Haystack

Higgs has small cross-section at the Tevatron

• Couples weakly to light quarks in the proton!

Large backgrounds from

- Jets
- W,Z + jets
- ttbar
- WW, WZ, ZZ

Higgs Production at the Tevatron

OLUMBL

IN THE CITY OF NEW YORK

Saclay/Orsay Seminars - March 10-11, 2008

Higgs Production at the Tevatron

Higgs Production at the Tevatron

JNIVERSITY

OLUMBIA

IN THE CITY OF NEW YORK

Higgs Decays

Coupling \propto fermion mass 140_GeV $-\frac{1}{v}m_f\bar{\psi}_f\phi_h\psi_f$ bb WW BR for SM Higgs ZZ 10^{-1} $\tau^+\tau^$ $c\overline{c}$ Main channels: tī gg 10 WW* (high mass) bb, ττ (low mass) 10^{-3} 100 500 1000 200 50 **Higgs Mass** (GeV) Need good b-jet tagging!

Andy Haas Saclay/Orsay Seminars – March 10-11, 2008

Main Higgs Analyses

H \rightarrow bb, $\tau\tau$ (low mass)

H→WW* (high mass)

H→WW*→ ee/eµ/µµ+MET

WH→Wbb→ e/µ+bb

ZH→Zbb→ ee/µµ+bb MET+bb $W/Z+H \rightarrow W/Z+WW* \rightarrow l^+l^-l^+/l^+l^+jj + MET$

COLUMBIA UNIVERSITY

Andy Haas Saclay/Orsay Seminars – March 10-11, 2008

IN THE CITY OF NEW YORK

Saclay/Orsay Seminars - March 10-11, 2008

b-Jet Tagging

B hadrons are "long"-lived

- Reconstruct charged particles tracks
- Reconstruct "vertices" where tracks overlap

Identify jets with:

- Large impact parameter significance tracks
- Large decay length significance vertices

Slide 14

b-Jet Tagging

Many variables with separation power:

<u>Secondary vertex:</u>

Decay-length significance # tracks on vertex # vertices mass chi²/dof

• <u>Jet:</u>

high IP sig. tracks
combined light-jet probability

COLUMBIA UNIVERSITY

Andy Haas Saclay/Orsay Seminars – March 10-11, 2008

Neural Network b-Jet Tagging

THE CITY OF NEW YORK

WH > I nu b b (I=e,mu)

IN THE CITY OF NEW YORK

WH > I nu b b (I=e,mu)

Saclay/Orsay Seminars - March 10-11, 2008

WH-> I nu b b (l=e,mu)

95% Confidence Level Upper limit is set by binned likelihood method.
 -> Showing σ(limit)/σ(SM) Ratio (i.e. If reached 1, it is excluded)

COLUMBIA UNIVERSITY

COLUMBIA UNIVERSITY

Andy Haas Saclay/Orsay Seminars – March 10-11, 2008

New DØ result: Boosted Decision Tree, 2.1/fb

olumbia [Iniversity

IN THE CITY OF NEW YORK

Andy Haas Saclay/Orsay Seminars – March 10-11, 2008

Slide 24

IN THE CITY OF NEW YORK

Saclay/Orsay Seminars - March 10-11, 2008

ZH-> nu nu b b

a

WH/ZH/VBF/ggH -> $\tau\tau$ + 2 jets.

- But not impossible! Ideas are:
 - Recover BR by looking at W/Z->2 jets:
 - W \rightarrow Iv(22%), Z \rightarrow II(6%), Z \rightarrow vv(20%)
 - W → jj (67%), Z → jj(70%)
 - 2. Add all possible channels:

THE CITY OF NEW YORK

- Simultaneous Search for WH+ZH+VBF+ggH
- Many good kinematic variables to separate signal from backgrounds(dijet mass, dη(j,j) etc.)

NIVERSITY

Andy Haas Saclay/Orsay Seminars – March 10-11, 2008

Slide 27

NEW!

WH/ZH/VBF/ggH -> $\tau\tau$ + 2 jets

- Use τ_{lep}τ_{had} mode.
 - Lepton P_T > 10 GeV
 - Hadronic τ P_τ > 15 GeV
- 3 Neural Nets are trained: Signal vs Z-> ττ + jets
 Signal vs ttbar
 Signal vs QCD
- Select minimum of 3 NN scores

N THE CITY OF NEW YORK

NIVERSITY

- CDF: (at M_H=120 GeV) σ(limit)/σ(SM) = 30/24 (obs./exp.)
- * Established background estimate & modeling
- * Further improvement by adding 0j/1jet events
- * Becomes more interesting at LHC

N THE CITY OF NEW YORK

Saclay/Orsay Seminars - March 10-11, 2008

H -> WW* -> I I (I=e,mu)

Analysis overview

- To suppress hadron backgrounds we look into final states where both W decay to leptons, i.e. ee, μμ and eμ
- Major backgrounds: Diboson (mainly WW), Drell-Yan, Multijets, tt, W+jets
- Signature:
 - Two energetic isolated leptons with opposite charge
 - Large missing transverse energy

Andy Haas Saclay/Orsay Seminars – March 10-11, 2008

H -> WW* -> I I (I=e,mu)

Characteristics:

- In signal WW pair is coming from spin 0 Higgs boson
 - Leptons prefer to point in same direction

- Di-lepton opening angle $\Delta \varphi_{I\!I}$ discriminates against dominant WW background.
- Dilepton mass is small and broad
 - Discriminates against Drell-Yan

Selection criteria	$m_{\rm H} = 115 {\rm GeV}$	$m_{\rm H} = 160 {\rm GeV}$	$m_{\rm H} = 200 \text{ GeV}$
Cut 0 Pre-selection	lepton ID, leptons with opposite charge and $p_T^{e_1} > 20$ GeV and $p_T^{e_2} > 15$ GeV		
$C_{\rm res} = 1$ $M_{\rm res}^2 = T_{\rm res} = T_{\rm res} = T_{\rm res}^2 = (C_{\rm res} M_{\rm res}^2)$	invariant mass $M_{ee} > 15 \text{ GeV}$		
Out 1 Missing Transverse Energy μ_T (GeV)	> 20	> 20	> 20
Cut 2 $\not{E}_T^{\text{Scaled}}$	> 6	> 7	> 7
Cut 3 M_T^{min} $(\ell, \not\!\!\!E_T)$ (GeV)	> 35	> 50	> 50
Cut 4 Sum of $p_T^{\ell} + p_T^{\ell'} + \not\!$	80-120	90-160	120-200
Cut 5 Invariant mass M_{ee} (GeV)	< 40	< 70	< 75
Cut 6 H_T (GeV)	< 50	< 80	< 80
Cut 7 $\Delta \phi(e_1, e_2)$	< 2.5	< 2.0	< 2.0

Several categories of lepton(track) pairs with opposite charge divided into two groups – high signal to background and low signal to background

 $H -> WW^* -> || (|=e,mu)$

Lepton and missing E_T cuts applied to reduce backgrounds: $p_T(I_1) > 20 \text{ GeV}, p_T(I_2) > 10 \text{ GeV}, \not\!\!E_T \cdot \sin(\min(\pi/2, \Delta \phi(\not\!\!E_T, I \text{ or jet}))) > 25 \text{ GeV},$ $n_{iets} < 2 (p_T(jet) > 15 \text{ GeV}, |\eta| < 2.5), m_{\parallel} > 16 \text{ GeV}, trilepton veto$

NEW!

Slide 32

H -> WW* -> I I (I=e,mu)

 ME calculated from lepton 4-vectors and missing transverse energy is used as an input to NN together with several kinematic distributions

IN THE CITY OF NEW YORK

Saclay/Orsay Seminars – March 10-11, 2008

Andy Haas Saclay/Orsay Seminars – March 10-11, 2008

H -> WW* -> I I (I=e,mu)

COLUMBIA UNIVERSITY

Andy Haas Saclay/Orsay Seminars – March 10-11, 2008
WH -> W WW* -> $I^{\pm} I^{\pm} + X$ (I=e,mu)

Basic selection requires two same charge leptons with $p_T > 15$ GeV

Two main types of backgrounds:

- With two real same charge leptons like WZ→lvll
- Instrumental measured from data:
 - "QCD" with misidentified lepton
 - "flip charge" when charge of the lepton is mismeasured

Main source of systematic uncertainty is coming from instrumental background (~30%)

Limit: 0.9 pb at 95% CL for m_{H} =160 GeV

SM Higgs Combinations

COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK Saclay/Orsay S

Andy Haas Saclay/Orsay Seminars – March 10-11, 2008

D0/CDF SM Higgs Combination

Improvements underway:

- Di-jet mass resolution
- Lepton efficiency
- Further improvements in analysis technique
- Better multivariate techniques
- Better b-tagging

Slide 39

Di-jet Mass Resolution

Undertaking a major effort to improve jet energy resolution

- Add "pre-shower" energy
- Correct for jet "width"
- Track-based corrections
- (H1-style) cell energy weighting
- Multiple jet-cone sizes
 - 0.5 less sensitive to noise, pileup, overlap
 - 0.7 captures more jet energy
 - Jet-by-jet showering / FSR correction

Andy Haas Saclay/Orsay Seminars – March 10-11, 2008

Time

Sensitivity Estimates

Di-jet mass resolution (20%) Lepton efficiency (10% / lepton) Improved analyses (20%) Matrix Element (20%) Better b-tagging

- Semi-leptonic tagging (5%)
- Silicon Layer-0 (8%)

Should be sensitive to m_H=160 GeV ~now

Sensitive to SM Higgs up to 200 GeV by 2010

Andy Haas Saclay/Orsay Seminars – March 10-11, 2008

Why is the Higgs so Light?

The Higgs mass is unstable

 Large radiative corrections (it's a scalar)

Hierarchy problem: m_H << m_{GUT}

Andy Haas Saclay/Orsay Seminars – March 10-11, 2008

Why is the Higgs so Light?

New physics: Supersymmetry !

- Particles come in fermion-boson pairs
- Corrections to Higgs mass nearly cancel, if boson and fermion masses are similar

Andy Haas Saclay/Orsay Seminars – March 10-11, 2008

Higgs Bosons in the MSSM

Two Higgs doublet fields

- H_u(H_d) couple to up(down)-type fermions
- $\tan\beta = \langle H_u \rangle / \langle H_d \rangle$
- 5 particles after EWSB
 - h, H, A, H⁺, H⁻
- h must be light, <~135 GeV

At large tan β , coupling of A, h/H to down-type fermions (b, τ) is enhanced

- Cross-section proportional to $tan^2\beta$
- Branching ratio: bb~90%, $\tau\tau$ ~10%

Neutral MSSM Higgs $\rightarrow \tau_{I} \tau_{had}$

- Main backgrounds: $Z \rightarrow \tau \tau$ (irreducible), W+jets, $Z \rightarrow ee, \mu\mu$, multijet, di-boson
- DØ (µ channel only): Selection:
 - only one isolated µ separated from the hadronic τ with opposite sign
 - set of NNs to discriminate τ from jets
 - cut on M_w(visible) < 20 GeV</p> removes most of the remaining W boson backgr.
- Optimized NNs to separate signal from background

IN THE CITY OF NEW YORK

- CDF (e, μ, e+μ channels): Selection:
 - isolated e or µ separated from the hadronic τ with opposite sign
 - variable-size cone algorithm for τ discrimination
 - jet background suppressed by requiring: $|p_t^l| + |p_t^{had}| + |\mathcal{E}_{\tau}| > 55 \text{ GeV}$
 - remove most of the W background by a requirement on the relative directions of the visible τ decay products and $\not\!\!\!E_T$

Saclay/Orsay Seminars – March 10-11, 2008

Slide 45

b(h/H,A)→bbb

(h/H,A) \rightarrow bb swamped by QCD background

• Look for *associated* b production

Require at least 3 *b-tagged* jets

Signal:

 Invariant mass of leading jets is peaked at m_A

Backgrounds (determined from data):

- Shape based on the double b-tagged data sample
- Corrected for kinematic bias from the 3rd b-tag

COLUMBIA UNIVERSITY

- New result for Moriond QCD 08, using 1.9 fb⁻¹
- Search in mass of two lead jets, m₁₂
- Backgrounds are events with two true b-tags, and a b/c/fake tag
- Characteristic m₁₂ spectra for each
- Start from bb+jet sample (corrected double-tags), weight events by flavor hypothesis
- Correct bbb and bcb shapes for double/triple-tag selection bias
 - Largest systematic error
- Fit the observed m_{12} spectrum with the backgrounds and a Higgs shape

COLUMBIA UNIVERSITY

Slide 47

$b(h/H,A) \rightarrow b\tau\tau$

344 pb⁻¹ (update in progress!)

Best S/B of all three MSSM analyses, but lowest cross-section x BR

Select $\tau\tau(\rightarrow\mu)$ events, normalize to $Z\rightarrow\tau\tau$ peak Require >=1 *b*-tagged jet, with p_{τ} >15 GeV

Multijet (QCD) background measured using like-sign data

	single- π -like τ	rho-like τ	$\overline{3-\text{prong }\tau}$
Signal Accept. (%)	0.15 ± 0.03	0.87 ± 0.11	0.30 ± 0.04
Expected Signal	0.6 ± 0.1	3.5 ± 0.5	1.2 ± 0.2
QCD	0.62 ± 0.22	0.51 ± 0.14	1.45 ± 0.18
Z+jet	0.34 ± 0.09	1.6 ± 0.3	0.35 ± 0.10
$t\bar{t}$ (di-l)	0.18 ± 0.03	0.50 ± 0.11	0.007 ± 0.0013
$t\bar{t}$ (l+jet)	0	0.008 ± 0.008	0.15 ± 0.04
Ŵ+jj	0.005 ± 0.005	0.05 ± 0.02	0.40 ± 0.14
Total Background	1.2 ± 0.2	2.6 ± 0.3	2.5 ± 0.2
Observed	0	1	2

(for $M_H = 120$ GeV and $\tan\beta = 80$)

Andy Haas Saclay/Orsay Seminars – March 10-11, 2008

OLUMBIA

IN THE CITY OF NEW YORK

MSSM Higgs Limits

MSSM Prospects

Results from the first 1-2/fb of data show very promising sensitivity

By 2010...

Exclude

- up to $m_A \sim 300$ GeV for high tan β
- down to $tan\beta \sim 30$ for low m_A

Or make a discovery!

New results on H⁺ coming soon!

Andy Haas Saclay/Orsay Seminars – March 10-11, 2008

Other Higgs Searches

Showing results 1 through 47 (of 47 total) for ti:(Higgs AND Decay) and year 2008

4. arXiv:0801.4554 [ps, pdf, other] Title: Nonstandard Higgs Boson Decays

5. arXiv:0801.3456 [ps, pdf, other] Title: **Higgs boson decays to four fermions through an abelian hidden sector**

13. arXiv:0711.3361 [ps, pdf, other] Title: Higgs Boson Decays into Single Photon plus Unparticle

18. arXiv:0710.5331 [ps, pdf, other] Title: **Higgs boson decays in the Complex MSSM**

19. arXiv:0710.4923 [ps, pdf, other] Title: **Di-photon Higgs Decay in SUSY with CP Violation**

21. arXiv:0710.4591 [ps, pdf, other] Title: Nonstandard Higgs Decays with Visible and Missing Energy 24. arXiv:0710.0340 [ps, pdf, other] Title: **Di-photon Higgs decay in the MSSM with explicit CP violation**

31. arXiv:0708.1939 [ps, pdf, other]

Title: Effect of Charged Scalar Loops on Photonic Decays of a Fermiophobic Higgs

34. arXiv:0708.0248 [ps, pdf, other]

Title: Higgs decays in supersymmetric models with light neutralinos

36. arXiv:0707.3152 [ps, pdf, other] Title: New Physics Effects in Higgs Decay to Tau Leptons

37. arXiv:0707.1591 [ps, pdf, other] Title: Invisibly decaying Higgs boson in the Littlest Higgs model with T-parity

39. arXiv:0706.1732 [ps, pdf, other] Title: GeV Seesaw, Accidentally Small Neutrino Masses, and **Higgs Decays to Neutrinos**

Other Higgs Searches

No shortage of new models!

- Cover some general signatures we are sensitive to:
 - Doubly charged Higgs
 - Enhanced decays to photons

Others are harder, but on the way:

- Invisible Higgs
- CP-violating Higgs
- Higgs->aa->4τ

•

Andy Haas Saclay/Orsay Seminars – March 10-11, 2008

Models with H++

- Left-right symmetric models
- Higgs triplet
- Little Higgs

Analysis Overview

- 1.1 fb⁻¹
- 3 μ's with: P_τ>15 GeV |η|<2.0
- >=1 $\mu\mu$ pair with: M>30 GeV/c²; $\Delta\phi$ <2.5 rad

Results

• Background: 3.1±0.5

olumbia [Iniversity]

• Data: 3 events

N THE CITY OF NEW YORK

 $M_{H}^{\pm\pm}$ (GeV/c²)

Andy Haas Saclay/Orsay Seminars – March 10-11, 2008

┝┫┽┽

Could be large $H \rightarrow \gamma \gamma$ BR: "fermiophobic"

 $H \rightarrow \gamma \gamma$

- Top-color models
- LED theories
- MSSM: H→bb suppressed by 1-loop corrections

Select 2 isolated photons, E_T > 25 GeV

QCD jet fakes estimated using the shower-shape correlations between the 2 photons ("matrix method")

Also contributes to SM Higgs search!

data	13827	
$Z/\gamma * \rightarrow ee$	740.9 ± 102.3	
jet+jet	4778.6 ± 1264.6	
$\gamma + ext{jet}$	4677.2 ± 1245.8	
QCD $\gamma\gamma$	3400.5 ± 711.0	
total background	13597.2 ± 2548.5	

THE CITY OF NEW YORK

VERSITY

Andy Haas Saclay/Orsay Seminars – March 10-11, 2008

Conclusions

The Tevatron is closing in on the SM Higgs

- Sensitive at 160 GeV this summer
- Sensitive to SM Higgs up to 200 GeV by 2010

Also looking for Higgs in the MSSM and other plausible models

• Already exploring new parameter space

The LHC starts this year (?!)

• SM Higgs boson by ~2011?

Andy Haas Saclay/Orsay Seminars – March 10-11, 2008

Backup

Andy Haas Saclay/Orsay Seminars – March 10-11, 2008

Precision EW Constraints

 $m_{
m H}$

 m_{Z}

log

EW variables sensitive to m_H via radiative corrections:

LEP II: m_{H} >114.4 GeV

 $sin^2 \theta_{eff}^{lept}$: most important observable for m_H fit

LEP @ CERN in 2000

Circular e⁺ e⁻ collider Maximum E of 200-210 GeV

Look for e⁺ e⁻ -> Z+H(->bb) Slight excess around 115 GeV Higgs mass > 114.4 GeV

Limit Setting

- In the absence of signal, we set limits on Standard Model Higgs boson production
 - ✗ We calculate limits via the CLs prescription:

$$CL_{s} = \frac{CL_{s+b}}{CL_{b}}$$

✗ Using a Log-Likelihood Ratio test statistic:

$$Q(\vec{s}, \vec{b}, \vec{d}) = \prod_{i=0}^{N_{chan}} \prod_{j=0}^{N_{bins}} \frac{(s+b)_{ij}^{d_{ij}} e^{(s+b)_{ij}}}{d_{ij}!} / \frac{b_{ij}^{d_{ij}} e^{b_{ij}}}{d_{ij}!}$$

olumbia [Iniversity

N THE CITY OF NEW YORK

$$LLR = -2 \times LogQ$$

d refers to "data" for model being tested; Observed events, or expected Background or Signal+Background

- Distributions of simulated outcomes are populated via Poisson trial with mean values given by B-only or S+B hypotheses
 - ${\pmb \times}$ Systematics are folded in via Gaussian marginalization
 - Correlations held amongst signals and backgrounds

Andy Haas Saclay/Orsay Seminars – March 10-11, 2008 6

Systematic Uncertainties

Andy Haas Saclay/Orsay Seminars – March 10-11, 2008

Matrix Elements

Calculate "cross-section" for an observed event to be from Z+bb or Z+(H->bb) Use MC integration methods Include as inputs to NN

$$p(m) = \int dx \ f_{\Phi} \cdot \sum_{a,b} f_a f_b \left| M_{ab}(k(m,x)) \right|^2 \cdot T(k(m,x),m)$$

- ▷ *m*: detector measurement of event.
- x: integration parameters
- \triangleright k(x,m): parton solution given m and x.
- \triangleright f_{Φ} : phase-space factors.
- ▷ *f_af_b*: PDFs from MCFM.
- \triangleright M_{ab} : matrix element from MCFM.
- ▷ T: transfer functions

MET = $\mu 1 + \mu 2 + j 1 + j 2 + \sigma(MET)$

Tracking

Central Fiber Tracker

Silicon Microstrip Tracker

Slide 62

Layer 0 of Silicon Tracker

Silicon detectors mounted just outside the beampipe Installed fall '06 Better track impact-parameter resolution

olumbia [Jniversity

N THE CITY OF NEW YORK

-> Better b-jet tagging

Layer 0 being inserted into the silicon tracker

Andy Haas Saclay/Orsay Seminars – March 10-11, 2008

b-Tagging Measurement

System 8 method:

$$\begin{split} n &= n_b + n_{udsgc} \\ p &= p_b + p_{udsgc} \\ n^{SLT} &= \varepsilon_b^{SLT} n_b + \varepsilon_{udsgc}^{SLT} n_{udsgc} \\ p^{SLT} &= \varepsilon_b^{SLT} p_b + \varepsilon_{udsgc}^{SLT} p_{udsgc} \\ n^{NN} &= \varepsilon_b^{NN} n_b + \varepsilon_{udsgc}^{NN} n_{udsgc} \\ p^{NN} &= \beta \varepsilon_b^{NN} p_b + \alpha \varepsilon_{udsgc}^{NN} p_{udsgc} \\ n^{SLT,NN} &= \kappa_b \varepsilon_b^{SLT} \varepsilon_b^{NN} n_b + \kappa_{udsgc} \varepsilon_{udsgc}^{SLT} \varepsilon_{udsgc}^{NN} n_{udsgc} \\ p^{SLT,NN} &= \kappa_b \beta \varepsilon_b^{SLT} \varepsilon_b^{NN} p_b + \kappa_{udsgc} \alpha \varepsilon_{udsgc}^{SLT} \varepsilon_{udsgc}^{NN} p_{udsgc} \end{split}$$

- Correlation coefficients, measured in MC:
 - α Ratio of the $udsc\text{-}\mathrm{tagging}$ efficiencies in the two samples.
 - β Ratio of the b-tagging efficiencies in the two samples.
 - κ_b Correlations between the NN tagger and the SLT tagger on b-jets.
 - κ_{udsc} Correlations between the NN tagger and the SLT tagger on udsc-jets.
 - $p_{TRel}\,$ Ratio of the SLT tagging efficiencies on c and $uds\mbox{-jets}.$

COLUMBIA UNIVERSITY

COLUMBIA UNIVERSITY

Andy Haas Saclay/Orsay Seminars – March 10-11, 2008

Tau ID

- Tau = narrow isolated jet with low track and π^0 multiplicity
- Taus decay inside detector: – $BR(\tau \rightarrow e/\mu + w)$ ~17%
 - $BR(\tau \rightarrow hadrons + v) \sim 65\%$

DØ uses one Neural Network per tau type to discriminate taus from jets

Associated
 Fermiophobic Higgs

 $p\bar{p} \rightarrow VV \rightarrow h_f \rightarrow \gamma \gamma + X$ $p\bar{p} \rightarrow h_f W^{\pm}(Z) \rightarrow \gamma \gamma + X$

- Analysis overview
 - 1.1 fb⁻¹;
 - 2 γ 's with: E_T >25 GeV, $|\eta|$ <1.1, $M_{\gamma\gamma}$ >65 GeV
 - Two regions
 - Signal: $q_T > 35 \text{ GeV}$
 - Control: $q_T < 35 \text{ GeV}$
 - Backgrounds: γγ, γj, jj
- LEP: m_H>109.7 GeV

 $H+V\rightarrow\gamma\gamma+X$

Fermiophobic Higgs $\rightarrow 3\gamma + X$

- In various extensions of the SM (also MSSM) the coupling of h might be suppressed to Fermions
- Search for the channel:

 $p\overline{p} \to h_f H^{\pm} \to h_f h_f W^{\pm} \to \gamma \gamma \gamma \gamma \left(\gamma\right) + X$

- Good photon identification is crucial
- Cuts: 3γ within |η|<1.1
 E_T^{1,2,3} > 30, 20, 15 GeV
- Backgrounds: Jets or electrons misidentified as γ and direct 3γ prod.
- Background is estimated from data with efficiencies ε^γ, P(j→γ), P(e→γ)

3γ prod.:
$$N^{3\gamma} = \frac{N_{\gamma\gamma}(MC)}{N_{\gamma\gamma}(MC)} N_{\gamma\gamma}(Data) * ρ$$

- Cut on p_T^{3y} > 25 GeV gives 1.1 events in background and 0 in data
- Upper limit: $\sigma = 25.3 fb (95\% CL)$

Ref.) CDF SECVTX btag

More Plots : $H \rightarrow \tau \tau$ Channel

≥ 2jet bin

March 2nd 2008 :: Low Mass Higgs Search :: Kohei Yorita (U. of Chicago)

More Plots : $H \rightarrow \tau \tau$ Channel

> 3 Neural Nets Distributions:

CDF 3b Channel

- Improve prediction of total background m₁₂ using tag properties
 - Invariant mass of tracks in each vertex m_j
- m₁+m₂: bbb+bbx / bcb+bqb
- m₃: bbx / bbb+bcb+bqb
- Unstack into 1D variable "x_{tags}" for plotting/fitting
- Fits are 2D m₁₂ vs x_{tags}
 - Four backgrounds
 - Higgs signal template

Old Combinations

Andy Haas Saclay/Orsay Seminars – March 10-11, 2008

Slide 73

H -> WW* -> I I (I=e,mu)

Andy Haas Saclay/Orsay Seminars – March 10-11, 2008

SM Higgs Combinations

- Combined limits from December 2007
 - New results shown today not yet included!
- Expect both experiments to show improved limits next week

D0/CDF SM Higgs Combination

New Tevatron combination coming very very soon!

Improvements underway:

- Di-jet mass resolution
- Lepton efficiency
- Further improvements in analysis technique
- Better multivariate techniques
- Better b-tagging

Andy Haas Saclay/Orsay Seminars – March 10-11, 2008

Slide 76